
synchronization 2

1

changelog
changes since lecture version:

2 March 2022: life homework even/odd (not shown in lecture) fix
precedence issue in pseudocode

2

last time
atomic operation concept

all of it happens or none of it happens
can’t observe in-between state

atomic load/stores not really enough

lock abstraction:
lock/acquire — wait for lock to be available
unlock/release — allow another to use lock
pattern: lock before using shared resource, unlock after

pthread_mutex, xv6 spinlock

3

exercise
pthread_mutex_t lock1 = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t lock2 = PTHREAD_MUTEX_INITIALIZER;
string one = "init one", two = "init two";
void ThreadA() {

pthread_mutex_lock(&lock1);
one = "one in ThreadA"; // (A1)
pthread_mutex_unlock(&lock1);
pthread_mutex_lock(&lock2);
two = "two in ThreadA"; // (A2)
pthread_mutex_unlock(&lock2);

}
void ThreadB() {

pthread_mutex_lock(&lock1);
one = "one in ThreadB"; // (B1)
pthread_mutex_lock(&lock2);
two = "two in ThreadB"; // (B2)
pthread_mutex_unlock(&lock2);
pthread_mutex_unlock(&lock1);

}

possible values of one/two after A+B run?
4

exercise (alternate 1)
pthread_mutex_t lock1 = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t lock2 = PTHREAD_MUTEX_INITIALIZER;
string one = "init one", two = "init two";
void ThreadA() {

pthread_mutex_lock(&lock2);
two = "two in ThreadA"; // (A2)
pthread_mutex_unlock(&lock2);
pthread_mutex_lock(&lock1);
one = "one in ThreadA"; // (A1)
pthread_mutex_unlock(&lock1);

}
void ThreadB() {

pthread_mutex_lock(&lock1);
one = "one in ThreadB"; // (B1)
pthread_mutex_lock(&lock2);
two = "two in ThreadB"; // (B2)
pthread_mutex_unlock(&lock2);
pthread_mutex_unlock(&lock1);

}

possible values of one/two after A+B run?
5

exercise (alternate 2)
pthread_mutex_t lock1 = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t lock2 = PTHREAD_MUTEX_INITIALIZER;
string one = "init one", two = "init two";
void ThreadA() {

pthread_mutex_lock(&lock2);
two = "two in ThreadA"; // (A2)
pthread_mutex_unlock(&lock2);
pthread_mutex_lock(&lock1);
one = "one in ThreadA"; // (A1)
pthread_mutex_unlock(&lock1);

}
void ThreadB() {

pthread_mutex_lock(&lock1);
one = "one in ThreadB"; // (B1)
pthread_mutex_unlock(&lock1);
pthread_mutex_lock(&lock2);
two = "two in ThreadB"; // (B2)
pthread_mutex_unlock(&lock2);

}

possible values of one/two after A+B run?
6

C++ containers and locking
can you use a vector from multiple threads?

…question: how is it implemented?

dynamically allocated array
reallocated on size changes

can access from multiple threads …as long as not
append/erase/etc.?

assuming it’s implemented like we expect…
but can we really depend on that?
e.g. could shrink internal array after a while with no expansion save
memory?

7

C++ containers and locking
can you use a vector from multiple threads?

…question: how is it implemented?
dynamically allocated array
reallocated on size changes

can access from multiple threads …as long as not
append/erase/etc.?

assuming it’s implemented like we expect…
but can we really depend on that?
e.g. could shrink internal array after a while with no expansion save
memory?

7

C++ containers and locking
can you use a vector from multiple threads?

…question: how is it implemented?
dynamically allocated array
reallocated on size changes

can access from multiple threads …as long as not
append/erase/etc.?

assuming it’s implemented like we expect…
but can we really depend on that?
e.g. could shrink internal array after a while with no expansion save
memory?

7

C++ standard rules for containers
multiple threads can read anything at the same time

can only read element if no other thread is modifying it

can safely add/remove elements if no other threads are accessing
container

(sometimes can safely add/remove in extra cases)

exception: vectors of bools — can’t safely read and write at same
time

might be implemented by putting multiple bools in one int

8

are locks enough?
do we need more than locks?

9

example 1: pipes?
suppose we want to implement a pipe with threads

read sometimes needs to wait for a write

don’t want busy-wait
(and trick of having writer unlock() so reader can finish a lock() is illegal)

10

more synchronization primitives
need other ways to wait for threads to finish

we’ll introduce several synchronization ideas beyond locks:
barriers — (today)
condition variables / monitors
counting semaphores
reader/writer locks

11

barriers
compute minimum of 100M element array with 2 processors

algorithm:

compute minimum of 50M of the elements on each CPU
one thread for each CPU

wait for all computations to finish

take minimum of all the minimums

12

barriers
compute minimum of 100M element array with 2 processors

algorithm:

compute minimum of 50M of the elements on each CPU
one thread for each CPU

wait for all computations to finish

take minimum of all the minimums

12

barriers API
barrier.Initialize(NumberOfThreads)

barrier.Wait() — return after all threads have waited

idea: multiple threads perform computations in parallel

threads wait for all other threads to call Wait()

13

barrier: waiting for finish

partial_mins[0] =
/* min of first

50M elems */;

barrier.Wait();

total_min = min(
partial_mins[0],
partial_mins[1]

);

Thread 0

barrier.Initialize(2);

partial_mins[1] =
/* min of last

50M elems */
barrier.Wait();

Thread 1

14

barriers: reuse
barriers are reusable:

results[0][0] = getInitial(0);
barrier.Wait();

results[1][0] =
computeFrom(

results[0][0],
results[0][1]

);
barrier.Wait();

results[2][0] =
computeFrom(

results[1][0],
results[1][1]

);

Thread 0
results[0][1] = getInitial(1);
barrier.Wait();

results[1][1] =
computeFrom(

results[0][0],
results[0][1]

);
barrier.Wait();

results[2][1] =
computeFrom(

results[1][0],
results[1][1]

);

Thread 1

15

barriers: reuse
barriers are reusable:

results[0][0] = getInitial(0);
barrier.Wait();

results[1][0] =
computeFrom(

results[0][0],
results[0][1]

);
barrier.Wait();

results[2][0] =
computeFrom(

results[1][0],
results[1][1]

);

Thread 0
results[0][1] = getInitial(1);
barrier.Wait();

results[1][1] =
computeFrom(

results[0][0],
results[0][1]

);
barrier.Wait();

results[2][1] =
computeFrom(

results[1][0],
results[1][1]

);

Thread 1

15

barriers: reuse
barriers are reusable:

results[0][0] = getInitial(0);
barrier.Wait();

results[1][0] =
computeFrom(

results[0][0],
results[0][1]

);
barrier.Wait();

results[2][0] =
computeFrom(

results[1][0],
results[1][1]

);

Thread 0
results[0][1] = getInitial(1);
barrier.Wait();

results[1][1] =
computeFrom(

results[0][0],
results[0][1]

);
barrier.Wait();

results[2][1] =
computeFrom(

results[1][0],
results[1][1]

);

Thread 1

15

pthread barriers
pthread_barrier_t barrier;
pthread_barrier_init(

&barrier,
NULL /* attributes */,
numberOfThreads

);
...
...
pthread_barrier_wait(&barrier);

16

life homework (pseudocode)
for (int time = 0; time < MAX_ITERATIONS; ++time) {

for (int y = 0; y < size; ++y) {
for (int x = 0; x < size; ++x) {

to_grid(x, y) = computeValue(from_grid, x, y);
}

}
swap(from_grid, to_grid);

}

17

life homework
compute grid of values for time t from grid for time t− 1

compute new value at i, j based on surrounding values

parallel version: produce parts of grid in different threads

use barriers to finish time t before going to time t + 1
avoid trying to read things that aren’t computed

CoA2 (pilot new curriculum) students: additional requirement
also additional on next pool assignment — start early!

18

life homework even/odd
naive way has an operation that needs locking:
for (int time = 0; time < MAX_ITERATIONS; ++time) {

... compute to_grid ...
swap(from_grid, to_grid);

}

but this alternative needs less locking:
Grid grids[2];
for (int time = 0; time < MAX_ITERATIONS; ++time) {

from_grid = &grids[time % 2];
to_grid = &grids[(time % 2) + 1];
... compute to_grid ...

}

19

life homework even/odd
naive way has an operation that needs locking:
for (int time = 0; time < MAX_ITERATIONS; ++time) {

... compute to_grid ...
swap(from_grid, to_grid);

}

but this alternative needs less locking:
Grid grids[2];
for (int time = 0; time < MAX_ITERATIONS; ++time) {

from_grid = &grids[time % 2];
to_grid = &grids[(time % 2) + 1];
... compute to_grid ...

}

19

implementing locks: single core
intuition: context switch only happens on interrupt

timer expiration, I/O, etc. causes OS to run

solution: disable them
reenable on unlock

x86 instructions:
cli — disable interrupts
sti — enable interrupts

20

implementing locks: single core
intuition: context switch only happens on interrupt

timer expiration, I/O, etc. causes OS to run

solution: disable them
reenable on unlock

x86 instructions:
cli — disable interrupts
sti — enable interrupts

20

naive interrupt enable/disable (1)
Lock() {

disable interrupts
}

Unlock() {
enable interrupts

}

problem: user can hang the system:
Lock(some_lock);
while (true) {}

problem: can’t do I/O within lock
Lock(some_lock);
read from disk

/* waits forever for (disabled) interrupt
from disk IO finishing */

21

naive interrupt enable/disable (1)
Lock() {

disable interrupts
}

Unlock() {
enable interrupts

}

problem: user can hang the system:
Lock(some_lock);
while (true) {}

problem: can’t do I/O within lock
Lock(some_lock);
read from disk

/* waits forever for (disabled) interrupt
from disk IO finishing */

21

naive interrupt enable/disable (1)
Lock() {

disable interrupts
}

Unlock() {
enable interrupts

}

problem: user can hang the system:
Lock(some_lock);
while (true) {}

problem: can’t do I/O within lock
Lock(some_lock);
read from disk

/* waits forever for (disabled) interrupt
from disk IO finishing */

21

naive interrupt enable/disable (2)
Lock() {

disable interrupts
}

Unlock() {
enable interrupts

}

problem: nested locks
Lock(milk_lock);
if (no milk) {

Lock(store_lock);
buy milk
Unlock(store_lock);
/* interrupts enabled here?? */

}
Unlock(milk_lock);

22

naive interrupt enable/disable (2)
Lock() {

disable interrupts
}

Unlock() {
enable interrupts

}

problem: nested locks
Lock(milk_lock);
if (no milk) {

Lock(store_lock);
buy milk
Unlock(store_lock);
/* interrupts enabled here?? */

}
Unlock(milk_lock);

22

naive interrupt enable/disable (2)
Lock() {

disable interrupts
}

Unlock() {
enable interrupts

}

problem: nested locks
Lock(milk_lock);
if (no milk) {

Lock(store_lock);
buy milk
Unlock(store_lock);
/* interrupts enabled here?? */

}
Unlock(milk_lock);

22

naive interrupt enable/disable (2)
Lock() {

disable interrupts
}

Unlock() {
enable interrupts

}

problem: nested locks
Lock(milk_lock);
if (no milk) {

Lock(store_lock);
buy milk
Unlock(store_lock);
/* interrupts enabled here?? */

}
Unlock(milk_lock);

22

xv6 interrupt disabling (1)
...
acquire(struct spinlock *lk) {
pushcli(); // disable interrupts to avoid deadlock
... /* this part basically just for multicore */

}
release(struct spinlock *lk)
{
... /* this part basically just for multicore */
popcli();

}

23

xv6 push/popcli
pushcli / popcli — need to be in pairs

pushcli — disable interrupts if not already

popcli — enable interrupts if corresponding pushcli disabled them
don’t enable them if they were already disabled

24

compilers move loads/stores (1)
void Alice() {

note_from_alice = 1;
do {} while (note_from_bob);
if (no_milk) {++milk;}

}

Alice:
movl $1, note_from_alice // note_from_alice ← 1
movl note_from_bob, %eax // eax ← note_from_bob

.L2:
testl %eax, %eax
jne .L2 // while (eax == 0) repeat
cmpl $0, no_milk // if (no_milk != 0) ...
...

25

compilers move loads/stores (1)
void Alice() {

note_from_alice = 1;
do {} while (note_from_bob);
if (no_milk) {++milk;}

}

Alice:
movl $1, note_from_alice // note_from_alice ← 1
movl note_from_bob, %eax // eax ← note_from_bob

.L2:
testl %eax, %eax
jne .L2 // while (eax == 0) repeat
cmpl $0, no_milk // if (no_milk != 0) ...
...

25

compilers move loads/stores too (2)
void Alice() {

note_from_alice = 1; // "Alice waiting" signal for Bob()
do {} while (note_from_bob);
if (no_milk) {++milk;}
note_from_alice = 2;

}

Alice:
// compiler optimization: don't set note_from_alice to 1,
// (why? it will be set to 2 anyway)
movl note_from_bob, %eax // eax ← note_from_bob

.L2:
testl %eax, %eax
jne .L2 // while (eax == 0) repeat
...
movl $2, note_from_alice // note_from_alice ← 2

26

compilers move loads/stores too (2)
void Alice() {

note_from_alice = 1; // "Alice waiting" signal for Bob()
do {} while (note_from_bob);
if (no_milk) {++milk;}
note_from_alice = 2;

}

Alice:
// compiler optimization: don't set note_from_alice to 1,
// (why? it will be set to 2 anyway)
movl note_from_bob, %eax // eax ← note_from_bob

.L2:
testl %eax, %eax
jne .L2 // while (eax == 0) repeat
...
movl $2, note_from_alice // note_from_alice ← 2

26

compilers move loads/stores too (2)
void Alice() {

note_from_alice = 1; // "Alice waiting" signal for Bob()
do {} while (note_from_bob);
if (no_milk) {++milk;}
note_from_alice = 2;

}

Alice:
// compiler optimization: don't set note_from_alice to 1,
// (why? it will be set to 2 anyway)
movl note_from_bob, %eax // eax ← note_from_bob

.L2:
testl %eax, %eax
jne .L2 // while (eax == 0) repeat
...
movl $2, note_from_alice // note_from_alice ← 2

26

a simple race
thread_A:

movl $1, x /* x ← 1 */
movl y, %eax /* return y */
ret

thread_B:
movl $1, y /* y ← 1 */
movl x, %eax /* return x */
ret

x = y = 0;
pthread_create(&A, NULL, thread_A, NULL);
pthread_create(&B, NULL, thread_B, NULL);
pthread_join(A, &A_result); pthread_join(B, &B_result);
printf("A:%d B:%d\n", (int) A_result, (int) B_result);

if loads/stores atomic, then possible results:
A:1 B:1 — both moves into x and y, then both moves into eax execute
A:0 B:1 — thread A executes before thread B
A:1 B:0 — thread B executes before thread A

27

a simple race
thread_A:

movl $1, x /* x ← 1 */
movl y, %eax /* return y */
ret

thread_B:
movl $1, y /* y ← 1 */
movl x, %eax /* return x */
ret

x = y = 0;
pthread_create(&A, NULL, thread_A, NULL);
pthread_create(&B, NULL, thread_B, NULL);
pthread_join(A, &A_result); pthread_join(B, &B_result);
printf("A:%d B:%d\n", (int) A_result, (int) B_result);

if loads/stores atomic, then possible results:
A:1 B:1 — both moves into x and y, then both moves into eax execute
A:0 B:1 — thread A executes before thread B
A:1 B:0 — thread B executes before thread A

27

a simple race: results
thread_A:

movl $1, x /* x ← 1 */
movl y, %eax /* return y */
ret

thread_B:
movl $1, y /* y ← 1 */
movl x, %eax /* return x */
ret

x = y = 0;
pthread_create(&A, NULL, thread_A, NULL);
pthread_create(&B, NULL, thread_B, NULL);
pthread_join(A, &A_result); pthread_join(B, &B_result);
printf("A:%d B:%d\n", (int) A_result, (int) B_result);

my desktop, 100M trials:
frequency result

99 823 739 A:0 B:1 (‘A executes before B’)
171 161 A:1 B:0 (‘B executes before A’)

4 706 A:1 B:1 (‘execute moves into x+y first’)
394 A:0 B:0 ???

28

a simple race: results
thread_A:

movl $1, x /* x ← 1 */
movl y, %eax /* return y */
ret

thread_B:
movl $1, y /* y ← 1 */
movl x, %eax /* return x */
ret

x = y = 0;
pthread_create(&A, NULL, thread_A, NULL);
pthread_create(&B, NULL, thread_B, NULL);
pthread_join(A, &A_result); pthread_join(B, &B_result);
printf("A:%d B:%d\n", (int) A_result, (int) B_result);

my desktop, 100M trials:
frequency result

99 823 739 A:0 B:1 (‘A executes before B’)
171 161 A:1 B:0 (‘B executes before A’)

4 706 A:1 B:1 (‘execute moves into x+y first’)
394 A:0 B:0 ???

28

pthreads and reordering
many pthreads functions prevent reordering

everything before function call actually happens before

includes preventing some optimizations
e.g. keeping global variable in register for too long

pthread_mutex_lock/unlock, pthread_create, pthread_join, …
basically: if pthreads is waiting for/starting something, no weird ordering

implementation part 1: prevent compiler reordering

implementation part 2: use special instructions
example: x86 mfence instruction

29

mfence
x86 instruction mfence

make sure all loads/stores in progress finish

…and make sure no loads/stores were started early

fairly expensive
Intel ‘Skylake’: order 33 cycles + time waiting for pending stores/loads

aside: this instruction is did not exist in the original x86
so xv6 uses something older that’s equivalent

30

mfence
x86 instruction mfence

make sure all loads/stores in progress finish

…and make sure no loads/stores were started early

fairly expensive
Intel ‘Skylake’: order 33 cycles + time waiting for pending stores/loads

aside: this instruction is did not exist in the original x86
so xv6 uses something older that’s equivalent

30

connecting CPUs and memory
multiple processors, common memory

how do processors communicate with memory?

31

shared bus

CPU1 CPU2 CPU3 CPU4 MEM1 MEM2

tagged messages — everyone gets everything, filters

contention if multiple communicators
some hardware enforces only one at a time

32

shared buses and scaling
shared buses perform poorly with “too many” CPUs

so, there are other designs

we’ll gloss over these for now

33

shared buses and caches
remember caches?

memory is pretty slow

each CPU wants to keep local copies of memory

what happens when multiple CPUs cache same memory?

34

the cache coherency problem

CPU1 CPU2 MEM1
address value
0xA300 100
0xC400 200
0xE500 300

CPU1’s cache

address value
0x9300 172
0xA300 100
0xC500 200

CPU2’s cache

CPU1 writes 101 to 0xA300?

When does this change?

When does this change?

35

the cache coherency problem

CPU1 CPU2 MEM1
address value
0xA300 100101
0xC400 200
0xE500 300

CPU1’s cache

address value
0x9300 172
0xA300 100
0xC500 200

CPU2’s cache

CPU1 writes 101 to 0xA300?

When does this change?

When does this change?

35

using a shared the bus
want to change a value other processors might have?

use bus to tell them “get rid of your copy”

want to start using value other processor might have reserved?

use bus to say “I’d like to use this value now”

36

modifying cache blocks in parallel
cache coherency works on cache blocks

but typical memory access — less than cache block
e.g. one 4-byte array element in 64-byte cache block

what if two processors modify different parts same cache block?
4-byte writes to 64-byte cache block

cache coherency — write instructions happen one at a time:
processor ‘locks’ 64-byte cache block, fetching latest version
processor updates 4 bytes of 64-byte cache block
later, processor might give up cache block

37

modifying things in parallel (code)
void *sum_up(void *raw_dest) {

int *dest = (int *) raw_dest;
for (int i = 0; i < 64 * 1024 * 1024; ++i) {

*dest += data[i];
}

}

__attribute__((aligned(4096)))
int array[1024]; /* aligned = address is mult. of 4096 */

void sum_twice(int distance) {
pthread_t threads[2];
pthread_create(&threads[0], NULL, sum_up, &array[0]);
pthread_create(&threads[1], NULL, sum_up, &array[distance]);
pthread_join(threads[0], NULL);
pthread_join(threads[1], NULL);

}

38

performance v. array element gap
(assuming sum_up compiled to not omit memory accesses)

10 20 30 40 50 60 70
distance between array elements (bytes)

0

100000000

200000000

300000000

400000000

500000000

tim
e

(c
yc

le
s)

39

false sharing
synchronizing to access two independent things

two parts of same cache block

solution: separate them

40

exercise (1)
int values[1024];
int results[2];
void *sum_front(void *ignored_argument) {

results[0] = 0;
for (int i = 0; i < 512; ++i)

results[0] += values[i];
return NULL;

}
void *sum_back(void *ignored_argument) {

results[1] = 0;
for (int i = 512; i < 1024; ++i)

results[1] += values[i];
return NULL;

}
int sum_all() {

pthread_t sum_front_thread, sum_back_thread;
pthread_create(&sum_front_thread, NULL, sum_front, NULL);
pthread_create(&sum_back_thread, NULL, sum_back, NULL);
pthread_join(sum_front_thread, NULL);
pthread_join(sum_back_thread, NULL);
return results[0] + results[1];

}

Where is false sharing likely to occur? How to fix? 41

exercise (2)
struct ThreadInfo { int *values; int start; int end; int result };
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

my_info->result += my_info->values[i];
}
return NULL;

}
int sum_all(int *values) {

ThreadInfo info[2]; pthread_t thread[2];
for (int i = 0; i < 2; ++i) {

info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, (void *) &info[i]);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

Where is false sharing likely to occur?
42

atomic read-modfiy-write
really hard to build locks for atomic load store

and normal load/stores aren’t even atomic…

…so processors provide read/modify/write operations

one instruction that
atomically
reads and modifies and writes back a value

43

x86 atomic exchange
lock xchg (%ecx), %eax

atomic exchange

temp ← M[ECX]

M[ECX] ← EAX

EAX ← temp

…without being interrupted by other processors, etc.

44

implementing atomic exchange
make sure other processors don’t have cache block

do read+modify+write operation

recall: Modified state = “I am the only one with a copy”

45

x86-64 spinlock with xchg
lock variable in shared memory: the_lock

if 1: someone has the lock; if 0: lock is free to take
acquire:

movl $1, %eax // %eax ← 1
lock xchg %eax, the_lock // swap %eax and the_lock

// sets the_lock to 1 (taken)
// sets %eax to prior val. of the_lock

test %eax, %eax // if the_lock wasn't 0 before:
jne acquire // try again
ret

release:
mfence // for memory order reasons
movl $0, the_lock // then, set the_lock to 0 (not taken)
ret

set lock variable to 1 (taken)
read old value

if lock was already locked retry
“spin” until lock is released elsewhere

release lock by setting it to 0 (not taken)
allows looping acquire to finish

Intel’s manual says:
no reordering of loads/stores across a lock
or mfence instruction

46

x86-64 spinlock with xchg
lock variable in shared memory: the_lock

if 1: someone has the lock; if 0: lock is free to take
acquire:

movl $1, %eax // %eax ← 1
lock xchg %eax, the_lock // swap %eax and the_lock

// sets the_lock to 1 (taken)
// sets %eax to prior val. of the_lock

test %eax, %eax // if the_lock wasn't 0 before:
jne acquire // try again
ret

release:
mfence // for memory order reasons
movl $0, the_lock // then, set the_lock to 0 (not taken)
ret

set lock variable to 1 (taken)
read old value

if lock was already locked retry
“spin” until lock is released elsewhere

release lock by setting it to 0 (not taken)
allows looping acquire to finish

Intel’s manual says:
no reordering of loads/stores across a lock
or mfence instruction

46

x86-64 spinlock with xchg
lock variable in shared memory: the_lock

if 1: someone has the lock; if 0: lock is free to take
acquire:

movl $1, %eax // %eax ← 1
lock xchg %eax, the_lock // swap %eax and the_lock

// sets the_lock to 1 (taken)
// sets %eax to prior val. of the_lock

test %eax, %eax // if the_lock wasn't 0 before:
jne acquire // try again
ret

release:
mfence // for memory order reasons
movl $0, the_lock // then, set the_lock to 0 (not taken)
ret

set lock variable to 1 (taken)
read old value

if lock was already locked retry
“spin” until lock is released elsewhere

release lock by setting it to 0 (not taken)
allows looping acquire to finish

Intel’s manual says:
no reordering of loads/stores across a lock
or mfence instruction

46

x86-64 spinlock with xchg
lock variable in shared memory: the_lock

if 1: someone has the lock; if 0: lock is free to take
acquire:

movl $1, %eax // %eax ← 1
lock xchg %eax, the_lock // swap %eax and the_lock

// sets the_lock to 1 (taken)
// sets %eax to prior val. of the_lock

test %eax, %eax // if the_lock wasn't 0 before:
jne acquire // try again
ret

release:
mfence // for memory order reasons
movl $0, the_lock // then, set the_lock to 0 (not taken)
ret

set lock variable to 1 (taken)
read old value

if lock was already locked retry
“spin” until lock is released elsewhere

release lock by setting it to 0 (not taken)
allows looping acquire to finish

Intel’s manual says:
no reordering of loads/stores across a lock
or mfence instruction

46

x86-64 spinlock with xchg
lock variable in shared memory: the_lock

if 1: someone has the lock; if 0: lock is free to take
acquire:

movl $1, %eax // %eax ← 1
lock xchg %eax, the_lock // swap %eax and the_lock

// sets the_lock to 1 (taken)
// sets %eax to prior val. of the_lock

test %eax, %eax // if the_lock wasn't 0 before:
jne acquire // try again
ret

release:
mfence // for memory order reasons
movl $0, the_lock // then, set the_lock to 0 (not taken)
ret

set lock variable to 1 (taken)
read old value

if lock was already locked retry
“spin” until lock is released elsewhere

release lock by setting it to 0 (not taken)
allows looping acquire to finish

Intel’s manual says:
no reordering of loads/stores across a lock
or mfence instruction

46

exercise: spin wait
consider implementing ‘waiting’ functionality of pthread_join

thread calls ThreadFinish() when done
complete code below:
finished: .quad 0
ThreadFinish:

ret

ThreadWaitForFinish:

lock xchg %eax, finished
cmp $0, %eax
____ ThreadWaitForFinish
ret

A. mfence; mov $1, finished C. mov $0, %eax E. je
B. mov $1, finished; mfence D. mov $1, %eax F. jne

47

exercise: spin wait
finished: .quad 0
ThreadFinish:

__________A______________
ret

ThreadWaitForFinish: /* or without using a writing instruction: */
_________B______________ mov %eax, finished
lock xchg %eax, finished mfence
cmp $0, %eax cmp $0, %eax
__C_ ThreadWaitForFinish je ThreadWaitForFinish
ret ret

A. mfence; mov $1, finished C. mov $0, %eax E. je
B. mov $1, finished; mfence D. mov $1, %eax F. jne

49

50

backup slides

51

what’s wrong with this?
/* omitted: headers */
#include <string>
using std::string;
void *create_string(void *ignored_argument) {
string result;
result = ComputeString();
return &result;

}
int main() {
pthread_t the_thread;
pthread_create(&the_thread, NULL, create_string, NULL);
string *string_ptr;
pthread_join(the_thread, (void*) &string_ptr);
cout << "string is " << *string_ptr;

}

52

program memory
0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

main thread stack

second thread stack

third thread stack

Heap / other dynamic
Code / Data

dynamically allocated stacks
string result allocated here
string_ptr pointed to here

…stacks deallocated when
threads exit/are joined

53

program memory
0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

main thread stack

second thread stack

third thread stack

Heap / other dynamic
Code / Data

dynamically allocated stacks
string result allocated here
string_ptr pointed to here

…stacks deallocated when
threads exit/are joined

53

load/store reordering
load/stores atomic, but run out of order

recall?: out-of-order processors

processor optimization: sometimes execute instructions in
non-program order

hide delays from slow caches, variable computation rates, etc.
documneted limits on when this is/is not allowed

track side-effects within a thread to make as if in-order
but common choice: don’t worry as much between cores/threads
design decision: if programmer cares, they worry about it

want to avoid this special instructions ensure strict ordering
54

why load/store reordering?
prior example: load of x executing before store of y

why do this? otherwise delay the load
if x and y unrelated — no benefit to waiting

55

GCC: preventing reordering example (1)
void Alice() {

int one = 1;
__atomic_store(¬e_from_alice, &one, __ATOMIC_SEQ_CST);
do {
} while (__atomic_load_n(¬e_from_bob, __ATOMIC_SEQ_CST));
if (no_milk) {++milk;}

}

Alice:
movl $1, note_from_alice
mfence

.L2:
movl note_from_bob, %eax
testl %eax, %eax
jne .L2
...

56

GCC: preventing reordering example (2)
void Alice() {

note_from_alice = 1;
do {

__atomic_thread_fence(__ATOMIC_SEQ_CST);
} while (note_from_bob);
if (no_milk) {++milk;}

}

Alice:
movl $1, note_from_alice // note_from_alice ← 1

.L3:
mfence // make sure store is visible to other cores before loading

// on x86: not needed on second+ iteration of loop
cmpl $0, note_from_bob // if (note_from_bob == 0) repeat fence
jne .L3
cmpl $0, no_milk
...

57

xv6 spinlock: debugging stuff
void acquire(struct spinlock *lk) {
...
if(holding(lk))
panic("acquire")

...
// Record info about lock acquisition for debugging.
lk−>cpu = mycpu();
getcallerpcs(&lk, lk−>pcs);

}
void release(struct spinlock *lk) {
if(!holding(lk))
panic("release");

lk−>pcs[0] = 0;
lk−>cpu = 0;
...

}

58

xv6 spinlock: debugging stuff
void acquire(struct spinlock *lk) {
...
if(holding(lk))
panic("acquire")

...
// Record info about lock acquisition for debugging.
lk−>cpu = mycpu();
getcallerpcs(&lk, lk−>pcs);

}
void release(struct spinlock *lk) {
if(!holding(lk))
panic("release");

lk−>pcs[0] = 0;
lk−>cpu = 0;
...

}

58

xv6 spinlock: debugging stuff
void acquire(struct spinlock *lk) {
...
if(holding(lk))
panic("acquire")

...
// Record info about lock acquisition for debugging.
lk−>cpu = mycpu();
getcallerpcs(&lk, lk−>pcs);

}
void release(struct spinlock *lk) {
if(!holding(lk))
panic("release");

lk−>pcs[0] = 0;
lk−>cpu = 0;
...

}

58

xv6 spinlock: debugging stuff
void acquire(struct spinlock *lk) {
...
if(holding(lk))
panic("acquire")

...
// Record info about lock acquisition for debugging.
lk−>cpu = mycpu();
getcallerpcs(&lk, lk−>pcs);

}
void release(struct spinlock *lk) {
if(!holding(lk))
panic("release");

lk−>pcs[0] = 0;
lk−>cpu = 0;
...

}

58

exercise: fetch-and-add with
compare-and-swap
exercise: implement fetch-and-add with compare-and-swap
compare_and_swap(address, old_value, new_value) {

if (memory[address] == old_value) {
memory[address] = new_value;
return true; // x86: set ZF flag

} else {
return false; // x86: clear ZF flag

}
}

59

solution
long my_fetch_and_add(long *p, long amount) {

long old_value;
do {

old_value = *p;
while (!compare_and_swap(p, old_value, old_value + amount);
return old_value;

}

60

xv6 spinlock: acquire
void
acquire(struct spinlock *lk)
{
pushcli(); // disable interrupts to avoid deadlock.
...
// The xchg is atomic.
while(xchg(&lk−>locked, 1) != 0)
;

// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that the critical section's memory
// references happen after the lock is acquired.
__sync_synchronize();
...

}

don’t let us be interrupted after while have the lock
problem: interruption might try to do something with the lock
…but that can never succeed until we release the lock
…but we won’t release the lock until interruption finishes

xchg wraps the lock xchg instruction
same loop as before

avoid load store reordering (including by compiler)
on x86, xchg alone is enough to avoid processor’s reordering
(but compiler may need more hints)

61

xv6 spinlock: acquire
void
acquire(struct spinlock *lk)
{
pushcli(); // disable interrupts to avoid deadlock.
...
// The xchg is atomic.
while(xchg(&lk−>locked, 1) != 0)
;

// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that the critical section's memory
// references happen after the lock is acquired.
__sync_synchronize();
...

}

don’t let us be interrupted after while have the lock
problem: interruption might try to do something with the lock
…but that can never succeed until we release the lock
…but we won’t release the lock until interruption finishes

xchg wraps the lock xchg instruction
same loop as before

avoid load store reordering (including by compiler)
on x86, xchg alone is enough to avoid processor’s reordering
(but compiler may need more hints)

61

xv6 spinlock: acquire
void
acquire(struct spinlock *lk)
{
pushcli(); // disable interrupts to avoid deadlock.
...
// The xchg is atomic.
while(xchg(&lk−>locked, 1) != 0)
;

// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that the critical section's memory
// references happen after the lock is acquired.
__sync_synchronize();
...

}

don’t let us be interrupted after while have the lock
problem: interruption might try to do something with the lock
…but that can never succeed until we release the lock
…but we won’t release the lock until interruption finishes

xchg wraps the lock xchg instruction
same loop as before

avoid load store reordering (including by compiler)
on x86, xchg alone is enough to avoid processor’s reordering
(but compiler may need more hints)

61

xv6 spinlock: acquire
void
acquire(struct spinlock *lk)
{
pushcli(); // disable interrupts to avoid deadlock.
...
// The xchg is atomic.
while(xchg(&lk−>locked, 1) != 0)
;

// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that the critical section's memory
// references happen after the lock is acquired.
__sync_synchronize();
...

}

don’t let us be interrupted after while have the lock
problem: interruption might try to do something with the lock
…but that can never succeed until we release the lock
…but we won’t release the lock until interruption finishes

xchg wraps the lock xchg instruction
same loop as before

avoid load store reordering (including by compiler)
on x86, xchg alone is enough to avoid processor’s reordering
(but compiler may need more hints)

61

xv6 spinlock: release
void
release(struct spinlock *lk)
...
// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that all the stores in the critical
// section are visible to other cores before the lock is released.
// Both the C compiler and the hardware may re-order loads and
// stores; __sync_synchronize() tells them both not to.
__sync_synchronize();

// Release the lock, equivalent to lk->locked = 0.
// This code can't use a C assignment, since it might
// not be atomic. A real OS would use C atomics here.
asm volatile("movl $0, %0" : "+m" (lk−>locked) :);

popcli();
}

turns into instruction to tell processor not to reorder
plus tells compiler not to reorderturns into mov of constant 0 into lk−>lockedreenable interrupts (taking nested locks into account)

62

xv6 spinlock: release
void
release(struct spinlock *lk)
...
// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that all the stores in the critical
// section are visible to other cores before the lock is released.
// Both the C compiler and the hardware may re-order loads and
// stores; __sync_synchronize() tells them both not to.
__sync_synchronize();

// Release the lock, equivalent to lk->locked = 0.
// This code can't use a C assignment, since it might
// not be atomic. A real OS would use C atomics here.
asm volatile("movl $0, %0" : "+m" (lk−>locked) :);

popcli();
}

turns into instruction to tell processor not to reorder
plus tells compiler not to reorder

turns into mov of constant 0 into lk−>lockedreenable interrupts (taking nested locks into account)

62

xv6 spinlock: release
void
release(struct spinlock *lk)
...
// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that all the stores in the critical
// section are visible to other cores before the lock is released.
// Both the C compiler and the hardware may re-order loads and
// stores; __sync_synchronize() tells them both not to.
__sync_synchronize();

// Release the lock, equivalent to lk->locked = 0.
// This code can't use a C assignment, since it might
// not be atomic. A real OS would use C atomics here.
asm volatile("movl $0, %0" : "+m" (lk−>locked) :);

popcli();
}

turns into instruction to tell processor not to reorder
plus tells compiler not to reorder

turns into mov of constant 0 into lk−>locked

reenable interrupts (taking nested locks into account)

62

xv6 spinlock: release
void
release(struct spinlock *lk)
...
// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that all the stores in the critical
// section are visible to other cores before the lock is released.
// Both the C compiler and the hardware may re-order loads and
// stores; __sync_synchronize() tells them both not to.
__sync_synchronize();

// Release the lock, equivalent to lk->locked = 0.
// This code can't use a C assignment, since it might
// not be atomic. A real OS would use C atomics here.
asm volatile("movl $0, %0" : "+m" (lk−>locked) :);

popcli();
}

turns into instruction to tell processor not to reorder
plus tells compiler not to reorderturns into mov of constant 0 into lk−>locked

reenable interrupts (taking nested locks into account)

62

mutex efficiency
‘normal’ mutex uncontended case:

lock: acquire + release spinlock, see lock is free
unlock: acquire + release spinlock, see queue is empty

not much slower than spinlock

63

pthread mutexes: addt’l features
mutex attributes (pthread_mutexattr_t) allow:

(reference: man pthread.h)

error-checking mutexes
locking mutex twice in same thread?
unlocking already unlocked mutex?
…

mutexes shared between processes
otherwise: must be only threads of same process
(unanswered question: where to store mutex?)

…

64

fetch-and-add with CAS (1)
compare−and−swap(address, old_value, new_value) {

if (memory[address] == old_value) {
memory[address] = new_value;
return true;

} else {
return false;

}
}

long my_fetch_and_add(long *pointer, long amount) { ... }

implementation sketch:
fetch value from pointer old
compute in temporary value result of addition new
try to change value at pointer from old to new
[compare-and-swap]
if not successful, repeat

65

fetch-and-add with CAS (2)
long my_fetch_and_add(long *p, long amount) {

long old_value;
do {

old_value = *p;
} while (!compare_and_swap(p, old_value, old_value + amount);
return old_value;

}

66

exercise: append to singly-linked list
ListNode is a singly-linked list

assume: threads only append to list (no deletions, reordering)

use compare-and-swap(pointer, old, new):
atomically change *pointer from old to new
return true if successful
return false (and change nothing) if *pointer is not old

void append_to_list(ListNode *head, ListNode *new_last_node) {
...

}

67

append to singly-linked list
/* assumption: other threads may be appending to list,
* but nodes are not being removed, reordered, etc.
*/
void append_to_list(ListNode *head, ListNode *new_last_node) {
memory_ordering_fence();
ListNode *current_last_node;
do {
current_last_node = head;
while (current_last_node−>next) {

current_last_node = current_last_node−>next;
}

} while (
!compare−and−swap(¤t_last_node−>next,

NULL, new_last_node)
);

}

69

some common atomic operations (1)
// x86: emulate with exchange
test_and_set(address) {

old_value = memory[address];
memory[address] = 1;
return old_value != 0; // e.g. set ZF flag

}

// x86: xchg REGISTER, (ADDRESS)
exchange(register, address) {

temp = memory[address];
memory[address] = register;
register = temp;

}

70

some common atomic operations (2)
// x86: mov OLD_VALUE, %eax; lock cmpxchg NEW_VALUE, (ADDRESS)
compare−and−swap(address, old_value, new_value) {

if (memory[address] == old_value) {
memory[address] = new_value;
return true; // x86: set ZF flag

} else {
return false; // x86: clear ZF flag

}
}

// x86: lock xaddl REGISTER, (ADDRESS)
fetch−and−add(address, register) {

old_value = memory[address];
memory[address] += register;
register = old_value;

}

71

common atomic operation pattern
try to do operation, …

detect if it failed

if so, repeat

atomic operation does “try and see if it failed” part

72

cache coherency states
extra information for each cache block

overlaps with/replaces valid, dirty bits

stored in each cache

update states based on reads, writes and heard messages on bus

different caches may have different states for same block

73

MSI state summary
Modified value may be different than memory and I am the

only one who has it

Shared value is the same as memory

Invalid I don’t have the value; I will need to ask for it

74

MSI scheme
from state hear read hear write read write
Invalid — — to Shared to Modified
Shared — to Invalid — to Modified
Modified to Shared to Invalid — —

blue: transition requires sending message on bus

example: write while Shared
must send write — inform others with Shared state
then change to Modified

example: hear write while Shared
change to Invalid
can send read later to get value from writer

example: write while Modified
nothing to do — no other CPU can have a copy

75

MSI scheme
from state hear read hear write read write
Invalid — — to Shared to Modified
Shared — to Invalid — to Modified
Modified to Shared to Invalid — —

blue: transition requires sending message on bus
example: write while Shared

must send write — inform others with Shared state
then change to Modified

example: hear write while Shared
change to Invalid
can send read later to get value from writer

example: write while Modified
nothing to do — no other CPU can have a copy

75

MSI scheme
from state hear read hear write read write
Invalid — — to Shared to Modified
Shared — to Invalid — to Modified
Modified to Shared to Invalid — —

blue: transition requires sending message on bus
example: write while Shared

must send write — inform others with Shared state
then change to Modified

example: hear write while Shared
change to Invalid
can send read later to get value from writer

example: write while Modified
nothing to do — no other CPU can have a copy

75

MSI example

CPU1 CPU2 MEM1
address value state
0xA300 100 Shared
0xC400 200 Shared
0xE500 300 Shared

address value state
0x9300 172 Shared
0xA300 100 Shared
0xC500 200 Shared

“CPU1 is writing 0xA3000”

CPU1 writes 101 to 0xA300

cache sees write:
invalidate 0xA300

maybe update memory?

CPU1 writes 102 to 0xA300

modified state — nothing communicated!
will “fix” later if there’s a read

nothing changed yet (writeback)
“What is 0xA300?”

CPU2 reads 0xA300

modified state — must update for CPU2!

“Write 102 into 0xA300”

CPU2 reads 0xA300

written back to memory early
(could also become Invalid at CPU1)

76

MSI example

CPU1 CPU2 MEM1
address value state
0xA300 100101 Modified
0xC400 200 Shared
0xE500 300 Shared

address value state
0x9300 172 Shared
0xA300 100 Invalid
0xC500 200 Shared

“CPU1 is writing 0xA3000”

CPU1 writes 101 to 0xA300

cache sees write:
invalidate 0xA300

maybe update memory?

CPU1 writes 102 to 0xA300

modified state — nothing communicated!
will “fix” later if there’s a read

nothing changed yet (writeback)
“What is 0xA300?”

CPU2 reads 0xA300

modified state — must update for CPU2!

“Write 102 into 0xA300”

CPU2 reads 0xA300

written back to memory early
(could also become Invalid at CPU1)

76

MSI example

CPU1 CPU2 MEM1
address value state
0xA300 101102 Modified
0xC400 200 Shared
0xE500 300 Shared

address value state
0x9300 172 Shared
0xA300 100 Invalid
0xC500 200 Shared

“CPU1 is writing 0xA3000”

CPU1 writes 101 to 0xA300

cache sees write:
invalidate 0xA300

maybe update memory?

CPU1 writes 102 to 0xA300

modified state — nothing communicated!
will “fix” later if there’s a read

nothing changed yet (writeback)

“What is 0xA300?”

CPU2 reads 0xA300

modified state — must update for CPU2!

“Write 102 into 0xA300”

CPU2 reads 0xA300

written back to memory early
(could also become Invalid at CPU1)

76

MSI example

CPU1 CPU2 MEM1
address value state
0xA300 102 Modified
0xC400 200 Shared
0xE500 300 Shared

address value state
0x9300 172 Shared
0xA300 100 Invalid
0xC500 200 Shared

“CPU1 is writing 0xA3000”

CPU1 writes 101 to 0xA300

cache sees write:
invalidate 0xA300

maybe update memory?

CPU1 writes 102 to 0xA300

modified state — nothing communicated!
will “fix” later if there’s a read

nothing changed yet (writeback)

“What is 0xA300?”

CPU2 reads 0xA300

modified state — must update for CPU2!

“Write 102 into 0xA300”

CPU2 reads 0xA300

written back to memory early
(could also become Invalid at CPU1)

76

MSI example

CPU1 CPU2 MEM1
address value state
0xA300 102 Shared
0xC400 200 Shared
0xE500 300 Shared

address value state
0x9300 172 Shared
0xA300 100 Invalid
0xC500 200 Shared

“CPU1 is writing 0xA3000”

CPU1 writes 101 to 0xA300

cache sees write:
invalidate 0xA300

maybe update memory?

CPU1 writes 102 to 0xA300

modified state — nothing communicated!
will “fix” later if there’s a read

nothing changed yet (writeback)
“What is 0xA300?”

CPU2 reads 0xA300

modified state — must update for CPU2!

“Write 102 into 0xA300”

CPU2 reads 0xA300

written back to memory early
(could also become Invalid at CPU1)

76

MSI example

CPU1 CPU2 MEM1
address value state
0xA300 102 Shared
0xC400 200 Shared
0xE500 300 Shared

address value state
0x9300 172 Shared
0xA300 100102 Shared
0xC500 200 Shared

“CPU1 is writing 0xA3000”

CPU1 writes 101 to 0xA300

cache sees write:
invalidate 0xA300

maybe update memory?

CPU1 writes 102 to 0xA300

modified state — nothing communicated!
will “fix” later if there’s a read

nothing changed yet (writeback)
“What is 0xA300?”

CPU2 reads 0xA300

modified state — must update for CPU2!

“Write 102 into 0xA300”

CPU2 reads 0xA300

written back to memory early
(could also become Invalid at CPU1)

76

MSI: update memory
to write value (enter modified state), need to invalidate others

can avoid sending actual value (shorter message/faster)

“I am writing address X” versus “I am writing Y to address X”

77

MSI: on cache replacement/writeback
still happens — e.g. want to store something else

changes state to invalid

requires writeback if modified (= dirty bit)

78

cache coherency exercise
modified/shared/invalid; all initially invalid; 32B blocks, 8B
read/writes

CPU 1: read 0x1000
CPU 2: read 0x1000
CPU 1: write 0x1000
CPU 1: read 0x2000
CPU 2: read 0x1000
CPU 2: write 0x2008
CPU 3: read 0x1008

Q1: final state of 0x1000 in caches?
Modified/Shared/Invalid for CPU 1/2/3
CPU 1: CPU 2: CPU 3:

Q2: final state of 0x2000 in caches?
Modified/Shared/Invalid for CPU 1/2/3
CPU 1: CPU 2: CPU 3: 79

cache coherency exercise solution
0x1000-0x101f 0x2000-0x201f

action CPU 1 CPU 2 CPU 3 CPU 1 CPU 2 CPU 3
I I I I I I

CPU 1: read 0x1000 S I I I I I
CPU 2: read 0x1000 S S I I I I
CPU 1: write 0x1000 M I I I I I
CPU 1: read 0x2000 M I I S I I
CPU 2: read 0x1000 S S I S I I
CPU 2: write 0x2008 S S I I M I
CPU 3: read 0x1008 S S S I M I

81

C++: preventing reordering
to help implementing things like pthread_mutex_lock

C++ 2011 standard: atomic header, std::atomic class

prevent CPU reordering and prevent compiler reordering

also provide other tools for implementing locks (more later)

could also hand-write assembly code
compiler can’t know what assembly code is doing

82

C++: preventing reordering example
#include <atomic>
void Alice() {

note_from_alice = 1;
do {

std::atomic_thread_fence(std::memory_order_seq_cst);
} while (note_from_bob);
if (no_milk) {++milk;}

}

Alice:
movl $1, note_from_alice // note_from_alice ← 1

.L2:
mfence // make sure store visible on/from other cores
cmpl $0, note_from_bob // if (note_from_bob == 0) repeat fence
jne .L2
cmpl $0, no_milk
...

83

C++ atomics: no reordering
std::atomic<int> note_from_alice, note_from_bob;
void Alice() {

note_from_alice.store(1);
do {
} while (note_from_bob.load());
if (no_milk) {++milk;}

}

Alice:
movl $1, note_from_alice
mfence

.L2:
movl note_from_bob, %eax
testl %eax, %eax
jne .L2
...

84

GCC: built-in atomic functions
used to implement std::atomic, etc.

predate std::atomic

builtin functions starting with __sync and __atomic

these are what xv6 uses

85

aside: some x86 reordering rules
each core sees its own loads/stores in order

(if a core stores something, it can always load it back)

stores from other cores appear in a consistent order
(but a core might observe its own stores too early)

causality :
if a core reads X=a and (after reading X=a) writes Y=b,
then a core that reads Y=b cannot later read X=older value than a

Source: Intel 64 and IA-32 Software Developer’s Manual, Volume 3A, Chapter 8 86

how do you do anything with this?
difficult to reason about what modern CPU’s reordering rules do

typically: don’t depend on details, instead:

special instructions with stronger (and simpler) ordering rules
often same instructions that help with implementing locks in other ways

special instructions that restrict ordering of instructions around
them (“fences”)

loads/stores can’t cross the fence

87

ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock locked Modified

address value state
lock --- Invalid

address value state
lock --- Invalid

“I want to modify lock?”

CPU2 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU3 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock

88

ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock --- Invalid

address value state
lock locked Modified

address value state
lock --- Invalid

“I want to modify lock?”

CPU2 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU3 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock

88

ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock --- Invalid

address value state
lock --- Invalid

address value state
lock locked Modified

“I want to modify lock?”

CPU2 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU3 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock

88

ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock --- Invalid

address value state
lock locked Modified

address value state
lock --- Invalid

“I want to modify lock?”

CPU2 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU3 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock

88

ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock --- Invalid

address value state
lock --- Invalid

address value state
lock locked Modified

“I want to modify lock?”

CPU2 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU3 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock

88

ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock unlockedModified

address value state
lock --- Invalid

address value state
lock Invalid

“I want to modify lock?”

CPU2 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU3 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock

88

ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock --- Invalid

address value state
lock locked Modified

address value state
lock Invalid

“I want to modify lock?”

CPU2 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU3 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock

88

ping-ponging
test-and-set problem: cache block “ping-pongs” between caches

each waiting processor reserves block to modify
could maybe wait until it determines modification needed — but not
typical implementation

each transfer of block sends messages on bus

…so bus can’t be used for real work
like what the processor with the lock is doing

89

test-and-test-and-set (pseudo-C)
acquire(int *the_lock) {

do {
while (ATOMIC−READ(the_lock) == 0) { /* try again */ }

} while (ATOMIC−TEST−AND−SET(the_lock) == ALREADY_SET);
}

90

test-and-test-and-set (assembly)
acquire:

cmp $0, the_lock // test the lock non-atomically
// unlike lock xchg --- keeps lock in Shared state!

jne acquire // try again (still locked)
// lock possibly free
// but another processor might lock
// before we get a chance to
// ... so try wtih atomic swap:
movl $1, %eax // %eax ← 1
lock xchg %eax, the_lock // swap %eax and the_lock

// sets the_lock to 1
// sets %eax to prior value of the_lock

test %eax, %eax // if the_lock wasn't 0 (someone else got it first):
jne acquire // try again
ret

91

less ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock locked Modified

address value state
lock --- Invalid

address value state
lock --- Invalid

“I want to read lock?”

CPU2 reads lock
(to see it is still locked)

“set lock to locked”

CPU1 writes back lock value,
then CPU2 reads it

“I want to read lock”

CPU3 reads lock
(to see it is still locked)
CPU2, CPU3 continue to read lock from cache

no messages on the bus

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock
(CPU1 writes back value, then CPU2 reads + modifies it)

92

less ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock locked Modified

address value state
lock Invalid

address value state
lock Invalid

“I want to read lock?”

CPU2 reads lock
(to see it is still locked)

“set lock to locked”

CPU1 writes back lock value,
then CPU2 reads it

“I want to read lock”

CPU3 reads lock
(to see it is still locked)
CPU2, CPU3 continue to read lock from cache

no messages on the bus

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock
(CPU1 writes back value, then CPU2 reads + modifies it)

92

less ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock locked Shared

address value state
lock locked Shared

address value state
lock Invalid

“I want to read lock?”

CPU2 reads lock
(to see it is still locked)

“set lock to locked”

CPU1 writes back lock value,
then CPU2 reads it

“I want to read lock”

CPU3 reads lock
(to see it is still locked)
CPU2, CPU3 continue to read lock from cache

no messages on the bus

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock
(CPU1 writes back value, then CPU2 reads + modifies it)

92

less ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock locked Shared

address value state
lock locked Shared

address value state
lock locked Shared

“I want to read lock?”

CPU2 reads lock
(to see it is still locked)

“set lock to locked”

CPU1 writes back lock value,
then CPU2 reads it

“I want to read lock”

CPU3 reads lock
(to see it is still locked)

CPU2, CPU3 continue to read lock from cache
no messages on the bus

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock
(CPU1 writes back value, then CPU2 reads + modifies it)

92

less ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock locked Shared

address value state
lock locked Shared

address value state
lock locked Shared

“I want to read lock?”

CPU2 reads lock
(to see it is still locked)

“set lock to locked”

CPU1 writes back lock value,
then CPU2 reads it

“I want to read lock”

CPU3 reads lock
(to see it is still locked)

CPU2, CPU3 continue to read lock from cache
no messages on the bus

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock
(CPU1 writes back value, then CPU2 reads + modifies it)

92

less ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock unlockedModified

address value state
lock --- Invalid

address value state
lock --- Invalid

“I want to read lock?”

CPU2 reads lock
(to see it is still locked)

“set lock to locked”

CPU1 writes back lock value,
then CPU2 reads it

“I want to read lock”

CPU3 reads lock
(to see it is still locked)
CPU2, CPU3 continue to read lock from cache

no messages on the bus

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock
(CPU1 writes back value, then CPU2 reads + modifies it)

92

less ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock Modified

address value state
lock Invalid

address value state
lock Invalid

“I want to read lock?”

CPU2 reads lock
(to see it is still locked)

“set lock to locked”

CPU1 writes back lock value,
then CPU2 reads it

“I want to read lock”

CPU3 reads lock
(to see it is still locked)
CPU2, CPU3 continue to read lock from cache

no messages on the bus

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock
(CPU1 writes back value, then CPU2 reads + modifies it)

92

couldn’t the read-modify-write instruction…
notice that the value of the lock isn’t changing…

and keep it in the shared state

maybe — but extra step in “common” case
(swapping different values)

93

more room for improvement?
can still have a lot of attempts to modify locks after unlocked

there other spinlock designs that avoid this
ticket locks
MCS locks
…

94

MSI extensions
real cache coherency protocols sometimes more complex:

separate tracking modifications from whether other caches have
copy

send values directly between caches (maybe skip write to memory)

send messages only to cores which might care (no shared bus)

95

monitors with semaphores: locks
sem_t semaphore; // initial value 1

Lock() {
sem_wait(&semaphore);

}

Unlock() {
sem_post(&semaphore);

}

96

monitors with semaphores: [broken] cvs
start with only wait/signal:
sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {

lock.Unlock();
sem_wait(&threads_to_wakeup);
lock.Lock();

}
Signal() {

sem_post(&threads_to_wakeup);
}

problem: signal wakes up non-waiting threads (in the far future)

97

monitors with semaphores: [broken] cvs
start with only wait/signal:
sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {

lock.Unlock();
sem_wait(&threads_to_wakeup);
lock.Lock();

}
Signal() {

sem_post(&threads_to_wakeup);
}

problem: signal wakes up non-waiting threads (in the far future)

97

monitors with semaphores: cvs (better)
start with only wait/signal:
sem_t private_lock; // initially 1
int num_waiters;
sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {

sem_wait(&private_lock);
++num_waiters;
sem_post(&private_lock);
lock.Unlock();
sem_wait(&threads_to_wakeup);
lock.Lock();

}

Signal() {
sem_wait(&private_lock);
if (num_waiters > 0) {

sem_post(&threads_to_wakeup);
--num_waiters;

}
sem_post(&private_lock);

}

98

monitors with semaphores: broadcast
now allows broadcast:
sem_t private_lock; // initially 1
int num_waiters;
sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {

sem_wait(&private_lock);
++num_waiters;
sem_post(&private_lock);
lock.Unlock();
sem_wait(&threads_to_wakeup);
lock.Lock();

}

Broadcast() {
sem_wait(&private_lock);
while (num_waiters > 0) {

sem_post(&threads_to_wakeup);
--num_waiters;

}
sem_post(&private_lock);

}

99

building semaphore with monitors
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* count must now be

positive, and at most
one thread can go per
call to Up() */

pthread_cond_signal(
&count_is_positive_cv

);
pthread_mutex_unlock(&lock);

}lock to protect shared state

shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes

100

building semaphore with monitors
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* count must now be

positive, and at most
one thread can go per
call to Up() */

pthread_cond_signal(
&count_is_positive_cv

);
pthread_mutex_unlock(&lock);

}lock to protect shared state
shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes

100

building semaphore with monitors
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* count must now be

positive, and at most
one thread can go per
call to Up() */

pthread_cond_signal(
&count_is_positive_cv

);
pthread_mutex_unlock(&lock);

}lock to protect shared state
shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes

100

building semaphore with monitors
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* count must now be

positive, and at most
one thread can go per
call to Up() */

pthread_cond_signal(
&count_is_positive_cv

);
pthread_mutex_unlock(&lock);

}lock to protect shared state
shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes 100

building semaphore with monitors
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* count must now be

positive, and at most
one thread can go per
call to Up() */

pthread_cond_signal(
&count_is_positive_cv

);
pthread_mutex_unlock(&lock);

}lock to protect shared state
shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes 100

	last time
	exercise

	aside: standard container rules
	preview: beyond locks
	barriers
	life HW
	disabling interrupts for locks
	xv6's push/popcli
	compilers reordering

	revisiting atomicity
	pthreads and load/store reordering
	cache coherency
	processor buses
	problem setup
	the cache coherency problem

	snooping briefly

	false sharing
	exercise

	read-modify-write atomic operations
	x86 atomic exchange

	x86-64 spinlock
	exercise: spin-wait
	backup sides
	thread + dangling pointer exercise

	load/store reordering
	GCC atomic/sync stuff
	xv6 spinlock debugging
	exercise: atomic add
	xv6's spinlock debugging
	analysis: uncontended case
	mutex additonal features
	CAS for fetch-and-add
	exercise: CAS for appending to list
	more atomic operations
	cache coherency detail
	adding more state: MSI
	exercise
	C++atomic/sync stuff
	x86-64 reordering rules
	test-and-test-and-set
	beyond MSI

	relating monitors and semaphores
	implementing monitors with semaphores
	implementing semaphores with monitors

