
synchronization 5 / deadlock

1

last time
monitor examples

lock protecting all shared data
condition variable (list of waiters) for each thing waited for
while (need to wait) cond_wait
if (reason to wait changed) broadcast/signal

counting semaphores
up/post (increment) or down/wait (wait till non-zero, decrement)
bookkeeping a count of something
such that count = 0 if we need to wait

2

on the quiz
typos (from editing the question at the last moment) on question
1C

dropped, but…
seems like a significant number students got this wrong despite knowing
what was meant (despite very poor wording)

Question 4/5 unintentionally missing clear of current_pair

meant best answer was for the blank to include this (none of the
above on Q4)

3

on the quiz (2)
LockMutex(Mutex *m) {
LockSpinlock(&m−>guard_spinlock);
if (m−>lock_taken) {
put current thread on m−>wait_queue
mark current thread not runnable
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m−>guard_spinlock);
run scheduler
/****/ m−>lock_taken = true;

} else {
m−>lock_taken = true;
UnlockSpinlock(&m−>guard_spinlock);

}
}

UnlockMutex(Mutex *m) {
LockSpinlock(&m−>guard_spinlock);
if (m−>wait_queue not empty) {
remove a thread from m−>wait_queue
mark that thread as runnable
/* xv6: myproc()->state = RUNNABLE; */

}
m−>lock_taken = false;
UnlockSpinlock(&m−>guard_spinlock);

} 4

on the quiz (3)
sem_t mutex;
sem_t make_pair;
sem_t finish_pair; /* initially 0 */
std::vector<string> current_pair;

std::vector<string> WaitForPair(string name) {
std::vector<string> result;
sem_wait(&make_pair);
sem_wait(&mutex);
current_pair.push_back(name);
if (current_pair.size() == 2) {

result = current_pair;
sem_post(&mutex);
sem_post(&finish_pair);

} else { /* current_pair.size() == 1 */
sem_post(&mutex);
sem_wait(&finish_pair);
sem_wait(&mutex);
result = current_pair;
sem_post(&mutex);
/*** BLANK ONE ***/
current_pair.clear(); /* <-- meant to include outside of blank */
sem_post(&make_pair); sem_post(&make_pair);

}
return result;

} 5

on the quiz (4)
pthread_mutex_t lock;
pthread_cond_t global_cv;
list<StudentInfo*> waiting_students;
StudentInfo *GetNextStudent(TAInfo *ta) {

StudentInfo *student = NULL;
pthread_mutex_lock(&lock);
while (waiting_students.size() == 0) {

___________________________ /* BLANK ONE */
}
student = waiting_students.front();
waiting_students.pop_front();
student−>helped_by = ta;
___________________________ /* BLANK TWO */
pthread_mutex_unlock(&lock);
return student;

}

TAInfo *WaitForNextTA(StudentInfo *student) {
TAInfo *ta;
pthread_mutex_lock(&lock);
student−>helped_by = NULL;
waiting_students.push_back(student);
pthread_cond_signal(&global_cv);
while (student−>helped_by == NULL) {

______________________________ /* BLANK FOUR */
}
pthread_mutex_unlock(&lock);
return ta;

}

6

reader/writer problem
some shared data

only one thread modifying (read+write) at a time

read-only access from multiple threads is safe

could use lock — but doesn’t allow multiple readers

7

reader/writer problem
some shared data

only one thread modifying (read+write) at a time

read-only access from multiple threads is safe

could use lock — but doesn’t allow multiple readers

7

reader/writer locks
abstraction: lock that distinguishes readers/writers

operations:
read lock: wait until no writers
read unlock: stop being registered as reader
write lock: wait until no readers and no writers
write unlock: stop being registered as writer

8

reader/writer locks
abstraction: lock that distinguishes readers/writers

operations:
read lock: wait until no writers
read unlock: stop being registered as reader
write lock: wait until no readers and no writers
write unlock: stop being registered as writer

8

pthread rwlocks
pthread_rwlock_t rwlock;
pthread_rwlock_init(&rwlock, NULL /* attributes */);
...

pthread_rwlock_rdlock(&rwlock);
... /* read shared data */
pthread_rwlock_unlock(&rwlock);

pthread_rwlock_wrlock(&rwlock);
... /* read+write shared data */
pthread_rwlock_unlock(&rwlock);

...
pthread_rwlock_destroy(&rwlock);

9

rwlock effects exercise
pthread_rwlock_t lock;
void ThreadA() {

pthread_rwlock_rdlock(&lock);
puts("a");
...
puts("A");
pthread_rwlock_unlock(&lock);

}
void ThreadB() {

pthread_rwlock_rdlock(&lock);
puts("b");
...
puts("B");
pthread_rwlock_unlock(&lock);

}

void ThreadC() {
pthread_rwlock_wrlock(&lock);
puts("c");
...
puts("C");
pthread_rwlock_unlock(&lock);

}
void ThreadD() {
pthread_rwlock_wrlock(&lock);
puts("d");
...
puts("D");
pthread_rwlock_unlock(&lock);

}

exercise: which of these outputs are possible?
1. aAbBcCdD 2. abABcdDC 3. cCabBAdD
4. cdCDaAbB 5. caACdDbB 10

rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}
ReadUnlock() {

mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {

mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

lock to protect shared state

11

rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}
ReadUnlock() {

mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {

mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

state: number of active readers, writers

11

rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}
ReadUnlock() {

mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {

mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

conditions to wait for (no readers or writers, no writers)

11

rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}
ReadUnlock() {

mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {

mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

broadcast — wakeup all readers when no writers

11

rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}
ReadUnlock() {

mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {

cond_wait(&ok_to_write_cv);
}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {
mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

wakeup a single writer when no readers or writers

11

rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}
ReadUnlock() {

mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {

cond_wait(&ok_to_write_cv);
}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {
mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

problem: wakeup readers first or writer first?
this solution: wake them all up and they fight! inefficient!

11

reader/writer-priority
policy question: writers first or readers first?

writers-first: no readers go when writer waiting
readers-first: no writers go when reader waiting

previous implementation: whatever randomly happens
writers signalled first, maybe gets lock first?
…but non-determinstic in pthreads

can make explicit decision

key method: track number of waiting readers/writers

12

reader/writer-priority
policy question: writers first or readers first?

writers-first: no readers go when writer waiting
readers-first: no writers go when reader waiting

previous implementation: whatever randomly happens
writers signalled first, maybe gets lock first?
…but non-determinstic in pthreads

can make explicit decision

key method: track number of waiting readers/writers

12

writer-priority (1)
mutex_t lock; cond_t ok_to_read_cv; cond_t ok_to_write_cv;
int readers = 0, writers = 0;
int waiting_writers = 0;
ReadLock() {
mutex_lock(&lock);
while (writers != 0

|| waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers;
++writers;
mutex_unlock(&lock);

}

WriteUnlock() {
mutex_lock(&lock);
--writers;
if (waiting_writers != 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

}
13

writer-priority (1)
mutex_t lock; cond_t ok_to_read_cv; cond_t ok_to_write_cv;
int readers = 0, writers = 0;
int waiting_writers = 0;
ReadLock() {
mutex_lock(&lock);
while (writers != 0

|| waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers;
++writers;
mutex_unlock(&lock);

}

WriteUnlock() {
mutex_lock(&lock);
--writers;
if (waiting_writers != 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

}
13

writer-priority (1)
mutex_t lock; cond_t ok_to_read_cv; cond_t ok_to_write_cv;
int readers = 0, writers = 0;
int waiting_writers = 0;
ReadLock() {
mutex_lock(&lock);
while (writers != 0

|| waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers;
++writers;
mutex_unlock(&lock);

}

WriteUnlock() {
mutex_lock(&lock);
--writers;
if (waiting_writers != 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

}
13

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

14

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

14

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

14

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

14

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

14

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

14

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)

...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

14

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

14

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

14

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

14

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

14

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

14

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

14

reader-priority (1)
...
int waiting_readers = 0;
ReadLock() {
mutex_lock(&lock);
++waiting_readers;
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
--waiting_readers;
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
...
if (waiting_readers == 0) {
cond_signal(&ok_to_write_cv);

}
}

WriteLock() {
mutex_lock(&lock);
while (waiting_readers +

readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {
mutex_lock(&lock);
--writers;
if (readers == 0 && waiting_readers == 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

}

15

reader-priority (1)
...
int waiting_readers = 0;
ReadLock() {
mutex_lock(&lock);
++waiting_readers;
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
--waiting_readers;
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
...
if (waiting_readers == 0) {
cond_signal(&ok_to_write_cv);

}
}

WriteLock() {
mutex_lock(&lock);
while (waiting_readers +

readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {
mutex_lock(&lock);
--writers;
if (readers == 0 && waiting_readers == 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

}

15

rwlock exercise
suppose we want something in-between reader and writer priority:
reader-priority except if writers wait more than 1 second
exercise: what do we change?
...
int waiting_readers = 0;
ReadLock() {

mutex_lock(&lock);
++waiting_readers;
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
--waiting_readers;
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
mutex_lock(&lock);
--readers;
if (waiting_readers == 0 &&

readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (waiting_readers + readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {

mutex_lock(&lock);
--writers;
if (waiting_readers == 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

} 16

rwlock exercise soln
...
int waiting_readers = 0;
ReadLock() {

mutex_lock(&lock);
++waiting_readers;
while (writers != 0
|| WritersWaitingTooLong()) {
cond_wait(&ok_to_read_cv, &lock);

}
--waiting_readers;
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
mutex_lock(&lock);
--readers;
if ((waiting_readers == 0

|| WritersWaitingTooLong()
) && readers == 0)) {

cond_signal(&ok_to_write_cv);
}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
RecordStartWaiting();
while (readers + writers != 0 ||

(waiting_readers != 0 &&
!WritersWaitingTooLong())) {

cond_wait(&ok_to_write_cv);
}
RecordStopWaiting();
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {

mutex_lock(&lock);
--writers;
if (waiting_readers == 0
|| WritersWaitingTooLong()) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

}

18

rwlock exercise soln
...
int waiting_readers = 0;
ReadLock() {

mutex_lock(&lock);
++waiting_readers;
while (writers != 0
|| WritersWaitingTooLong()) {
cond_wait(&ok_to_read_cv, &lock);

}
--waiting_readers;
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
mutex_lock(&lock);
--readers;
if ((waiting_readers == 0

|| WritersWaitingTooLong()
) && readers == 0)) {

cond_signal(&ok_to_write_cv);
}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
RecordStartWaiting();
while (readers + writers != 0 ||

(waiting_readers != 0 &&
!WritersWaitingTooLong())) {

cond_wait(&ok_to_write_cv);
}
RecordStopWaiting();
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {

mutex_lock(&lock);
--writers;
if (waiting_readers == 0
|| WritersWaitingTooLong()) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

}

18

the one-way bridge

19

the one-way bridge

19

the one-way bridge

19

the one-way bridge

19

pipe() deadlock
BROKEN example:
int child_to_parent_pipe[2], parent_to_child_pipe[2];
pipe(child_to_parent_pipe); pipe(parent_to_child_pipe);
if (fork() == 0) {

/* child */
write(child_to_parent_pipe[1], buffer, HUGE_SIZE);
read(parent_to_child_pipe[0], buffer, HUGE_SIZE);
exit(0);

} else {
/* parent */
write(parent_to_child_pipe[1], buffer, HUGE_SIZE);
read(child_to_parent_pipe[0], buffer, HUGE_SIZE);

}

This will hang forever (if HUGE_SIZE is big enough).

20

deadlock waiting
child writing to pipe waiting for free buffer space

…which will not be available until parent reads

parent writing to pipe waiting for free buffer space

…which will not be available until child reads

21

circular dependency
parent to child

pipe buffer

child to parent
pipe buffer

parent
process

child
process

waiting for space
to write

waiting for space
to write

needs to be
read by process
to free space

needs to be
read by process
to free space

22

moving two files
struct Dir {
mutex_t lock; map<string, DirEntry> entries;

};
void MoveFile(Dir *from_dir, Dir *to_dir, string filename) {
mutex_lock(&from_dir−>lock);
mutex_lock(&to_dir−>lock);

to_dir−>entries[filename] = from_dir−>entries[filename];
from_dir−>entries.erase(filename);

mutex_unlock(&to_dir−>lock);
mutex_unlock(&from_dir−>lock);

}

Thread 1: MoveFile(A, B, "foo")
Thread 2: MoveFile(B, A, "bar")

23

moving two files: lucky timeline (1)
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock);
lock(&B->lock);
(do move)
unlock(&B->lock);
unlock(&A->lock);

lock(&B->lock);
lock(&A->lock);
(do move)
unlock(&B->lock);
unlock(&A->lock);

24

moving two files: lucky timeline (2)
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock);
lock(&B->lock);

lock(&B->lock…
(do move) (waiting for B lock)
unlock(&B->lock);

lock(&B->lock);
lock(&A->lock…

unlock(&A->lock);
lock(&A->lock);
(do move)
unlock(&A->lock);
unlock(&B->lock);

25

moving two files: unlucky timeline
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock);

lock(&B->lock);
lock(&B->lock… stalled
(waiting for lock on B) lock(&A->lock… stalled
(waiting for lock on B) (waiting for lock on A)

(do move) unreachable (do move) unreachable
unlock(&B->lock); unreachable unlock(&A->lock); unreachable
unlock(&A->lock); unreachable unlock(&B->lock); unreachable

Thread 1 holds A lock, waiting for Thread 2 to release B lock
Thread 2 holds B lock, waiting for Thread 1 to release A lock

26

moving two files: unlucky timeline
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock);

lock(&B->lock);
lock(&B->lock… stalled
(waiting for lock on B) lock(&A->lock… stalled
(waiting for lock on B) (waiting for lock on A)

(do move) unreachable (do move) unreachable
unlock(&B->lock); unreachable unlock(&A->lock); unreachable
unlock(&A->lock); unreachable unlock(&B->lock); unreachable

Thread 1 holds A lock, waiting for Thread 2 to release B lock
Thread 2 holds B lock, waiting for Thread 1 to release A lock

26

moving two files: unlucky timeline
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock);

lock(&B->lock);
lock(&B->lock… stalled
(waiting for lock on B) lock(&A->lock… stalled
(waiting for lock on B) (waiting for lock on A)

(do move) unreachable (do move) unreachable
unlock(&B->lock); unreachable unlock(&A->lock); unreachable
unlock(&A->lock); unreachable unlock(&B->lock); unreachable

Thread 1 holds A lock, waiting for Thread 2 to release B lock
Thread 2 holds B lock, waiting for Thread 1 to release A lock

26

moving two files: unlucky timeline
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock);

lock(&B->lock);
lock(&B->lock… stalled
(waiting for lock on B) lock(&A->lock… stalled
(waiting for lock on B) (waiting for lock on A)

(do move) unreachable (do move) unreachable
unlock(&B->lock); unreachable unlock(&A->lock); unreachable
unlock(&A->lock); unreachable unlock(&B->lock); unreachable

Thread 1 holds A lock, waiting for Thread 2 to release B lock
Thread 2 holds B lock, waiting for Thread 1 to release A lock

26

moving two files: dependencies
directory B

directory A

thread 1 thread 2

waiting for lock

waiting for lock

lock held by

lock held by

27

moving three files: dependencies
directory B

directory Cdirectory A

thread 1 thread 2

thread 3

waiting for lock

waiting for lock

waiting for lock

lock held by

lock held by

lock held by

28

moving three files: unlucky timeline
Thread 1 Thread 2 Thread 3

MoveFile(A, B, "foo") MoveFile(B, C, "bar") MoveFile(C, A, "quux")

lock(&A->lock);

lock(&B->lock);

lock(&C->lock);

lock(&B->lock… stalled

lock(&C->lock… stalled

lock(&A->lock… stalled

29

deadlock with free space
Thread 1 Thread 2

AllocateOrWaitFor(1 MB) AllocateOrWaitFor(1 MB)
AllocateOrWaitFor(1 MB) AllocateOrWaitFor(1 MB)
(do calculation) (do calculation)
Free(1 MB) Free(1 MB)
Free(1 MB) Free(1 MB)

2 MB of space — deadlock possible with unlucky order

30

deadlock with free space (unlucky case)
Thread 1 Thread 2

AllocateOrWaitFor(1 MB)
AllocateOrWaitFor(1 MB)

AllocateOrWaitFor(1 MB… stalled
AllocateOrWaitFor(1 MB… stalled

31

free space: dependency graph
memory in
2 (1MB) units

thread 1 thread 2

allocated

waiting for

32

deadlock with free space (lucky case)
Thread 1 Thread 2

AllocateOrWaitFor(1 MB)
AllocateOrWaitFor(1 MB)
(do calculation)
Free(1 MB);
Free(1 MB);

AllocateOrWaitFor(1 MB)
AllocateOrWaitFor(1 MB)
(do calculation)
Free(1 MB);
Free(1 MB);

33

deadlock
deadlock — circular waiting for resources

resource = something needed by a thread to do work
locks
CPU time
disk space
memory
…

often non-deterministic in practice

most common example: when acquiring multiple locks

34

deadlock
deadlock — circular waiting for resources

resource = something needed by a thread to do work
locks
CPU time
disk space
memory
…

often non-deterministic in practice

most common example: when acquiring multiple locks

34

deadlock versus starvation
starvation: one+ unlucky (no progress), one+ lucky (yes progress)

example: low priority threads versus high-priority threads

deadlock: no one involved in deadlock makes progress

starvation: once starvation happens, taking turns will resolve
low priority thread just needed a chance…

deadlock: once it happens, taking turns won’t fix

35

deadlock versus starvation
starvation: one+ unlucky (no progress), one+ lucky (yes progress)

example: low priority threads versus high-priority threads

deadlock: no one involved in deadlock makes progress

starvation: once starvation happens, taking turns will resolve
low priority thread just needed a chance…

deadlock: once it happens, taking turns won’t fix

35

deadlock requirements
mutual exclusion

one thread at a time can use a resource

hold and wait
thread holding a resources waits to acquire another resource

no preemption of resources
resources are only released voluntarily
thread trying to acquire resources can’t ‘steal’

circular wait
there exists a set {T1, . . . , Tn} of waiting threads such that

T1 is waiting for a resource held by T2
T2 is waiting for a resource held by T3
…
Tn is waiting for a resource held by T1

36

how is deadlock possible?
Given list: A, B, C, D, E
RemoveNode(LinkedListNode *node) {

pthread_mutex_lock(&node−>lock);
pthread_mutex_lock(&node−>prev−>lock);
pthread_mutex_lock(&node−>next−>lock);
node−>next−>prev = node−>prev;
node−>prev−>next = node−>next;
pthread_mutex_unlock(&node−>next−>lock);
pthread_mutex_unlock(&node−>prev−>lock);
pthread_mutex_unlock(&node−>lock);

}

Which of these (all run in parallel) can deadlock?
A. RemoveNode(B) and RemoveNode(C)
B. RemoveNode(B) and RemoveNode(D)
C. RemoveNode(B) and RemoveNode(C) and RemoveNode(D)
D. A and C E. B and C
F. all of the above G. none of the above 37

how is deadlock — solution
Remove B Remove C
lock B lock C
lock A (prev) wait to lock B (prev)
wait to lock C (next)

With B and D — only overlap in in node C — no circular wait possible

39

deadlock prevention techniques
infinite resources

or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
“busy signal” — abort and (maybe) retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait

memory allocation: malloc() fails rather than waiting (no deadlock)
locks: pthread_mutex_trylock fails rather than waiting
… requires some way to undo partial changes to avoid errors

common approach for databases
…

41

deadlock prevention techniques
infinite resources

or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
“busy signal” — abort and (maybe) retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait

memory allocation: malloc() fails rather than waiting (no deadlock)
locks: pthread_mutex_trylock fails rather than waiting
… requires some way to undo partial changes to avoid errors

common approach for databases
…

42

deadlock prevention techniques
infinite resources

or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
“busy signal” — abort and (maybe) retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait

memory allocation: malloc() fails rather than waiting (no deadlock)
locks: pthread_mutex_trylock fails rather than waiting
… requires some way to undo partial changes to avoid errors

common approach for databases
…

43

deadlock prevention techniques
infinite resources

or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
“busy signal” — abort and (maybe) retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait

memory allocation: malloc() fails rather than waiting (no deadlock)
locks: pthread_mutex_trylock fails rather than waiting
…

requires some way to undo partial changes to avoid errors
common approach for databases
…

44

deadlock prevention techniques
infinite resources

or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
“busy signal” — abort and (maybe) retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait

memory allocation: malloc() fails rather than waiting (no deadlock)
locks: pthread_mutex_trylock fails rather than waiting
…

requires some way to undo partial changes to avoid errors
common approach for databases
…

45

deadlock prevention techniques
infinite resources

or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
“busy signal” — abort and (maybe) retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait

memory allocation: malloc() fails rather than waiting (no deadlock)
locks: pthread_mutex_trylock fails rather than waiting
… requires some way to undo partial changes to avoid errors

common approach for databases
…

46

acquiring locks in consistent order (1)
MoveFile(Dir* from_dir, Dir* to_dir, string filename) {
if (from_dir−>path < to_dir−>path) {
lock(&from_dir−>lock);
lock(&to_dir−>lock);

} else {
lock(&to_dir−>lock);
lock(&from_dir−>lock);

}
...

}

any ordering will do
e.g. compare pointers

47

acquiring locks in consistent order (1)
MoveFile(Dir* from_dir, Dir* to_dir, string filename) {
if (from_dir−>path < to_dir−>path) {
lock(&from_dir−>lock);
lock(&to_dir−>lock);

} else {
lock(&to_dir−>lock);
lock(&from_dir−>lock);

}
...

}

any ordering will do
e.g. compare pointers

47

acquiring locks in consistent order (2)
often by convention, e.g. Linux kernel comments:
/*
* ...
* Lock order:
* contex.ldt_usr_sem
* mmap_sem
* context.lock
*/

/*
* ...
* Lock order:
* 1. slab_mutex (Global Mutex)
* 2. node->list_lock
* 3. slab_lock(page) (Only on some arches and for debugging)
* ...
*/

48

deadlock prevention techniques
infinite resources

or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
“busy signal” — abort and (maybe) retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait

memory allocation: malloc() fails rather than waiting (no deadlock)
locks: pthread_mutex_trylock fails rather than waiting
… requires some way to undo partial changes to avoid errors

common approach for databases
…

49

deadlock summary

50

51

backup slides

52

stealing locks???
how do we make stealing locks possible

unclean: just kill the thread
problem: inconsistent state?

clean: have code to undo partial oepration
some databases do this

won’t go into detail in this class

53

revokable locks?
try {

AcquireLock();
use shared data

} catch (LockRevokedException le) {
undo operation hopefully?

} finally {
ReleaseLock();

}

54

deadlock prevention techniques
infinite resources

or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
“busy signal” — abort and (maybe) retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait

memory allocation: malloc() fails rather than waiting (no deadlock)
locks: pthread_mutex_trylock fails rather than waiting
… requires some way to undo partial changes to avoid errors

common approach for databases
…

55

abort and retry limits?
abort-and-retry

how many times will you retry?

56

moving two files: abort-and-retry
struct Dir {
mutex_t lock; map<string, DirEntry> entries;

};
void MoveFile(Dir *from_dir, Dir *to_dir, string filename) {
while (true) {
mutex_lock(&from_dir−>lock);
if (mutex_trylock(&to_dir−>lock) == LOCKED) break;
mutex_unlock(&from_dir−>lock);

}

to_dir−>entries[filename] = from_dir−>entries[filename];
from_dir−>entries.erase(filename);

mutex_unlock(&to_dir−>lock);
mutex_unlock(&from_dir−>lock);

}

Thread 1: MoveFile(A, B, "foo")
Thread 2: MoveFile(B, A, "bar")

57

moving two files: lots of bad luck?
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock) → LOCKED

lock(&B->lock) → LOCKED
trylock(&B->lock) → FAILED

trylock(&A->lock) → FAILED
unlock(&A->lock)

unlock(&B->lock)
lock(&A->lock) → LOCKED

lock(&B->lock) → LOCKED
trylock(&B->lock) → FAILED

trylock(&A->lock) → FAILED
unlock(&A->lock)

unlock(&B->lock)
58

livelock
livelock: keep aborting and retrying without end

like deadlock — no one’s making progress
potentially forever

unlike deadlock — threads are not waiting

59

preventing livelock
make schedule random — e.g. random waiting after abort

make threads run one-at-a-time if lots of aborting

other ideas?

60

deadlock detection
why? debugging or fix deadlock by aborting operations

idea: search for cyclic dependencies

61

detecting deadlocks on locks
let’s say I want to detect deadlocks that only involve mutexes

goal: help programmers debug deadlocks

…by modifying my threading library:
struct Thread {

... /* stuff for implementing thread */
/* what extra fields go here? */

};

struct Mutex {
... /* stuff for implementing mutex */
/* what extra fields go here? */

};

62

deadlock detection
why? debugging or fix deadlock by aborting operations

idea: search for cyclic dependencies

need:
list of all contended resources
what thread is waiting for what?
what thread ‘owns’ what?

63

aside: divisible resources
deadlock is possible with divislbe resources like memory,…

example: suppose 6MB of RAM for threads total:
thread 1 has 2MB allocated, waiting for 2MB
thread 2 has 2MB allocated, waiting for 2MB
thread 3 has 1MB allocated, waiting for keypress

cycle: thread 1 waiting on memory owned by thread 2?

not a deadlock — thread 3 can still finish
and after it does, thread 1 or 2 can finish

…but would be deadlock
…if thread 3 waiting lock held by thread 1
…with 5MB of RAM

64

aside: divisible resources
deadlock is possible with divislbe resources like memory,…

example: suppose 6MB of RAM for threads total:
thread 1 has 2MB allocated, waiting for 2MB
thread 2 has 2MB allocated, waiting for 2MB
thread 3 has 1MB allocated, waiting for keypress

cycle: thread 1 waiting on memory owned by thread 2?

not a deadlock — thread 3 can still finish
and after it does, thread 1 or 2 can finish

…but would be deadlock
…if thread 3 waiting lock held by thread 1
…with 5MB of RAM

64

divisible resources: not deadlock

memory in
6 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

not deadlock:
thread 3 finishes
then thread 1 can get memory
then thread 1 finishes
then thread 2 can get resources
then thread 2 can finish

65

divisible resources: not deadlock

memory in
6 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

not deadlock:
thread 3 finishes
then thread 1 can get memory
then thread 1 finishes
then thread 2 can get resources
then thread 2 can finish

65

divisible resources: not deadlock

memory in
6 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

not deadlock:
thread 3 finishes
then thread 1 can get memory
then thread 1 finishes
then thread 2 can get resources
then thread 2 can finish

65

divisible resources: not deadlock

memory in
6 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

not deadlock:
thread 3 finishes
then thread 1 can get memory
then thread 1 finishes
then thread 2 can get resources
then thread 2 can finish

65

divisible resources: not deadlock

memory in
6 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

not deadlock:
thread 3 finishes
then thread 1 can get memory
then thread 1 finishes
then thread 2 can get resources
then thread 2 can finish

65

divisible resources: not deadlock

memory in
6 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

not deadlock:
thread 3 finishes
then thread 1 can get memory
then thread 1 finishes
then thread 2 can get resources
then thread 2 can finish

65

divisible resources: not deadlock

memory in
6 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

not deadlock:
thread 3 finishes
then thread 1 can get memory
then thread 1 finishes
then thread 2 can get resources
then thread 2 can finish

65

divisible resources: is deadlock

memory in
6 (1MB) units

thread 1 thread 2

thread 3

waiting for
2MB

owns

owns

lock

deadlock:
thread 3 can’t finish
until thread 1 releases lock, but
thread 1 can’t finish
until thread 3 releases memory

66

divisible resources: is deadlock

memory in
6 (1MB) units

thread 1 thread 2

thread 3

waiting for
2MB

owns

owns

lock
deadlock:
thread 3 can’t finish
until thread 1 releases lock, but
thread 1 can’t finish
until thread 3 releases memory

66

divisible resources: is deadlock

memory in
5 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

reducing memory: deadlock:
even after thread 3 finishes
no way for thread 1+2
to get what they want

67

divisible resources: is deadlock

memory in
5 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

reducing memory: deadlock:
even after thread 3 finishes
no way for thread 1+2
to get what they want

67

divisible resources: is deadlock

memory in
5 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

reducing memory: deadlock:
even after thread 3 finishes
no way for thread 1+2
to get what they want

67

divisible resources: is deadlock

memory in
5 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

reducing memory: deadlock:
even after thread 3 finishes
no way for thread 1+2
to get what they want

67

divisible resources: is deadlock

memory in
5 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

reducing memory: deadlock:
even after thread 3 finishes
no way for thread 1+2
to get what they want

67

divisible resources: is deadlock

memory in
5 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

reducing memory: deadlock:
even after thread 3 finishes
no way for thread 1+2
to get what they want

67

deadlock detection with divisibe resources
can’t rely on cycles in graphs in this case

alternate algorithm exists
similar technique to how we showed no deadlock

high-level intuition: simulate what could happen
find threads that could finish based on resources available now

full details: look up Baker’s algorithm

68

dining philosophers

five philosophers either think or eat
to eat, grab chopsticks on either side

everyone eats at the same time?
grab left chopstick, then…
everyone eats at the same time?
grab left chopstick, then
try to grab right chopstick, …
we’re at an impasse

69

dining philosophers

five philosophers either think or eat
to eat, grab chopsticks on either side

everyone eats at the same time?
grab left chopstick, then…

everyone eats at the same time?
grab left chopstick, then
try to grab right chopstick, …
we’re at an impasse

69

dining philosophers

five philosophers either think or eat
to eat, grab chopsticks on either side

everyone eats at the same time?
grab left chopstick, then…

everyone eats at the same time?
grab left chopstick, then
try to grab right chopstick, …
we’re at an impasse

69

allocating all at once?
for resources like disk space, memory

figure out maximum allocation when starting thread
“only” need conservative estimate

only start thread if those resources are available

okay solution for embedded systems?

70

AllocateOrFail
Thread 1 Thread 2

AllocateOrFail(1 MB)
AllocateOrFail(1 MB)

AllocateOrFail(1 MB) fails!
AllocateOrFail(1 MB) fails!

Free(1 MB) (cleanup after failure)
Free(1 MB) (cleanup after failure)

okay, now what?
give up?
both try again? — maybe this will keep happening? (called livelock)
try one-at-a-time? — gaurenteed to work, but tricky to implement

71

AllocateOrSteal
Thread 1 Thread 2

AllocateOrSteal(1 MB)
AllocateOrSteal(1 MB)

AllocateOrSteal(1 MB) Thread killed to free 1MB
(do work)

problem: can one actually implement this?

problem: can one kill thread and keep system in consistent state?

72

fail/steal with locks
pthreads provides pthread_mutex_trylock — “lock or fail”

some databases implement revocable locks
do equivalent of throwing exception in thread to ‘steal’ lock
need to carefully arrange for operation to be cleaned up

73

binary semaphores
binary semaphores — semaphores that are only zero or one

as powerful as normal semaphores
exercise: simulate counting semaphores with binary semaphores (more
than one) and an integer

74

monitors with semaphores: locks
sem_t semaphore; // initial value 1

Lock() {
sem_wait(&semaphore);

}

Unlock() {
sem_post(&semaphore);

}

75

monitors with semaphores: [broken] cvs
start with only wait/signal:
sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {

lock.Unlock();
sem_wait(&threads_to_wakeup);
lock.Lock();

}
Signal() {

sem_post(&threads_to_wakeup);
}

problem: signal wakes up non-waiting threads (in the far future)

76

monitors with semaphores: [broken] cvs
start with only wait/signal:
sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {

lock.Unlock();
sem_wait(&threads_to_wakeup);
lock.Lock();

}
Signal() {

sem_post(&threads_to_wakeup);
}

problem: signal wakes up non-waiting threads (in the far future)

76

monitors with semaphores: cvs (better)
start with only wait/signal:
sem_t private_lock; // initially 1
int num_waiters;
sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {

sem_wait(&private_lock);
++num_waiters;
sem_post(&private_lock);
lock.Unlock();
sem_wait(&threads_to_wakeup);
lock.Lock();

}

Signal() {
sem_wait(&private_lock);
if (num_waiters > 0) {

sem_post(&threads_to_wakeup);
--num_waiters;

}
sem_post(&private_lock);

}

77

monitors with semaphores: broadcast
now allows broadcast:
sem_t private_lock; // initially 1
int num_waiters;
sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {

sem_wait(&private_lock);
++num_waiters;
sem_post(&private_lock);
lock.Unlock();
sem_wait(&threads_to_wakeup);
lock.Lock();

}

Broadcast() {
sem_wait(&private_lock);
while (num_waiters > 0) {

sem_post(&threads_to_wakeup);
--num_waiters;

}
sem_post(&private_lock);

}

78

building semaphore with monitors
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* count must now be

positive, and at most
one thread can go per
call to Up() */

pthread_cond_signal(
&count_is_positive_cv

);
pthread_mutex_unlock(&lock);

}lock to protect shared state

shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes

79

building semaphore with monitors
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* count must now be

positive, and at most
one thread can go per
call to Up() */

pthread_cond_signal(
&count_is_positive_cv

);
pthread_mutex_unlock(&lock);

}lock to protect shared state
shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes

79

building semaphore with monitors
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* count must now be

positive, and at most
one thread can go per
call to Up() */

pthread_cond_signal(
&count_is_positive_cv

);
pthread_mutex_unlock(&lock);

}lock to protect shared state
shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes

79

building semaphore with monitors
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* count must now be

positive, and at most
one thread can go per
call to Up() */

pthread_cond_signal(
&count_is_positive_cv

);
pthread_mutex_unlock(&lock);

}lock to protect shared state
shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes 79

building semaphore with monitors
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* count must now be

positive, and at most
one thread can go per
call to Up() */

pthread_cond_signal(
&count_is_positive_cv

);
pthread_mutex_unlock(&lock);

}lock to protect shared state
shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes 79

semaphores with monitors: no condition
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
pthread_cond_signal(

&count_is_positive_cv
);
pthread_mutex_unlock(&lock);

}

same as where we started…

80

semaphores with monitors: alt w/ signal
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
if (count > 0) {

pthread_cond_signal(
&count_is_positive_cv

);
}
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
if (count == 1) {

pthread_cond_signal(
&count_is_positive_cv

);
}
pthread_mutex_unlock(&lock);

}

81

on signal/broadcast generally
whenever using signal need to ask
what if more than one thread is waiting?

need to explain why those threads will be signalled eventually

…even if next thread signalled doesn’t run right away

another problem that would be avoided with Hoare scheduling

82

building semaphore with monitors (version B)
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* condition *just* became true */
if (count == 1) {

pthread_cond_broadcast(
&count_is_positive_cv

);
}
pthread_mutex_unlock(&lock);

}

before: signal every time

can check if condition just became true instead?

but do we really need to broadcast?

83

building semaphore with monitors (version B)
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* condition *just* became true */
if (count == 1) {

pthread_cond_broadcast(
&count_is_positive_cv

);
}
pthread_mutex_unlock(&lock);

}

before: signal every time

can check if condition just became true instead?

but do we really need to broadcast?
83

exercise: why broadcast?
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
if (count == 1) { /* became > 0 */

pthread_cond_broadcast(
&count_is_positive_cv

);
}
pthread_mutex_unlock(&lock);

}

exercise: why can’t this be pthread_cond_signal?

hint: think of two threads calling down + two calling up?

brute force: only so many orders they can get the lock in
84

broadcast problem
Thread 1 Thread 2 Thread 3 Thread 4

Down()
lock
count == 0? yes
unlock/wait

Down()
lock
count == 0? yes
unlock/wait

Up()
lock
count += 1 (now 1) Up()

stop waiting on CV signal wait for lock
wait for lock unlock wait for lock
wait for lock lock
wait for lock count += 1 (now 2)
wait for lock count != 1: don’t signal
lock unlock
count == 0? no
count -= 1 (becomes 1)
unlock

still waiting???

Mesa-style monitors
signalling doesn’t
“hand off” lock

85

broadcast problem
Thread 1 Thread 2 Thread 3 Thread 4

Down()
lock
count == 0? yes
unlock/wait

Down()
lock
count == 0? yes
unlock/wait

Up()
lock
count += 1 (now 1) Up()

stop waiting on CV signal wait for lock
wait for lock unlock wait for lock
wait for lock lock
wait for lock count += 1 (now 2)
wait for lock count != 1: don’t signal
lock unlock
count == 0? no
count -= 1 (becomes 1)
unlock

still waiting???

Mesa-style monitors
signalling doesn’t
“hand off” lock

85

broadcast problem
Thread 1 Thread 2 Thread 3 Thread 4

Down()
lock
count == 0? yes
unlock/wait

Down()
lock
count == 0? yes
unlock/wait

Up()
lock
count += 1 (now 1) Up()

stop waiting on CV signal wait for lock
wait for lock unlock wait for lock
wait for lock lock
wait for lock count += 1 (now 2)
wait for lock count != 1: don’t signal
lock unlock
count == 0? no
count -= 1 (becomes 1)
unlock

still waiting???

Mesa-style monitors
signalling doesn’t
“hand off” lock

85

	last time
	reader-writer locks
	reader/writer problem
	reader/writer locks
	reader/writer lock usage exericse
	implementing rwlocks with monitors
	priority concept
	writer-priority
	writer-priority walkthrough
	reader-priority

	reader/writer lock exercise: timeout priority

	deadlock examples
	a one-way bridge
	with pipes
	with locks
	with memory

	deadlock definition
	short intuition
	conditions for deadlock

	exercise
	deadlock prevention
	techniques overview
	example: no waiting
	revocable locks
	example: consistent order
	summary

	backup slides
	revocable locks
	example: livelock
	deadlock detection
	problem with divisible resources?

	dining philosophers
	pre-requesting maximum resources
	aborting locks

	aside: binary semaphores
	relating monitors and semaphores
	implementing monitors with semaphores
	implementing semaphores with monitors

