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last time
barriers

each thread waits for each other thread
common simulation pattern:

compute time X from time X - 1 / barrier /
compute time X + 1 from time X / barrier /
…

reordering of memory accesses: compilers/processors
lock, barrier, etc. implementations handle

single-core locks by disabling interrupts

cache coherency and read+write atomic operations
spinlocks

atomic operation to set lock=held AND read old value
lock obtained if old value = not held
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on the quiz
initially was missing pthread_mutex_unlock on Q2

caught early; emailed students who had quiz open by this point
contributing factor: late question edits because I didn’t cover what I
expected in lecture

should’ve used quotes on Q3 option A; meant piece of code with
‘lock(..);unlock(..)’ in one blank
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spinlock problems
lock abstraction is not powerful enough

lock/unlock operations don’t handle “wait for event”
common thing we want to do with threads
solution: other synchronization abstractions

spinlocks waste CPU time more than needed
want to run another thread instead of infinite loop
solution: lock implementation integrated with scheduler

spinlocks can send a lot of messages on the shared bus
more efficient atomic operations to implement locks
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mutexes: intelligent waiting
want: locks that wait better

example: POSIX mutexes

instead of running infinite loop, give away CPU

lock = go to sleep, add self to list
sleep = scheduler runs something else

unlock = wake up sleeping thread
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better lock implementation idea
shared list of waiters

spinlock protects list of waiters from concurrent modification

lock = use spinlock to add self to list, then wait without spinlock

unlock = use spinlock to remove item from list
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one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)
tracks whether any thread has locked and not unlockedlist of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

instead of setting lock_taken to false
choose thread to hand-off lock to

LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {
put current thread on m->wait_queue
mark current thread as waiting
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler (context switch)

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

subtly: if UnlockMutex runs here on another core
need to make sure scheduler on the other core doesn’t switch to thread
while it is still running (would ‘clone’ thread/mess up registers)

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {
remove a thread from m->wait_queue
mark thread as no longer waiting
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

}
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mutex and scheduler subtly
core 0 (thread A) core 1 (thread B)
start LockMutex
acquire spinlock
discover lock taken
enqueue thread A
thread A set not runnable
release spinlock start UnlockMutex

thread A set runnable
finish UnlockMutex
run scheduler
scheduler switches to A
…with old verison of registers

thread A runs scheduler …
…finally saving registers …

Linux soln.: track ‘thread running’ separately from ‘thread runnable’
xv6 soln.: hold scheduler lock until thread A saves registers
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recall: pthread mutex
#include <pthread.h>

pthread_mutex_t some_lock;
pthread_mutex_init(&some_lock, NULL);
// or: pthread_mutex_t some_lock = PTHREAD_MUTEX_INITIALIZER;
...
pthread_mutex_lock(&some_lock);
...
pthread_mutex_unlock(&some_lock);
pthread_mutex_destroy(&some_lock);
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spinlock problems
lock abstraction is not powerful enough

lock/unlock operations don’t handle “wait for event”
common thing we want to do with threads
solution: other synchronization abstractions

spinlocks waste CPU time more than needed
want to run another thread instead of infinite loop
solution: lock implementation integrated with scheduler

spinlocks can send a lot of messages on the shared bus
more efficient atomic operations to implement locks
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POSIX mutex restrictions
pthread_mutex rule: unlock from same thread you lock in

implementation I gave before — not a problem

…but there other ways to implement mutexes
e.g. might involve comparing with “holding” thread ID
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monitors/condition variables
locks for mutual exclusion

condition variables for waiting for event
operations: wait (for event); signal/broadcast (that event happened)

related data structures

monitor = lock + 0 or more condition variables + shared data
Java: every object is a monitor (has instance variables, built-in lock,
cond. var)
pthreads: build your own: provides you locks + condition variables
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monitor idea

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor

lock must be acquired
before accessing
any part of monitor’s stuff

threads waiting for lock

threads waiting for
condition to be true
about shared data
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condvar operations

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor
threads waiting for lock

threads waiting for
condition to be true
about shared data

condvar operations:
Wait(cv, lock) — unlock lock, add current thread to cv queue
…and reacquire lock before returning
Broadcast(cv) — remove all from condvar queue
Signal(cv) — remove one from condvar queue

unlock lock — allow thread from queue to go

calling thread starts waitingall threads removed from cv queue
to start waiting for lock
any one thread removed from cv queue
to start waiting for lock
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pthread cv usage
// MISSING: init calls, etc.
pthread_mutex_t lock;
bool finished; // data, only accessed with after acquiring lock
pthread_cond_t finished_cv; // to wait for 'finished' to be true

void WaitForFinished() {
pthread_mutex_lock(&lock);
while (!finished) {
pthread_cond_wait(&finished_cv, &lock);

}
pthread_mutex_unlock(&lock);

}

void Finish() {
pthread_mutex_lock(&lock);
finished = true;
pthread_cond_broadcast(&finished_cv);
pthread_mutex_unlock(&lock);

}

acquire lock before
reading or writing finished

check whether we need to wait at all
(why a loop? we’ll explain later)

know we need to wait
(finished can’t change while we have lock)
so wait, releasing lock…

allow all waiters to proceed
(once we unlock the lock)
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WaitForFinish timeline 1
WaitForFinish thread Finish thread
mutex_lock(&lock)
(thread has lock)

mutex_lock(&lock)
(start waiting for lock)

while (!finished) ...
cond_wait(&finished_cv, &lock);
(start waiting for cv) (done waiting for lock)

finished = true
cond_broadcast(&finished_cv)

(done waiting for cv)
(start waiting for lock)

mutex_unlock(&lock)
(done waiting for lock)
while (!finished) ...
(finished now true, so return)
mutex_unlock(&lock)
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WaitForFinish timeline 2
WaitForFinish thread Finish thread

mutex_lock(&lock)
finished = true
cond_broadcast(&finished_cv)
mutex_unlock(&lock)

mutex_lock(&lock)
while (!finished) ...
(finished now true, so return)
mutex_unlock(&lock)
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why the loop
while (!finished) {
pthread_cond_wait(&finished_cv, &lock);

}

we only broadcast if finished is true

so why check finished afterwards?

pthread_cond_wait manual page:
“Spurious wakeups ... may occur.”

spurious wakeup = wait returns even though nothing happened
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example: producer/consumer
producer buffer consumer

shared buffer (queue) of fixed size
one or more producers inserts into queue
one or more consumers removes from queue

producer(s) and consumer(s) don’t work in lockstep
(might need to wait for each other to catch up)

example: C compiler
preprocessor → compiler → assembler → linker
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unbounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock
other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …
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Hoare versus Mesa monitors
Hoare-style monitors

signal ‘hands off’ lock to awoken thread

Mesa-style monitors
any eligible thread gets lock next
(maybe some other idea of priority?)

every current threading library I know of does Mesa-style
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bounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready; pthread_cond_t space_ready;
BoundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
while (buffer.full()) { pthread_cond_wait(&space_ready, &lock); }
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_cond_signal(&space_ready);
pthread_mutex_unlock(&lock);
return item;

}

correct (but slow?) to replace with:
pthread_cond_broadcast(&space_ready);

(just more “spurious wakeups”)

correct but slow to replace
data_ready and space_ready
with ‘combined’ condvar ready
and use broadcast
(just more “spurious wakeups”)
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monitor pattern
pthread_mutex_lock(&lock);
while (!condition A) {

pthread_cond_wait(&condvar_for_A, &lock);
}
... /* manipulate shared data, changing other conditions */
if (set condition A) {

pthread_cond_broadcast(&condvar_for_A);
/* or signal, if only one thread cares */

}
if (set condition B) {

pthread_cond_broadcast(&condvar_for_B);
/* or signal, if only one thread cares */

}
...
pthread_mutex_unlock(&lock)
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monitors rules of thumb
never touch shared data without holding the lock
keep lock held for entire operation:

verifying condition (e.g. buffer not full) up to and including
manipulating data (e.g. adding to buffer)

create condvar for every kind of scenario waited for

always write loop calling cond_wait to wait for condition X

broadcast/signal condition variable every time you change X

correct but slow to…
broadcast when just signal would work
broadcast or signal when nothing changed
use one condvar for multiple conditions
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mutex/cond var init/destroy
pthread_mutex_t mutex;
pthread_cond_t cv;
pthread_mutex_init(&mutex, NULL);
pthread_cond_init(&cv, NULL);
// --OR--
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cv = PTHREAD_COND_INITIALIZER;

// and when done:
...
pthread_cond_destroy(&cv);
pthread_mutex_destroy(&mutex);
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wait for both finished
// MISSING: init calls, etc.
pthread_mutex_t lock;
bool finished[2];
pthread_cond_t both_finished_cv;

void WaitForBothFinished() {
pthread_mutex_lock(&lock);
while (_____________________________) {
pthread_cond_wait(&both_finished_cv, &lock);

}
pthread_mutex_unlock(&lock);

}

void Finish(int index) {
pthread_mutex_lock(&lock);
finished[index] = true;
_____________________________________
pthread_mutex_unlock(&lock);

}

A. finished[0] && finished[1]
B. finished[0] || finished[1]
C. !finished[0] || !finished[1]
D. finished[0] != finished[1]
E. something else

A. pthread_cond_signal(&both_finished_cv)
B. pthread_cond_broadcast(&both_finished_cv)
C. if (finished[1−index])

pthread_cond_singal(&both_finished_cv);
D. if (finished[1−index])

pthread_cond_broadcast(&both_finished_cv);
E. something else
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x86-64 spinlock with xchg
lock variable in shared memory: the_lock

if 1: someone has the lock; if 0: lock is free to take
acquire:

movl $1, %eax // %eax ← 1
lock xchg %eax, the_lock // swap %eax and the_lock

// sets the_lock to 1 (taken)
// sets %eax to prior val. of the_lock

test %eax, %eax // if the_lock wasn't 0 before:
jne acquire // try again
ret

release:
mfence // for memory order reasons
movl $0, the_lock // then, set the_lock to 0 (not taken)
ret

set lock variable to 1 (taken)
read old value

if lock was already locked retry
“spin” until lock is released elsewhere

release lock by setting it to 0 (not taken)
allows looping acquire to finish

Intel’s manual says:
no reordering of loads/stores across a lock
or mfence instruction
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exercise: spin wait
consider implementing ‘waiting’ functionality of pthread_join

thread calls ThreadFinish() when done
complete code below:
finished: .quad 0
ThreadFinish:

_________________________
ret

ThreadWaitForFinish:
_________________________
lock xchg %eax, finished
cmp $0, %eax
____ ThreadWaitForFinish
ret

A. mfence; mov $1, finished C. mov $0, %eax E. je
B. mov $1, finished; mfence D. mov $1, %eax F. jne
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exercise: spin wait
finished: .quad 0
ThreadFinish:

__________A______________
ret

ThreadWaitForFinish: /* or without using a writing instruction: */
_________B______________ mov %eax, finished
lock xchg %eax, finished mfence
cmp $0, %eax cmp $0, %eax
__C_ ThreadWaitForFinish je ThreadWaitForFinish
ret ret

A. mfence; mov $1, finished C. mov $0, %eax E. je
B. mov $1, finished; mfence D. mov $1, %eax F. jne
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binary semaphores
binary semaphores — semaphores that are only zero or one

as powerful as normal semaphores
exercise: simulate counting semaphores with binary semaphores (more
than one) and an integer
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what’s wrong with this?
/* omitted: headers */
#include <string>
using std::string;
void *create_string(void *ignored_argument) {
string result;
result = ComputeString();
return &result;

}
int main() {
pthread_t the_thread;
pthread_create(&the_thread, NULL, create_string, NULL);
string *string_ptr;
pthread_join(the_thread, (void*) &string_ptr);
cout << "string is " << *string_ptr;

}
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program memory
0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

main thread stack

second thread stack

third thread stack

Heap / other dynamic
Code / Data

dynamically allocated stacks
string result allocated here
string_ptr pointed to here

…stacks deallocated when
threads exit/are joined
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load/store reordering
load/stores atomic, but run out of order

recall?: out-of-order processors

processor optimization: sometimes execute instructions in
non-program order

hide delays from slow caches, variable computation rates, etc.
documneted limits on when this is/is not allowed

track side-effects within a thread to make as if in-order
but common choice: don’t worry as much between cores/threads
design decision: if programmer cares, they worry about it

want to avoid this special instructions ensure strict ordering
37



why load/store reordering?
prior example: load of x executing before store of y

why do this? otherwise delay the load
if x and y unrelated — no benefit to waiting
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GCC: preventing reordering example (1)
void Alice() {

int one = 1;
__atomic_store(&note_from_alice, &one, __ATOMIC_SEQ_CST);
do {
} while (__atomic_load_n(&note_from_bob, __ATOMIC_SEQ_CST));
if (no_milk) {++milk;}

}

Alice:
movl $1, note_from_alice
mfence

.L2:
movl note_from_bob, %eax
testl %eax, %eax
jne .L2
...
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GCC: preventing reordering example (2)
void Alice() {

note_from_alice = 1;
do {

__atomic_thread_fence(__ATOMIC_SEQ_CST);
} while (note_from_bob);
if (no_milk) {++milk;}

}

Alice:
movl $1, note_from_alice // note_from_alice ← 1

.L3:
mfence // make sure store is visible to other cores before loading

// on x86: not needed on second+ iteration of loop
cmpl $0, note_from_bob // if (note_from_bob == 0) repeat fence
jne .L3
cmpl $0, no_milk
...
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xv6 spinlock: debugging stuff
void acquire(struct spinlock *lk) {
...
if(holding(lk))
panic("acquire")

...
// Record info about lock acquisition for debugging.
lk−>cpu = mycpu();
getcallerpcs(&lk, lk−>pcs);

}
void release(struct spinlock *lk) {
if(!holding(lk))
panic("release");

lk−>pcs[0] = 0;
lk−>cpu = 0;
...

}
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exercise: fetch-and-add with
compare-and-swap
exercise: implement fetch-and-add with compare-and-swap
compare_and_swap(address, old_value, new_value) {

if (memory[address] == old_value) {
memory[address] = new_value;
return true; // x86: set ZF flag

} else {
return false; // x86: clear ZF flag

}
}
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solution
long my_fetch_and_add(long *p, long amount) {

long old_value;
do {

old_value = *p;
while (!compare_and_swap(p, old_value, old_value + amount);
return old_value;

}
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xv6 spinlock: acquire
void
acquire(struct spinlock *lk)
{
pushcli(); // disable interrupts to avoid deadlock.
...
// The xchg is atomic.
while(xchg(&lk−>locked, 1) != 0)
;

// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that the critical section's memory
// references happen after the lock is acquired.
__sync_synchronize();
...

}

don’t let us be interrupted after while have the lock
problem: interruption might try to do something with the lock
…but that can never succeed until we release the lock
…but we won’t release the lock until interruption finishes

xchg wraps the lock xchg instruction
same loop as before

avoid load store reordering (including by compiler)
on x86, xchg alone is enough to avoid processor’s reordering
(but compiler may need more hints)
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xv6 spinlock: release
void
release(struct spinlock *lk)
...
// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that all the stores in the critical
// section are visible to other cores before the lock is released.
// Both the C compiler and the hardware may re-order loads and
// stores; __sync_synchronize() tells them both not to.
__sync_synchronize();

// Release the lock, equivalent to lk->locked = 0.
// This code can't use a C assignment, since it might
// not be atomic. A real OS would use C atomics here.
asm volatile("movl $0, %0" : "+m" (lk−>locked) : );

popcli();
}

turns into instruction to tell processor not to reorder
plus tells compiler not to reorderturns into mov of constant 0 into lk−>lockedreenable interrupts (taking nested locks into account)
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mutex efficiency
‘normal’ mutex uncontended case:

lock: acquire + release spinlock, see lock is free
unlock: acquire + release spinlock, see queue is empty

not much slower than spinlock
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pthread mutexes: addt’l features
mutex attributes (pthread_mutexattr_t) allow:

(reference: man pthread.h)

error-checking mutexes
locking mutex twice in same thread?
unlocking already unlocked mutex?
…

mutexes shared between processes
otherwise: must be only threads of same process
(unanswered question: where to store mutex?)

…
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fetch-and-add with CAS (1)
compare−and−swap(address, old_value, new_value) {

if (memory[address] == old_value) {
memory[address] = new_value;
return true;

} else {
return false;

}
}

long my_fetch_and_add(long *pointer, long amount) { ... }

implementation sketch:
fetch value from pointer old
compute in temporary value result of addition new
try to change value at pointer from old to new
[compare-and-swap]
if not successful, repeat
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fetch-and-add with CAS (2)
long my_fetch_and_add(long *p, long amount) {

long old_value;
do {

old_value = *p;
} while (!compare_and_swap(p, old_value, old_value + amount);
return old_value;

}
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exercise: append to singly-linked list
ListNode is a singly-linked list

assume: threads only append to list (no deletions, reordering)

use compare-and-swap(pointer, old, new):
atomically change *pointer from old to new
return true if successful
return false (and change nothing) if *pointer is not old

void append_to_list(ListNode *head, ListNode *new_last_node) {
...

}
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append to singly-linked list
/* assumption: other threads may be appending to list,
* but nodes are not being removed, reordered, etc.
*/
void append_to_list(ListNode *head, ListNode *new_last_node) {
memory_ordering_fence();
ListNode *current_last_node;
do {
current_last_node = head;
while (current_last_node−>next) {

current_last_node = current_last_node−>next;
}

} while (
!compare−and−swap(&current_last_node−>next,

NULL, new_last_node)
);

}
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some common atomic operations (1)
// x86: emulate with exchange
test_and_set(address) {

old_value = memory[address];
memory[address] = 1;
return old_value != 0; // e.g. set ZF flag

}

// x86: xchg REGISTER, (ADDRESS)
exchange(register, address) {

temp = memory[address];
memory[address] = register;
register = temp;

}
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some common atomic operations (2)
// x86: mov OLD_VALUE, %eax; lock cmpxchg NEW_VALUE, (ADDRESS)
compare−and−swap(address, old_value, new_value) {

if (memory[address] == old_value) {
memory[address] = new_value;
return true; // x86: set ZF flag

} else {
return false; // x86: clear ZF flag

}
}

// x86: lock xaddl REGISTER, (ADDRESS)
fetch−and−add(address, register) {

old_value = memory[address];
memory[address] += register;
register = old_value;

}
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common atomic operation pattern
try to do operation, …

detect if it failed

if so, repeat

atomic operation does “try and see if it failed” part
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cache coherency states
extra information for each cache block

overlaps with/replaces valid, dirty bits

stored in each cache

update states based on reads, writes and heard messages on bus

different caches may have different states for same block
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MSI state summary
Modified value may be different than memory and I am the

only one who has it

Shared value is the same as memory

Invalid I don’t have the value; I will need to ask for it
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MSI scheme
from state hear read hear write read write
Invalid — — to Shared to Modified
Shared — to Invalid — to Modified
Modified to Shared to Invalid — —

blue: transition requires sending message on bus

example: write while Shared
must send write — inform others with Shared state
then change to Modified

example: hear write while Shared
change to Invalid
can send read later to get value from writer

example: write while Modified
nothing to do — no other CPU can have a copy
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MSI example

CPU1 CPU2 MEM1
address value state
0xA300 100 Shared
0xC400 200 Shared
0xE500 300 Shared

address value state
0x9300 172 Shared
0xA300 100 Shared
0xC500 200 Shared

“CPU1 is writing 0xA3000”

CPU1 writes 101 to 0xA300

cache sees write:
invalidate 0xA300

maybe update memory?

CPU1 writes 102 to 0xA300

modified state — nothing communicated!
will “fix” later if there’s a read

nothing changed yet (writeback)
“What is 0xA300?”

CPU2 reads 0xA300

modified state — must update for CPU2!

“Write 102 into 0xA300”

CPU2 reads 0xA300

written back to memory early
(could also become Invalid at CPU1)
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MSI: update memory
to write value (enter modified state), need to invalidate others

can avoid sending actual value (shorter message/faster)

“I am writing address X” versus “I am writing Y to address X”
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MSI: on cache replacement/writeback
still happens — e.g. want to store something else

changes state to invalid

requires writeback if modified (= dirty bit)
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cache coherency exercise
modified/shared/invalid; all initially invalid; 32B blocks, 8B
read/writes

CPU 1: read 0x1000
CPU 2: read 0x1000
CPU 1: write 0x1000
CPU 1: read 0x2000
CPU 2: read 0x1000
CPU 2: write 0x2008
CPU 3: read 0x1008

Q1: final state of 0x1000 in caches?
Modified/Shared/Invalid for CPU 1/2/3
CPU 1: CPU 2: CPU 3:

Q2: final state of 0x2000 in caches?
Modified/Shared/Invalid for CPU 1/2/3
CPU 1: CPU 2: CPU 3: 62



cache coherency exercise solution
0x1000-0x101f 0x2000-0x201f

action CPU 1 CPU 2 CPU 3 CPU 1 CPU 2 CPU 3
I I I I I I

CPU 1: read 0x1000 S I I I I I
CPU 2: read 0x1000 S S I I I I
CPU 1: write 0x1000 M I I I I I
CPU 1: read 0x2000 M I I S I I
CPU 2: read 0x1000 S S I S I I
CPU 2: write 0x2008 S S I I M I
CPU 3: read 0x1008 S S S I M I
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C++: preventing reordering
to help implementing things like pthread_mutex_lock

C++ 2011 standard: atomic header, std::atomic class

prevent CPU reordering and prevent compiler reordering

also provide other tools for implementing locks (more later)

could also hand-write assembly code
compiler can’t know what assembly code is doing
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C++: preventing reordering example
#include <atomic>
void Alice() {

note_from_alice = 1;
do {

std::atomic_thread_fence(std::memory_order_seq_cst);
} while (note_from_bob);
if (no_milk) {++milk;}

}

Alice:
movl $1, note_from_alice // note_from_alice ← 1

.L2:
mfence // make sure store visible on/from other cores
cmpl $0, note_from_bob // if (note_from_bob == 0) repeat fence
jne .L2
cmpl $0, no_milk
...
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C++ atomics: no reordering
std::atomic<int> note_from_alice, note_from_bob;
void Alice() {

note_from_alice.store(1);
do {
} while (note_from_bob.load());
if (no_milk) {++milk;}

}

Alice:
movl $1, note_from_alice
mfence

.L2:
movl note_from_bob, %eax
testl %eax, %eax
jne .L2
...
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GCC: built-in atomic functions
used to implement std::atomic, etc.

predate std::atomic

builtin functions starting with __sync and __atomic

these are what xv6 uses
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aside: some x86 reordering rules
each core sees its own loads/stores in order

(if a core stores something, it can always load it back)

stores from other cores appear in a consistent order
(but a core might observe its own stores too early)

causality :
if a core reads X=a and (after reading X=a) writes Y=b,
then a core that reads Y=b cannot later read X=older value than a

Source: Intel 64 and IA-32 Software Developer’s Manual, Volume 3A, Chapter 8 69



how do you do anything with this?
difficult to reason about what modern CPU’s reordering rules do

typically: don’t depend on details, instead:

special instructions with stronger (and simpler) ordering rules
often same instructions that help with implementing locks in other ways

special instructions that restrict ordering of instructions around
them (“fences”)

loads/stores can’t cross the fence
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spinlock problems
lock abstraction is not powerful enough

lock/unlock operations don’t handle “wait for event”
common thing we want to do with threads
solution: other synchronization abstractions

spinlocks waste CPU time more than needed
want to run another thread instead of infinite loop
solution: lock implementation integrated with scheduler

spinlocks can send a lot of messages on the shared bus
more efficient atomic operations to implement locks

71



ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock locked Modified

address value state
lock --- Invalid

address value state
lock --- Invalid

“I want to modify lock?”

CPU2 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU3 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock
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ping-ponging
test-and-set problem: cache block “ping-pongs” between caches

each waiting processor reserves block to modify
could maybe wait until it determines modification needed — but not
typical implementation

each transfer of block sends messages on bus

…so bus can’t be used for real work
like what the processor with the lock is doing
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test-and-test-and-set (pseudo-C)
acquire(int *the_lock) {

do {
while (ATOMIC−READ(the_lock) == 0) { /* try again */ }

} while (ATOMIC−TEST−AND−SET(the_lock) == ALREADY_SET);
}
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test-and-test-and-set (assembly)
acquire:

cmp $0, the_lock // test the lock non-atomically
// unlike lock xchg --- keeps lock in Shared state!

jne acquire // try again (still locked)
// lock possibly free
// but another processor might lock
// before we get a chance to
// ... so try wtih atomic swap:
movl $1, %eax // %eax ← 1
lock xchg %eax, the_lock // swap %eax and the_lock

// sets the_lock to 1
// sets %eax to prior value of the_lock

test %eax, %eax // if the_lock wasn't 0 (someone else got it first):
jne acquire // try again
ret

75



less ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock locked Modified

address value state
lock --- Invalid

address value state
lock --- Invalid

“I want to read lock?”

CPU2 reads lock
(to see it is still locked)

“set lock to locked”

CPU1 writes back lock value,
then CPU2 reads it

“I want to read lock”

CPU3 reads lock
(to see it is still locked)
CPU2, CPU3 continue to read lock from cache

no messages on the bus

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock
(CPU1 writes back value, then CPU2 reads + modifies it)
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couldn’t the read-modify-write instruction…
notice that the value of the lock isn’t changing…

and keep it in the shared state

maybe — but extra step in “common” case
(swapping different values)
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more room for improvement?
can still have a lot of attempts to modify locks after unlocked

there other spinlock designs that avoid this
ticket locks
MCS locks
…
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MSI extensions
real cache coherency protocols sometimes more complex:

separate tracking modifications from whether other caches have
copy

send values directly between caches (maybe skip write to memory)

send messages only to cores which might care (no shared bus)
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monitors with semaphores: locks
sem_t semaphore; // initial value 1

Lock() {
sem_wait(&semaphore);

}

Unlock() {
sem_post(&semaphore);

}
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monitors with semaphores: [broken] cvs
start with only wait/signal:
sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {

lock.Unlock();
sem_wait(&threads_to_wakeup);
lock.Lock();

}
Signal() {

sem_post(&threads_to_wakeup);
}

problem: signal wakes up non-waiting threads (in the far future)
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monitors with semaphores: cvs (better)
start with only wait/signal:
sem_t private_lock; // initially 1
int num_waiters;
sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {

sem_wait(&private_lock);
++num_waiters;
sem_post(&private_lock);
lock.Unlock();
sem_wait(&threads_to_wakeup);
lock.Lock();

}

Signal() {
sem_wait(&private_lock);
if (num_waiters > 0) {

sem_post(&threads_to_wakeup);
--num_waiters;

}
sem_post(&private_lock);

}
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monitors with semaphores: broadcast
now allows broadcast:
sem_t private_lock; // initially 1
int num_waiters;
sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {

sem_wait(&private_lock);
++num_waiters;
sem_post(&private_lock);
lock.Unlock();
sem_wait(&threads_to_wakeup);
lock.Lock();

}

Broadcast() {
sem_wait(&private_lock);
while (num_waiters > 0) {

sem_post(&threads_to_wakeup);
--num_waiters;

}
sem_post(&private_lock);

}
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building semaphore with monitors
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* count must now be

positive, and at most
one thread can go per
call to Up() */

pthread_cond_signal(
&count_is_positive_cv

);
pthread_mutex_unlock(&lock);

}lock to protect shared state

shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes
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