
1

last time
walkpgdir: find pointer to (second-level) PTE

given virtual address (user would access)
takes kernel pointer (virtual addr in top half) to first-level PT
returns kernel pointer to entry

mappages(pgdir, VA, size, PA,…): set [VA, VA + size) to map to
particular [PA, PA+size)

calls walkpgdir() to access each second-level page table entry in range
if range partially overlaps page, maps the whole page
sets page table entry to present + points-to-specified PA
stock xv6: assumes pages mapped exactly once

allockvm: make new page table (kernel part)
allocuvm: allocate user pages
kalloc/kfree: memory allocation in kernel (page from linked list)

2

mappages rounding note
mappages(pgdir, 0x4000, 0x1000, 0x50000, …):

sets VPN 0x4 (virtual addreses 0x4000-0x4FFF) to map to PPN 0x50
(physical addresses 0x50000-0x50FFF)

mappages(pgdir, 0x4000, 0x2000, 0x50000, …):
sets VPN 0x4 (virtual addreses 0x4000-0x4FFF) to map to PPN 0x50
sets VPN 0x5 (virtual addreses 0x5000-0x5FFF) to map to PPN 0x50

mappages(pgdir, 0x4200, 0x1000, 0x50800, …):
sets VPN 0x4 (virtual addreses 0x4000-0x4FFF) to map to PPN 0x50
(physical addresses 0x50000-0x50FFF)
sets VPN 0x5 (virtual addreses 0x5000-0x5FFF) to map to PPN 0x50
(physical addresses 0x50000-0x50FFF)

3

mappages

VPN 0
← 0x0000

VPN 1
← 0x1000

VPN 2
← 0x2000

VPN 3
← 0x3000

VPN 4
← 0x4000

VPN 5
← 0x5000

VPN 6
← 0x6000

VPN 7
← 0x7000

← 0x4000

mappages(pgdir, 0x4000,
0x1000, 0x50000, …)

mapped to PPN 0x50
(PA 0x50000–0x50FFF) 0x1000

← 0x4000

mappages(pgdir, 0x4000,
0x2000, 0x50000, …)

mapped to PPN 0x50
(PA 0x50000–0x50FFF)

mapped to PPN 0x51
(PA 0x51000–0x51FFF) 0x2000

← 0x4400

mappages(pgdir, 0x4400,
0x2000, 0x50400, …)

mapped to PPN 0x50
(PA 0x50000–0x50FFF)

mapped to PPN 0x51
(PA 0x51000–0x51FFF)

mapped to PPN 0x52
(PA 0x52000–0x52FFF)

0x2000

4

mappages

VPN 0
← 0x0000

VPN 1
← 0x1000

VPN 2
← 0x2000

VPN 3
← 0x3000

VPN 4
← 0x4000

VPN 5
← 0x5000

VPN 6
← 0x6000

VPN 7
← 0x7000

← 0x4000

mappages(pgdir, 0x4000,
0x1000, 0x50000, …)

mapped to PPN 0x50
(PA 0x50000–0x50FFF) 0x1000

← 0x4000

mappages(pgdir, 0x4000,
0x2000, 0x50000, …)

mapped to PPN 0x50
(PA 0x50000–0x50FFF)

mapped to PPN 0x51
(PA 0x51000–0x51FFF) 0x2000

← 0x4400

mappages(pgdir, 0x4400,
0x2000, 0x50400, …)

mapped to PPN 0x50
(PA 0x50000–0x50FFF)

mapped to PPN 0x51
(PA 0x51000–0x51FFF)

mapped to PPN 0x52
(PA 0x52000–0x52FFF)

0x2000

4

mappages

VPN 0
← 0x0000

VPN 1
← 0x1000

VPN 2
← 0x2000

VPN 3
← 0x3000

VPN 4
← 0x4000

VPN 5
← 0x5000

VPN 6
← 0x6000

VPN 7
← 0x7000

← 0x4000

mappages(pgdir, 0x4000,
0x1000, 0x50000, …)

mapped to PPN 0x50
(PA 0x50000–0x50FFF) 0x1000

← 0x4000

mappages(pgdir, 0x4000,
0x2000, 0x50000, …)

mapped to PPN 0x50
(PA 0x50000–0x50FFF)

mapped to PPN 0x51
(PA 0x51000–0x51FFF) 0x2000

← 0x4400

mappages(pgdir, 0x4400,
0x2000, 0x50400, …)

mapped to PPN 0x50
(PA 0x50000–0x50FFF)

mapped to PPN 0x51
(PA 0x51000–0x51FFF)

mapped to PPN 0x52
(PA 0x52000–0x52FFF)

0x2000

4

mappages

VPN 0
← 0x0000

VPN 1
← 0x1000

VPN 2
← 0x2000

VPN 3
← 0x3000

VPN 4
← 0x4000

VPN 5
← 0x5000

VPN 6
← 0x6000

VPN 7
← 0x7000

← 0x4000

mappages(pgdir, 0x4000,
0x1000, 0x50000, …)

mapped to PPN 0x50
(PA 0x50000–0x50FFF) 0x1000

← 0x4000

mappages(pgdir, 0x4000,
0x2000, 0x50000, …)

mapped to PPN 0x50
(PA 0x50000–0x50FFF)

mapped to PPN 0x51
(PA 0x51000–0x51FFF) 0x2000

← 0x4400

mappages(pgdir, 0x4400,
0x2000, 0x50400, …)

mapped to PPN 0x50
(PA 0x50000–0x50FFF)

mapped to PPN 0x51
(PA 0x51000–0x51FFF)

mapped to PPN 0x52
(PA 0x52000–0x52FFF)

0x2000

4

xv6 program memory

0

KERNBASE

text

data

stack

heap

PAGESIZE

argument 0

argument N
0

address of argument 0

address of argument N
address of address of
 argument 0

0xFFFFFFF

(empty)

argc

...

...

nul-terminated string
argv[argc]

argv[0]

argv argument of main

argc argument of main
return PC for main

guard page

invalid

initial stack pointer

myproc()->sz

← adjusted by sbrk() system call

5

xv6 program memory

0

KERNBASE

text

data

stack

heap

PAGESIZE

argument 0

argument N
0

address of argument 0

address of argument N
address of address of
 argument 0

0xFFFFFFF

(empty)

argc

...

...

nul-terminated string
argv[argc]

argv[0]

argv argument of main

argc argument of main
return PC for main

guard page

invalid

initial stack pointer

myproc()->sz

← adjusted by sbrk() system call

6

xv6 program memory

0

KERNBASE

text

data

stack

heap

PAGESIZE

argument 0

argument N
0

address of argument 0

address of argument N
address of address of
 argument 0

0xFFFFFFF

(empty)

argc

...

...

nul-terminated string
argv[argc]

argv[0]

argv argument of main

argc argument of main
return PC for main

guard page

invalid

initial stack pointer

myproc()->sz

← adjusted by sbrk() system call

6

xv6 heap allocation
xv6: every process has a heap at the top of its address space

yes, this is unlike Linux where heap is below stack

tracked in struct proc with sz
= last valid address in process

position changed via sbrk(amount) system call
sets sz += amount
same call exists in Linux, etc. — but also others

7

sbrk
sys_sbrk()
{
if(argint(0, &n) < 0)
return −1;

addr = myproc()−>sz;
if(growproc(n) < 0)
return −1;

return addr;
}

sz: current top of heapsbrk(N): grow heap by N (shrink if negative)returns old top of heap (or -1 on out-of-memory)

8

sbrk
sys_sbrk()
{
if(argint(0, &n) < 0)
return −1;

addr = myproc()−>sz;
if(growproc(n) < 0)
return −1;

return addr;
}

sz: current top of heap

sbrk(N): grow heap by N (shrink if negative)returns old top of heap (or -1 on out-of-memory)

8

sbrk
sys_sbrk()
{
if(argint(0, &n) < 0)
return −1;

addr = myproc()−>sz;
if(growproc(n) < 0)
return −1;

return addr;
}

sz: current top of heap

sbrk(N): grow heap by N (shrink if negative)

returns old top of heap (or -1 on out-of-memory)

8

sbrk
sys_sbrk()
{
if(argint(0, &n) < 0)
return −1;

addr = myproc()−>sz;
if(growproc(n) < 0)
return −1;

return addr;
}

sz: current top of heapsbrk(N): grow heap by N (shrink if negative)

returns old top of heap (or -1 on out-of-memory)

8

growproc
growproc(int n)
{
uint sz;
struct proc *curproc = myproc();

sz = curproc−>sz;
if(n > 0){
if((sz = allocuvm(curproc−>pgdir, sz, sz + n)) == 0)

return −1;
} else if(n < 0){
if((sz = deallocuvm(curproc−>pgdir, sz, sz + n)) == 0)

return −1;
}
curproc−>sz = sz;
switchuvm(curproc);
return 0;

}

allocuvm — same function used to allocate initial space
maps pages for addresses sz to sz + n
calls kalloc to get each page

9

growproc
growproc(int n)
{
uint sz;
struct proc *curproc = myproc();

sz = curproc−>sz;
if(n > 0){
if((sz = allocuvm(curproc−>pgdir, sz, sz + n)) == 0)

return −1;
} else if(n < 0){
if((sz = deallocuvm(curproc−>pgdir, sz, sz + n)) == 0)

return −1;
}
curproc−>sz = sz;
switchuvm(curproc);
return 0;

}

allocuvm — same function used to allocate initial space
maps pages for addresses sz to sz + n
calls kalloc to get each page

9

page table base register / TLBs
so far: just change page table entries

two missing tasks:

changing page table base register:
xv6: lcr3 — done as part of process context switch (switchuvm)

resetting processor’s page table entry cache when page table entries
change

processor relies on OS to know when cached PTEs change
x86-32: can be done by reloading page table base register
why growproc() calls switchvum()

10

xv6 page faults (now)
accessing page marked invalid (not-present) — triggers page fault

xv6 now: default case in trap() function

/* in some user program: */
((int) 0x800444) = 1;
...
/* in trap() in trap.c: */

cprintf("pid %d %s: trap %d err %d on cpu %d "
"eip 0x%x addr 0x%x--kill proc\n",
myproc()−>pid, myproc()−>name, tf−>trapno,
tf−>err, cpuid(), tf−>eip, rcr2());

myproc()−>killed = 1;

pid 4 processname: trap 14 err 6 on cpu 0 eip 0x1a addr 0x800444--kill proc

trap 14 = T_PGFLT
special register CR2 contains faulting address

11

xv6 page faults (now)
accessing page marked invalid (not-present) — triggers page fault

xv6 now: default case in trap() function
/* in some user program: */
((int) 0x800444) = 1;
...
/* in trap() in trap.c: */

cprintf("pid %d %s: trap %d err %d on cpu %d "
"eip 0x%x addr 0x%x--kill proc\n",
myproc()−>pid, myproc()−>name, tf−>trapno,
tf−>err, cpuid(), tf−>eip, rcr2());

myproc()−>killed = 1;

pid 4 processname: trap 14 err 6 on cpu 0 eip 0x1a addr 0x800444--kill proc

trap 14 = T_PGFLT
special register CR2 contains faulting address

11

xv6 page faults (now)
accessing page marked invalid (not-present) — triggers page fault

xv6 now: default case in trap() function
/* in some user program: */
((int) 0x800444) = 1;
...
/* in trap() in trap.c: */

cprintf("pid %d %s: trap %d err %d on cpu %d "
"eip 0x%x addr 0x%x--kill proc\n",
myproc()−>pid, myproc()−>name, tf−>trapno,
tf−>err, cpuid(), tf−>eip, rcr2());

myproc()−>killed = 1;

pid 4 processname: trap 14 err 6 on cpu 0 eip 0x1a addr 0x800444--kill proc

trap 14 = T_PGFLT
special register CR2 contains faulting address

11

xv6 page faults (now)
accessing page marked invalid (not-present) — triggers page fault

xv6 now: default case in trap() function
/* in some user program: */
((int) 0x800444) = 1;
...
/* in trap() in trap.c: */

cprintf("pid %d %s: trap %d err %d on cpu %d "
"eip 0x%x addr 0x%x--kill proc\n",
myproc()−>pid, myproc()−>name, tf−>trapno,
tf−>err, cpuid(), tf−>eip, rcr2());

myproc()−>killed = 1;

pid 4 processname: trap 14 err 6 on cpu 0 eip 0x1a addr 0x800444--kill proc

trap 14 = T_PGFLT
special register CR2 contains faulting address

11

xv6: if one handled page faults
alternative to crashing: update the page table and return

returning from page fault handler normally retries failing instruction

“just in time” update of the process’s memory
example: don’t actually allocate memory until it’s needed

pseudocode for xv6 implementation (for trap())
if (tf−>trapno == T_PGFLT) {

void *address = (void *) rcr2();
if (is_address_okay(myproc(), address)) {

setup_page_table_entry_for(myproc(), address);
// return from fault, retry access

} else {
// actual segfault, kill process
cprintf("...");
myproc()−>killed = 1;

}
}

check process control block to see if access okayif so, setup the page table so it works next time
that is, immediately after returning from fault

12

xv6: if one handled page faults
alternative to crashing: update the page table and return

returning from page fault handler normally retries failing instruction

“just in time” update of the process’s memory
example: don’t actually allocate memory until it’s needed

pseudocode for xv6 implementation (for trap())
if (tf−>trapno == T_PGFLT) {

void *address = (void *) rcr2();
if (is_address_okay(myproc(), address)) {

setup_page_table_entry_for(myproc(), address);
// return from fault, retry access

} else {
// actual segfault, kill process
cprintf("...");
myproc()−>killed = 1;

}
}

check process control block to see if access okayif so, setup the page table so it works next time
that is, immediately after returning from fault

12

xv6: if one handled page faults
alternative to crashing: update the page table and return

returning from page fault handler normally retries failing instruction

“just in time” update of the process’s memory
example: don’t actually allocate memory until it’s needed

pseudocode for xv6 implementation (for trap())
if (tf−>trapno == T_PGFLT) {

void *address = (void *) rcr2();
if (is_address_okay(myproc(), address)) {

setup_page_table_entry_for(myproc(), address);
// return from fault, retry access

} else {
// actual segfault, kill process
cprintf("...");
myproc()−>killed = 1;

}
}

check process control block to see if access okay

if so, setup the page table so it works next time
that is, immediately after returning from fault

12

xv6: if one handled page faults
alternative to crashing: update the page table and return

returning from page fault handler normally retries failing instruction

“just in time” update of the process’s memory
example: don’t actually allocate memory until it’s needed

pseudocode for xv6 implementation (for trap())
if (tf−>trapno == T_PGFLT) {

void *address = (void *) rcr2();
if (is_address_okay(myproc(), address)) {

setup_page_table_entry_for(myproc(), address);
// return from fault, retry access

} else {
// actual segfault, kill process
cprintf("...");
myproc()−>killed = 1;

}
}

check process control block to see if access okay

if so, setup the page table so it works next time
that is, immediately after returning from fault

12

page fault tricks
OS can do all sorts of ‘tricks’ with page tables

key idea: what processes think they have in memory != their actual
memory

OS fixes disagreement from page fault handler

13

space on demand

Used by OS

Program Memory

Stack

Heap / other dynamic
Writable data

Code + Constants

used stack space (12 KB)

wasted space? (huge??)

OS would like to allocate space only if needed

14

space on demand

Used by OS

Program Memory

Stack

Heap / other dynamic
Writable data

Code + Constants

used stack space (12 KB)

wasted space? (huge??)

OS would like to allocate space only if needed

14

space on demand

Used by OS

Program Memory

Stack

Heap / other dynamic
Writable data

Code + Constants

used stack space (12 KB)

wasted space? (huge??)

OS would like to allocate space only if needed

14

allocating space on demand

...
// requires more stack space
A: pushq %rbx

B: movq 8(%rcx), %rbx
C: addq %rbx, %rax
...

%rsp = 0x7FFFC000

VPN valid? physical
page

… … …
0x7FFFB 0 ---
0x7FFFC 1 0x200DF
0x7FFFD 1 0x12340
0x7FFFE 1 0x12347
0x7FFFF 1 0x12345… … …

pushq triggers exception
hardware says “accessing address 0x7FFFBFF8”
OS looks up what’s should be there — “stack”

page fault!

in exception handler, OS allocates more stack space
OS updates the page table
then returns to retry the instruction

restarted

15

allocating space on demand

...
// requires more stack space
A: pushq %rbx

B: movq 8(%rcx), %rbx
C: addq %rbx, %rax
...

%rsp = 0x7FFFC000

VPN valid? physical
page

… … …
0x7FFFB 0 ---
0x7FFFC 1 0x200DF
0x7FFFD 1 0x12340
0x7FFFE 1 0x12347
0x7FFFF 1 0x12345… … …

pushq triggers exception
hardware says “accessing address 0x7FFFBFF8”
OS looks up what’s should be there — “stack”

page fault!

in exception handler, OS allocates more stack space
OS updates the page table
then returns to retry the instruction

restarted

15

allocating space on demand

...
// requires more stack space
A: pushq %rbx

B: movq 8(%rcx), %rbx
C: addq %rbx, %rax
...

%rsp = 0x7FFFC000

VPN valid? physical
page

… … …
0x7FFFB 1 0x200D8
0x7FFFC 1 0x200DF
0x7FFFD 1 0x12340
0x7FFFE 1 0x12347
0x7FFFF 1 0x12345… … …

pushq triggers exception
hardware says “accessing address 0x7FFFBFF8”
OS looks up what’s should be there — “stack”

page fault!

in exception handler, OS allocates more stack space
OS updates the page table
then returns to retry the instruction

restarted

15

space on demand really
common for OSes to allocate a lot space on demand

sometimes new heap allocations
sometimes global variables that are initially zero

benefit: malloc/new and starting processes is faster

also, similar strategy used to load programs on demand
(more on this later)

future assigment: add allocate heap on demand in xv6

16

exercise
void foo() {

char array[1024 * 128];
for (int i = 0; i < 1024 * 128; i += 1024 * 16) {

array[i] = 100;
}

}
4096-byte pages, stack allocated on demand, compiler optimizations don’t omit the
stores to or allocation of array, the compiler doesn’t initialize array, and the
stack pointer is initially a multiple of 4096.
How much physical memory is allocated for array?
A. 16 bytes D. 4096 bytes (4 · 1024) G. 131072 bytes (128 · 1024)
B. 64 bytes E. 16384 bytes (16 · 1024) H. depends on cache block size
C. 128 bytes F. 32768 bytes (32 · 1024) I. something else?

17

fast copies
recall : fork()

creates a copy of an entire program!

(usually, the copy then calls execve — replaces itself with another
program)

how isn’t this really slow?

18

do we really need a complete copy?

Used by OS
bash

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

new copy of bash

Stack

Heap / other dynamic
Writable data

Code + Constants

shared as read-only
can’t be shared?

19

do we really need a complete copy?

Used by OS
bash

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

new copy of bash

Stack

Heap / other dynamic
Writable data

Code + Constants
shared as read-only

can’t be shared?

19

do we really need a complete copy?

Used by OS
bash

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

new copy of bash

Stack

Heap / other dynamic
Writable data

Code + Constants

shared as read-only

can’t be shared?

19

trick for extra sharing
sharing writeable data is fine — until either process modifies the
copy

can we detect modifications?

trick: tell CPU (via page table) shared part is read-only

processor will trigger a fault when it’s written

20

copy-on-write and page tables
VPN valid? write?physical

page
… … … …
0x00601 1 1 0x12345
0x00602 1 1 0x12347
0x00603 1 1 0x12340
0x00604 1 1 0x200DF
0x00605 1 1 0x200AF
… … … …

VPN valid? write?physical
page

… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

copy operation actually duplicates page table
both processes share all physical pages
but marks pages in both copies as read-only

when either process tries to write read-only page
triggers a fault — OS actually copies the page
after allocating a copy, OS reruns the write instruction

21

copy-on-write and page tables
VPN valid? write?physical

page
… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

VPN valid? write?physical
page

… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

copy operation actually duplicates page table
both processes share all physical pages
but marks pages in both copies as read-only

when either process tries to write read-only page
triggers a fault — OS actually copies the page
after allocating a copy, OS reruns the write instruction

21

copy-on-write and page tables
VPN valid? write?physical

page
… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

VPN valid? write?physical
page

… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

copy operation actually duplicates page table
both processes share all physical pages
but marks pages in both copies as read-only

when either process tries to write read-only page
triggers a fault — OS actually copies the page

after allocating a copy, OS reruns the write instruction

21

copy-on-write and page tables
VPN valid? write?physical

page
… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

VPN valid? write?physical
page

… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 1 0x300FD
… … … …

copy operation actually duplicates page table
both processes share all physical pages
but marks pages in both copies as read-only

when either process tries to write read-only page
triggers a fault — OS actually copies the page

after allocating a copy, OS reruns the write instruction

21

exercise
Process with 4KB pages has this memory layout:
addresses use
0x0000-0x0FFF inaccessible
0x1000-0x2FFF code (read-only)
0x3000-0x3FFF global variables (read/write)
0x4000-0x5FFF heap (read/write)
0x6000-0xEFFF inaccessible
0xF000-0xFFFF stack (read/write)

Process calls fork(), then child overwrites a 128-byte heap array and
modifies an 8-byte variable on the stack.

After this, on a system with copy-on-write, how many physical pages
must be allocated so both child+parent processes can read any
accessible memory without a page fault?

22

xv6: adding space on demand
struct proc {
uint sz; // Size of process memory (bytes)
...

};

xv6 tracks “end of heap” (now just for sbrk())

adding allocate on demand logic for the heap:

on sbrk(): don’t change page table right away

on page fault
case 1: if address ≥ sz: out of bounds: kill process
case 2: otherwise, allocate page containing address, return from trap

23

versus more complicated OSes
typical desktop/server:
range of valid addresses is not just 0 to maximum

need some more complicated data structure to represent

24

copy-on write cases
trying to write forbidden page (e.g. kernel memory)

kill program instead of making it writable

fault from trying to write read-only page:

case 1: multiple process’s page table entries refer to it
copy the page
replace read-only page table entry to point to copy

case 2: only one page table entry refers to it
make it writeable

25

mmap
Linux/Unix has a function to “map” a file to memory
int file = open("somefile.dat", O_RDWR);

// data is region of memory that represents file
char *data = mmap(..., file, 0);

// read byte 6 (zero-indexed) from somefile.dat
char seventh_char = data[6];

// modifies byte 100 of somefile.dat
data[100] = 'x';

// can continue to use 'data' like an array

26

backup slides

27

x86-32 page table entries

page table base register (CR3)

first-level page table entries

second-level page table entries

28

x86-32 page table entries

page table base register (CR3)

first-level page table entries

second-level page table entries

28

x86-32 page table entries

page table base register (CR3)

first-level page table entries

second-level page table entries

28

x86-32 page table entries

page table base register (CR3)

first-level page table entries

second-level page table entries

28

x86-32 page table entry v addresses

flags

physical page number zeros
phys.
page
byte
addr

trick: page table entry with lower bits zeroed =
physical byte address of corresponding page

page # is address of page (212 byte units)

makes constructing page table entries simpler:
physicalAddress | flagsBits

29

x86-32 pagetables: page table entries
xv6 header: mmu.h
// Page table/directory entry flags.
#define PTE_P 0x001 // Present
#define PTE_W 0x002 // Writeable
#define PTE_U 0x004 // User
#define PTE_PWT 0x008 // Write-Through
#define PTE_PCD 0x010 // Cache-Disable
#define PTE_A 0x020 // Accessed
#define PTE_D 0x040 // Dirty
#define PTE_PS 0x080 // Page Size
#define PTE_MBZ 0x180 // Bits must be zero

// Address in page table or page directory entry
#define PTE_ADDR(pte) ((uint)(pte) & ~0xFFF)
#define PTE_FLAGS(pte) ((uint)(pte) & 0xFFF)

30

xv6: extracting top-level page table entry
void output_top_level_pte_for(struct proc *p, void *address) {
pde_t *top_level_page_table = p−>pgdir;
// PDX = Page Directory indeX
// next level uses PTX(....)
int index_into_pgdir = PDX(address);
pde_t top_level_pte = top_level_page_table[index_into_pgdir];
cprintf("top level PT for %x in PID %d\n", address, p−>pid);
if (top_level_pte & PTE_P) {
cprintf("is present (valid)\n");

}
if (top_level_pte & PTE_W) {
cprintf("is writable (may be overriden in next level)\n");

}
if (top_level_pte & PTE_U) {
cprintf("is user-accessible (may be overriden in next level)\n");

}
cprintf("has base address %x\n", PTE_ADDR(top_level_pte));

}

31

xv6: extracting top-level page table entry
void output_top_level_pte_for(struct proc *p, void *address) {
pde_t *top_level_page_table = p−>pgdir;
// PDX = Page Directory indeX
// next level uses PTX(....)
int index_into_pgdir = PDX(address);
pde_t top_level_pte = top_level_page_table[index_into_pgdir];
cprintf("top level PT for %x in PID %d\n", address, p−>pid);
if (top_level_pte & PTE_P) {
cprintf("is present (valid)\n");

}
if (top_level_pte & PTE_W) {
cprintf("is writable (may be overriden in next level)\n");

}
if (top_level_pte & PTE_U) {
cprintf("is user-accessible (may be overriden in next level)\n");

}
cprintf("has base address %x\n", PTE_ADDR(top_level_pte));

}

31

xv6: extracting top-level page table entry
void output_top_level_pte_for(struct proc *p, void *address) {
pde_t *top_level_page_table = p−>pgdir;
// PDX = Page Directory indeX
// next level uses PTX(....)
int index_into_pgdir = PDX(address);
pde_t top_level_pte = top_level_page_table[index_into_pgdir];
cprintf("top level PT for %x in PID %d\n", address, p−>pid);
if (top_level_pte & PTE_P) {
cprintf("is present (valid)\n");

}
if (top_level_pte & PTE_W) {
cprintf("is writable (may be overriden in next level)\n");

}
if (top_level_pte & PTE_U) {
cprintf("is user-accessible (may be overriden in next level)\n");

}
cprintf("has base address %x\n", PTE_ADDR(top_level_pte));

}

31

xv6: extracting top-level page table entry
void output_top_level_pte_for(struct proc *p, void *address) {
pde_t *top_level_page_table = p−>pgdir;
// PDX = Page Directory indeX
// next level uses PTX(....)
int index_into_pgdir = PDX(address);
pde_t top_level_pte = top_level_page_table[index_into_pgdir];
cprintf("top level PT for %x in PID %d\n", address, p−>pid);
if (top_level_pte & PTE_P) {
cprintf("is present (valid)\n");

}
if (top_level_pte & PTE_W) {
cprintf("is writable (may be overriden in next level)\n");

}
if (top_level_pte & PTE_U) {
cprintf("is user-accessible (may be overriden in next level)\n");

}
cprintf("has base address %x\n", PTE_ADDR(top_level_pte));

}

31

xv6: extracting top-level page table entry
void output_top_level_pte_for(struct proc *p, void *address) {
pde_t *top_level_page_table = p−>pgdir;
// PDX = Page Directory indeX
// next level uses PTX(....)
int index_into_pgdir = PDX(address);
pde_t top_level_pte = top_level_page_table[index_into_pgdir];
cprintf("top level PT for %x in PID %d\n", address, p−>pid);
if (top_level_pte & PTE_P) {
cprintf("is present (valid)\n");

}
if (top_level_pte & PTE_W) {
cprintf("is writable (may be overriden in next level)\n");

}
if (top_level_pte & PTE_U) {
cprintf("is user-accessible (may be overriden in next level)\n");

}
cprintf("has base address %x\n", PTE_ADDR(top_level_pte));

}

31

xv6: manually setting page table entry
pde_t *some_page_table; // if top-level table
pte_t *some_page_table; // if next-level table
...
...
some_page_table[index] =

PTE_P | PTE_W | PTE_U | base_physical_address;
/* P = present; W = writable; U = user-mode accessible */

32

skipping the guard page
void example() {

int array[2000];
array[0] = 1000;
...

}

example:
subl $8024, %esp // allocate 8024 bytes on stack
movl $1000, 12(%esp) // write near bottom of allocation

// goes beyond guard page
// since not all of array init'd

....

33

create new page table (kernel mappings)
pde_t*
setupkvm(void)
{
pde_t *pgdir;
struct kmap *k;

if((pgdir = (pde_t*)kalloc()) == 0)
return 0;

memset(pgdir, 0, PGSIZE);
if (P2V(PHYSTOP) > (void*)DEVSPACE)
panic("PHYSTOP too high");

for(k = kmap; k < &kmap[NELEM(kmap)]; k++)
if(mappages(pgdir, k−>virt, k−>phys_end − k−>phys_start,

(uint)k−>phys_start, k−>perm) < 0) {
freevm(pgdir);
return 0;

}
return pgdir;

}

allocate first-level page table
(“page directory”)

initialize to 0 — every page invaliditerate through list of kernel-space mappings
for everything above address 0x8000 0000
(hard-coded table including flag bits, etc.
because some addresses need different flags
and not all physical addresses are usable)

on failure (no space for new second-level page tales)
free everything

34

create new page table (kernel mappings)
pde_t*
setupkvm(void)
{
pde_t *pgdir;
struct kmap *k;

if((pgdir = (pde_t*)kalloc()) == 0)
return 0;

memset(pgdir, 0, PGSIZE);
if (P2V(PHYSTOP) > (void*)DEVSPACE)
panic("PHYSTOP too high");

for(k = kmap; k < &kmap[NELEM(kmap)]; k++)
if(mappages(pgdir, k−>virt, k−>phys_end − k−>phys_start,

(uint)k−>phys_start, k−>perm) < 0) {
freevm(pgdir);
return 0;

}
return pgdir;

}

allocate first-level page table
(“page directory”)

initialize to 0 — every page invaliditerate through list of kernel-space mappings
for everything above address 0x8000 0000
(hard-coded table including flag bits, etc.
because some addresses need different flags
and not all physical addresses are usable)

on failure (no space for new second-level page tales)
free everything

34

create new page table (kernel mappings)
pde_t*
setupkvm(void)
{
pde_t *pgdir;
struct kmap *k;

if((pgdir = (pde_t*)kalloc()) == 0)
return 0;

memset(pgdir, 0, PGSIZE);
if (P2V(PHYSTOP) > (void*)DEVSPACE)
panic("PHYSTOP too high");

for(k = kmap; k < &kmap[NELEM(kmap)]; k++)
if(mappages(pgdir, k−>virt, k−>phys_end − k−>phys_start,

(uint)k−>phys_start, k−>perm) < 0) {
freevm(pgdir);
return 0;

}
return pgdir;

}

allocate first-level page table
(“page directory”)

initialize to 0 — every page invalid

iterate through list of kernel-space mappings
for everything above address 0x8000 0000
(hard-coded table including flag bits, etc.
because some addresses need different flags
and not all physical addresses are usable)

on failure (no space for new second-level page tales)
free everything

34

create new page table (kernel mappings)
pde_t*
setupkvm(void)
{
pde_t *pgdir;
struct kmap *k;

if((pgdir = (pde_t*)kalloc()) == 0)
return 0;

memset(pgdir, 0, PGSIZE);
if (P2V(PHYSTOP) > (void*)DEVSPACE)
panic("PHYSTOP too high");

for(k = kmap; k < &kmap[NELEM(kmap)]; k++)
if(mappages(pgdir, k−>virt, k−>phys_end − k−>phys_start,

(uint)k−>phys_start, k−>perm) < 0) {
freevm(pgdir);
return 0;

}
return pgdir;

}

allocate first-level page table
(“page directory”)

initialize to 0 — every page invalid

iterate through list of kernel-space mappings
for everything above address 0x8000 0000
(hard-coded table including flag bits, etc.
because some addresses need different flags
and not all physical addresses are usable)

on failure (no space for new second-level page tales)
free everything

34

create new page table (kernel mappings)
pde_t*
setupkvm(void)
{
pde_t *pgdir;
struct kmap *k;

if((pgdir = (pde_t*)kalloc()) == 0)
return 0;

memset(pgdir, 0, PGSIZE);
if (P2V(PHYSTOP) > (void*)DEVSPACE)
panic("PHYSTOP too high");

for(k = kmap; k < &kmap[NELEM(kmap)]; k++)
if(mappages(pgdir, k−>virt, k−>phys_end − k−>phys_start,

(uint)k−>phys_start, k−>perm) < 0) {
freevm(pgdir);
return 0;

}
return pgdir;

}

allocate first-level page table
(“page directory”)

initialize to 0 — every page invaliditerate through list of kernel-space mappings
for everything above address 0x8000 0000
(hard-coded table including flag bits, etc.
because some addresses need different flags
and not all physical addresses are usable)

on failure (no space for new second-level page tales)
free everything

34

reading executables (headers)
xv6 executables contain list of sections to load, represented by:
struct proghdr {
uint type; /* <-- debugging-only or not? */
uint off; /* <-- location in file */
uint vaddr; /* <-- location in memory */
uint paddr; /* <-- confusing ignored field */
uint filesz; /* <-- amount to load */
uint memsz; /* <-- amount to allocate */
uint flags; /* <-- readable/writeable (ignored) */
uint align;

};

35

reading executables (headers)
xv6 executables contain list of sections to load, represented by:
struct proghdr {
uint type; /* <-- debugging-only or not? */
uint off; /* <-- location in file */
uint vaddr; /* <-- location in memory */
uint paddr; /* <-- confusing ignored field */
uint filesz; /* <-- amount to load */
uint memsz; /* <-- amount to allocate */
uint flags; /* <-- readable/writeable (ignored) */
uint align;

};

...
if((sz = allocuvm(pgdir, sz, ph.vaddr + ph.memsz)) == 0)
goto bad;

...
if(loaduvm(pgdir, (char*)ph.vaddr, ip, ph.off, ph.filesz) < 0)
goto bad;

35

reading executables (headers)
xv6 executables contain list of sections to load, represented by:
struct proghdr {
uint type; /* <-- debugging-only or not? */
uint off; /* <-- location in file */
uint vaddr; /* <-- location in memory */
uint paddr; /* <-- confusing ignored field */
uint filesz; /* <-- amount to load */
uint memsz; /* <-- amount to allocate */
uint flags; /* <-- readable/writeable (ignored) */
uint align;

};

...
if((sz = allocuvm(pgdir, sz, ph.vaddr + ph.memsz)) == 0)
goto bad;

...
if(loaduvm(pgdir, (char*)ph.vaddr, ip, ph.off, ph.filesz) < 0)
goto bad;

sz — top of heap of new program
name of the field in struct proc

35

loading user pages from executable
loaduvm(pde_t *pgdir, char *addr, struct inode *ip, uint offset, uint sz)
{
...
for(i = 0; i < sz; i += PGSIZE){
if((pte = walkpgdir(pgdir, addr+i, 0)) == 0)

panic("loaduvm: address should exist");
pa = PTE_ADDR(*pte);
if(sz − i < PGSIZE)

n = sz − i;
else

n = PGSIZE;
if(readi(ip, P2V(pa), offset+i, n) != n)

return −1;
}
return 0;

}

get page table entry being loaded
already allocated earlier
look up address to load into

get physical address from page table entry
convert back to (kernel) virtual address
for read from disk

exercise: why don’t we just use addr directly?
(instead of turning it into a physical address,
then into a virtual address again)

copy from file (represented by struct inode) into memory
P2V(pa) — mapping of physical addresss in kernel memory

36

loading user pages from executable
loaduvm(pde_t *pgdir, char *addr, struct inode *ip, uint offset, uint sz)
{
...
for(i = 0; i < sz; i += PGSIZE){
if((pte = walkpgdir(pgdir, addr+i, 0)) == 0)

panic("loaduvm: address should exist");
pa = PTE_ADDR(*pte);
if(sz − i < PGSIZE)

n = sz − i;
else

n = PGSIZE;
if(readi(ip, P2V(pa), offset+i, n) != n)

return −1;
}
return 0;

}

get page table entry being loaded
already allocated earlier
look up address to load into

get physical address from page table entry
convert back to (kernel) virtual address
for read from disk

exercise: why don’t we just use addr directly?
(instead of turning it into a physical address,
then into a virtual address again)

copy from file (represented by struct inode) into memory
P2V(pa) — mapping of physical addresss in kernel memory

36

loading user pages from executable
loaduvm(pde_t *pgdir, char *addr, struct inode *ip, uint offset, uint sz)
{
...
for(i = 0; i < sz; i += PGSIZE){
if((pte = walkpgdir(pgdir, addr+i, 0)) == 0)

panic("loaduvm: address should exist");
pa = PTE_ADDR(*pte);
if(sz − i < PGSIZE)

n = sz − i;
else

n = PGSIZE;
if(readi(ip, P2V(pa), offset+i, n) != n)

return −1;
}
return 0;

}

get page table entry being loaded
already allocated earlier
look up address to load into

get physical address from page table entry
convert back to (kernel) virtual address
for read from disk

exercise: why don’t we just use addr directly?
(instead of turning it into a physical address,
then into a virtual address again)

copy from file (represented by struct inode) into memory
P2V(pa) — mapping of physical addresss in kernel memory

36

loading user pages from executable
loaduvm(pde_t *pgdir, char *addr, struct inode *ip, uint offset, uint sz)
{
...
for(i = 0; i < sz; i += PGSIZE){
if((pte = walkpgdir(pgdir, addr+i, 0)) == 0)

panic("loaduvm: address should exist");
pa = PTE_ADDR(*pte);
if(sz − i < PGSIZE)

n = sz − i;
else

n = PGSIZE;
if(readi(ip, P2V(pa), offset+i, n) != n)

return −1;
}
return 0;

}

get page table entry being loaded
already allocated earlier
look up address to load into

get physical address from page table entry
convert back to (kernel) virtual address
for read from disk

exercise: why don’t we just use addr directly?
(instead of turning it into a physical address,
then into a virtual address again)

copy from file (represented by struct inode) into memory
P2V(pa) — mapping of physical addresss in kernel memory

36

loading user pages from executable
loaduvm(pde_t *pgdir, char *addr, struct inode *ip, uint offset, uint sz)
{
...
for(i = 0; i < sz; i += PGSIZE){
if((pte = walkpgdir(pgdir, addr+i, 0)) == 0)

panic("loaduvm: address should exist");
pa = PTE_ADDR(*pte);
if(sz − i < PGSIZE)

n = sz − i;
else

n = PGSIZE;
if(readi(ip, P2V(pa), offset+i, n) != n)

return −1;
}
return 0;

}

get page table entry being loaded
already allocated earlier
look up address to load into

get physical address from page table entry
convert back to (kernel) virtual address
for read from disk

exercise: why don’t we just use addr directly?
(instead of turning it into a physical address,
then into a virtual address again)

copy from file (represented by struct inode) into memory
P2V(pa) — mapping of physical addresss in kernel memory

36

Linux: forward mapping
process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

used to fill
(for mmap)

read()/write()

37

Linux: forward mapping
process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

used to fill
(for mmap)

read()/write()

38

Linux: forward mapping
process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

used to fill
(for mmap)

read()/write()

39

Linux: forward mapping
process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

used to fill
(for mmap)

read()/write()

40

Linux: forward mapping
process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

used to fill
(for mmap)

read()/write()

41

sketch: implementing mmap
access mapped file for first time, read from disk

(like swapping when memory was swapped out)

write “mapped” memory, write to disk eventually
need to detect whether writes happened
usually hardware support: dirty bit

extra detail: other processes should see changes
all accesses to file use same physical memory
how? OS tracks copies of files in memory

42

xv6: setting process page tables (exec())
exec step 1: create new page table with kernel mappings

done in setupkvm(), which calls mappages()

exec step 2a: allocate memory for executable pages
allocuvm() in loop
new physical pages chosen by kalloc()

exec step 2b: load from executable file
copying from executable file implemented by loaduvm()

exec step 3: allocate pages for heap, stack (allocuvm() calls)

43

xv6: setting process page tables (exec())
exec step 1: create new page table with kernel mappings

done in setupkvm(), which calls mappages()

exec step 2a: allocate memory for executable pages
allocuvm() in loop
new physical pages chosen by kalloc()

exec step 2b: load from executable file
copying from executable file implemented by loaduvm()

exec step 3: allocate pages for heap, stack (allocuvm() calls)

44

minor and major faults
minor page fault

page is already in memory (“page cache”)
just fill in page table entry

major page fault
page not already in memory (“page cache”)
need to allocate space
possibly need to read data from disk/etc.

45

Linux: reporting minor/major faults
$ /usr/bin/time --verbose some-command

Command being timed: "some-command"
User time (seconds): 18.15
System time (seconds): 0.35
Percent of CPU this job got: 94%
Elapsed (wall clock) time (h:mm:ss or m:ss): 0:19.57

...
Maximum resident set size (kbytes): 749820
Average resident set size (kbytes): 0
Major (requiring I/O) page faults: 0
Minor (reclaiming a frame) page faults: 230166
Voluntary context switches: 1423
Involuntary context switches: 53
Swaps: 0

...
Exit status: 0

46

swapping
historical major use of virtual memory is supporting “swapping”

using disk (or SSD, …) as the next level of the memory hierarchy

process is allocated space on disk/SSD

memory is a cache for disk/SSD
only need keep ‘currently active’ pages in physical memory

swapping ≈ mmap with “default” files to use

47

swapping
historical major use of virtual memory is supporting “swapping”

using disk (or SSD, …) as the next level of the memory hierarchy

process is allocated space on disk/SSD

memory is a cache for disk/SSD
only need keep ‘currently active’ pages in physical memory

swapping ≈ mmap with “default” files to use

47

HDD/SDDs are slow
HDD reads and writes: milliseconds to tens of milliseconds

minimum size: 512 bytes
writing tens of kilobytes basically as fast as writing 512 bytes

SSD writes and writes: hundreds of microseconds
designed for writes/reads of kilobytes (not much smaller)

page fault handler is going switch to another program

48

HDD/SDDs are slow
HDD reads and writes: milliseconds to tens of milliseconds

minimum size: 512 bytes
writing tens of kilobytes basically as fast as writing 512 bytes

SSD writes and writes: hundreds of microseconds
designed for writes/reads of kilobytes (not much smaller)

page fault handler is going switch to another program

48

HDD/SDDs are slow
HDD reads and writes: milliseconds to tens of milliseconds

minimum size: 512 bytes
writing tens of kilobytes basically as fast as writing 512 bytes

SSD writes and writes: hundreds of microseconds
designed for writes/reads of kilobytes (not much smaller)

page fault handler is going switch to another program

48

virtual address/file offset → location on disk
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

page table

OS datastructureOS datastructure

OS datastructure

based on filesystem — later topic

(Linux)
part of file: track mmap ‘regions’
swapped out non-file: trick: unused PTEs

49

virtual address/file offset → location on disk
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

page table

OS datastructureOS datastructure

OS datastructure

based on filesystem — later topic

(Linux)
part of file: track mmap ‘regions’
swapped out non-file: trick: unused PTEs

49

virtual address/file offset → location on disk
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

page table

OS datastructureOS datastructure

OS datastructure

based on filesystem — later topic

(Linux)
part of file: track mmap ‘regions’
swapped out non-file: trick: unused PTEs

49

virtual address/file offset → location on disk
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

page table

OS datastructureOS datastructure

OS datastructure

based on filesystem — later topic

(Linux)
part of file: track mmap ‘regions’
swapped out non-file: trick: unused PTEs

50

Linux: tracking swapped out pages
need to lookup location on disk

potentially one location for every virtual page

trick: store location in “ignored” part of page table entry
instead of physical page #, permission bits, etc., store offset on disk

51

Linux: reverse mapping (file pages)
process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

per-physical page info
(struct page) page number

given page number
find references to that page
(e.g. to remove/change them)

52

tracking physical pages: finding free pages
Linux has list of “least recently used” pages:
struct page {

...
struct list_head lru; /* list_head ~ next/prev pointer */
...

};

how we’re going to find a page to allocate
(and evict from something else)

later — what this list actually looks like (how many lists, …)

53

predicting the future?
can’t really…

look for common patterns

54

working set intuition
say we’re executing a loop

what memory does this require?

code for the loop

code for functions called in the loop
and functions they call

data structures used by the loop and functions called in it, etc.

only uses a subset of the program’s memory

55

the working set model
one common pattern: working sets

at any time, program is using a subset of its memory

…called its working set

rest of memory is inactive

…until program switches to different working set

56

working sets and running many programs
give each program its working set

…and, to run as much as possible, not much more
inactive — won’t be used

replacement policy: identify working sets ≈ recently used data

replace anything that’s not in in it

57

working sets and running many programs
give each program its working set

…and, to run as much as possible, not much more
inactive — won’t be used

replacement policy: identify working sets ≈ recently used data

replace anything that’s not in in it

57

cache size versus miss rate

Bienia et al, “The PARSEC Benchmark Suite: Characterization and Architectural Implications” 58

estimating working sets
working set ≈ what’s been used recently

except when program switching working sets

so, what a program recently used ≈ working set

can use this idea to estimate working set (from list of memory
accesses)

59

estimating working sets
working set ≈ what’s been used recently

except when program switching working sets

so, what a program recently used ≈ working set

can use this idea to estimate working set (from list of memory
accesses)

59

CLOCK-Pro: special casing for one-use pages
by default, Linux tries to handle scanning of files

one read of file data — e.g. play a video, load file into memory

basic idea: delay considering pages active until second access
second access = second scan of accessed bits/etc.

single scans of file won’t “pollute” cache

without this change: reading large files slows down other programs
recently read part of large file steals space from active programs

60

readahead heuristics
exercise: devise an algorithm to detect to do readahead.

how to detect the reading pattern?

need to record subset of accesses to see sequential pattern
not enough to look at misses!
want to check when readahead pages are used — keep up with program

when to start reads?

takes some time to read in data — well before needed

how much to readahead?

if too much: evict other stuff programs need
if too little: won’t keep up with program
if too little: won’t make efficient use of HDD/SSD/etc.

61

readahead heuristics
exercise: devise an algorithm to detect to do readahead.

how to detect the reading pattern?
need to record subset of accesses to see sequential pattern
not enough to look at misses!
want to check when readahead pages are used — keep up with program

when to start reads?

takes some time to read in data — well before needed

how much to readahead?

if too much: evict other stuff programs need
if too little: won’t keep up with program
if too little: won’t make efficient use of HDD/SSD/etc.

61

readahead heuristics
exercise: devise an algorithm to detect to do readahead.

how to detect the reading pattern?
need to record subset of accesses to see sequential pattern
not enough to look at misses!
want to check when readahead pages are used — keep up with program

when to start reads?
takes some time to read in data — well before needed

how much to readahead?

if too much: evict other stuff programs need
if too little: won’t keep up with program
if too little: won’t make efficient use of HDD/SSD/etc.

61

readahead heuristics
exercise: devise an algorithm to detect to do readahead.

how to detect the reading pattern?
need to record subset of accesses to see sequential pattern
not enough to look at misses!
want to check when readahead pages are used — keep up with program

when to start reads?
takes some time to read in data — well before needed

how much to readahead?
if too much: evict other stuff programs need
if too little: won’t keep up with program
if too little: won’t make efficient use of HDD/SSD/etc.

61

recording accesses
goal: “check is this physical page still being used?”

software support: temporarily mark page table invalid
use resulting page fault to detect “yes”

hardware support: accessed bits in page tables
hardware sets to 1 when accessed

62

temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 0 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 (never) …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next accessprocessor does lookup

oops! page fault
update page info +
mark present

63

temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 0 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 (never) …
… … …

OS page info
processor does lookup

oops! page fault

update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next accessprocessor does lookup

oops! page fault
update page info +
mark present

63

temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 1 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time X …
… … …

OS page info

processor does lookup

oops! page fault

update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next accessprocessor does lookup

oops! page fault
update page info +
mark present

63

temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 1 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time X …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next accessprocessor does lookup

oops! page fault
update page info +
mark present

63

temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 1 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time X …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next accessprocessor does lookup

oops! page fault
update page info +
mark present

63

temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 1 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time X …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next access

processor does lookup
oops! page fault

update page info +
mark present

63

temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 0 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time X …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next access

processor does lookup
oops! page fault

update page info +
mark present

63

temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 0 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time X …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next access

processor does lookup
oops! page fault

update page info +
mark present

63

temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 1 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time Y …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next accessprocessor does lookup

oops! page fault

update page info +
mark present

63

accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 0 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1
processor does lookup
keeps access bit set to 1 OS reads + records +

clears access bit

processor does lookup
sets accessed bit to 1 (again)

64

accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 0 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1

processor does lookup
keeps access bit set to 1 OS reads + records +

clears access bit

processor does lookup
sets accessed bit to 1 (again)

64

accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 1 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1

processor does lookup
keeps access bit set to 1 OS reads + records +

clears access bit

processor does lookup
sets accessed bit to 1 (again)

64

accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 1 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1

processor does lookup
keeps access bit set to 1

OS reads + records +
clears access bit

processor does lookup
sets accessed bit to 1 (again)

64

accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 1 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1

processor does lookup
keeps access bit set to 1

OS reads + records +
clears access bit

processor does lookup
sets accessed bit to 1 (again)

64

accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 1 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1
processor does lookup
keeps access bit set to 1

OS reads + records +
clears access bit

processor does lookup
sets accessed bit to 1 (again)

64

accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 0 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1
processor does lookup
keeps access bit set to 1

OS reads + records +
clears access bit

processor does lookup
sets accessed bit to 1 (again)

64

accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 0 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1
processor does lookup
keeps access bit set to 1 OS reads + records +

clears access bit

processor does lookup
sets accessed bit to 1 (again)

64

accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 1 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1
processor does lookup
keeps access bit set to 1 OS reads + records +

clears access bit

processor does lookup
sets accessed bit to 1 (again)

64

accessed bits: multiple processes

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 0 0 … 0x4442
… … … … … …

page table for program 1

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00483 1 1 0 … 0x4442
… … … … … …

page table for program 2

OS needs to clear+check
all accessed bits
for the physical page

65

dirty bits
“was this part of the mmap’d file changed?”

“is the old swapped copy still up to date?”

software support: temporarily mark read-only

hardware support: dirty bit set by hardware
same idea as accessed bit, but only changed on writes

66

x86-32 accessed and dirty bit

A: acccessed — processor sets to 1 when PTE used
used = for read or write or execute
likely implementation: part of loading PTE into TLB

D: dirty — processor sets to 1 when PTE is used for write

67

lazy replacement?
so far: don’t do anything special until memory is full

only then is there a reason to writeback pages or evict pages

but real OSes are more proactive

68

lazy replacement?
so far: don’t do anything special until memory is full

only then is there a reason to writeback pages or evict pages

but real OSes are more proactive

68

non-lazy writeback
what happens when a computer loses power

how much data can you lose?

if we never run out of memory…all of it?
no changed data written back

solution: track or scan for dirty pages and writeback

example goals:
lose no more than 90 seconds of data
force writeback at file close
…

69

non-lazy eviction
so far — allocating memory involves evicting pages

hopefully pages that haven’t been used a long time anyways

alternative: evict earlier “in the background”
“free”: probably have some idle processor time anyways

allocation = remove already evicted page from linked list
(instead of changing page tables, file cache info, etc.)

70

non-lazy eviction
so far — allocating memory involves evicting pages

hopefully pages that haven’t been used a long time anyways

alternative: evict earlier “in the background”
“free”: probably have some idle processor time anyways

allocation = remove already evicted page from linked list
(instead of changing page tables, file cache info, etc.)

70

xv6 page table-related functions
kalloc/kfree — allocate physical page, return kernel address
walkpgdir — get pointer to second-level page table entry

…to check it/make it valid/invalid/point somewhere/etc.

mappages — set range of page table entries
implementation: loop using walkpgdir

allockvm — create new set of page tables, set kernel (high) part
entries for 0x8000 0000 and up set
allocate new first-level table plus several second-level tables

allocuvm — allocate new user memory
setup user-accessible memory
allocate new second-level tables as needed

deallocuvm — deallocate user memory
71

	last time
	aside: mappage ranges
	xv6 heap allocation

	missing pieces: updating TLBs / base register
	page faults

	page table tricks
	what they are
	example: allocate on demand
	space on demand for heap/globals/...
	exercise (space on demand)

	copy-on-write
	exercise (copy on write)

	space on demand: adding to xv6
	copy-on-write: adding to xv6

	mmap
	mmap interface

	backup slides
	x86-32 page table entries
	skipping the guard page
	setupkvm
	program headers (detail)
	loaduvm
	Linux data structures
	extra on mmap
	setting up process page tables
	major/minor faults

	generalizing mmap: swapping
	trick for swapped pages
	reverse mapping detail
	Linux free list
	the working set model
	read once patterns
	readahead heuristics, generally
	accessed/dirty bit
	faster allocation: dirty writeback and free lists
	preview: xv6 PT functions

