
virtual memory 4

1

last time
mmap: files appear as part of memory
shared mmap: physical pages assigned = pages read()/write() uses
private mmap: copy-on-write done for pages
processes memory as bunch of mmap calls

page cache: memory = cache for data on disk
data on disk = all files + program data
(program data (e.g. heap) assigned place on disk when needed)

page cache data structures
processor handles cache hits for virtual addresses via page tables
OS handles cache hits for location in file
need reverse lookup for page replacement
need to choose not-going-to-be-used pages for replacement 2

virtual address/file offset → location on disk
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

page table

OS datastructureOS datastructure

OS datastructure

based on filesystem — later topic

(Linux)
if part of file: track mmap ‘regions’ + use filesystem
if swapped out non-file: trick: unused bits of PTEs

3

virtual address/file offset → location on disk
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

page table

OS datastructureOS datastructure

OS datastructure

based on filesystem — later topic

(Linux)
if part of file: track mmap ‘regions’ + use filesystem
if swapped out non-file: trick: unused bits of PTEs

3

virtual address/file offset → location on disk
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

page table

OS datastructureOS datastructure

OS datastructure

based on filesystem — later topic

(Linux)
if part of file: track mmap ‘regions’ + use filesystem
if swapped out non-file: trick: unused bits of PTEs

3

page replacement goals
hit rate: minimize number of misses

throughput: minimize overhead/maximize performance

fairness: every process/user gets its ‘share’ of memory

will start with optimizing hit rate

4

max hit rate ≈ max throughput
optimizing hit rate almost optimizes throughput, but…

cache miss costs are variable
creating zero page versus reading data from slow disk?
write back dirty page before reading a new one or not?
reading multiple pages at a time from disk (faster per page read)?
…

5

max hit rate ≈ max throughput
optimizing hit rate almost optimizes throughput, but…

cache miss costs are variable
creating zero page versus reading data from slow disk?
write back dirty page before reading a new one or not?
reading multiple pages at a time from disk (faster per page read)?
…

5

being proactive?
can avoid misses by “reading ahead”

guess what’s needed — read in ahead of time
wrong guesses can have costs besides more cache misses

can save modified pages to disk in the background

we will get back to this later

for now — only access/evict on demand

6

optimizing for hit-rate
assuming:

we only bring in pages on demand (no reading in advance)
we only care about maximizing cache hits

best possible page replacement algorithm: Belady’s MIN

replace the page in memory accessed furthest in the future
(never accessed again = infinitely far in the future)

impossible to implement in practice, but…

7

optimizing for hit-rate
assuming:

we only bring in pages on demand (no reading in advance)
we only care about maximizing cache hits

best possible page replacement algorithm: Belady’s MIN

replace the page in memory accessed furthest in the future
(never accessed again = infinitely far in the future)

impossible to implement in practice, but…

7

Belady’s MIN

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A next accessed in 1 time unit
B next accessed in 3 time units
C next accessed in 4 time units
choose to replace C

A next accessed in ∞ time units
B next accessed in 1 time units
D next accessed in ∞ time units
choose to replace A or D (equally good)

8

Belady’s MIN

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A next accessed in 1 time unit
B next accessed in 3 time units
C next accessed in 4 time units
choose to replace C

A next accessed in ∞ time units
B next accessed in 1 time units
D next accessed in ∞ time units
choose to replace A or D (equally good)

8

Belady’s MIN

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A next accessed in 1 time unit
B next accessed in 3 time units
C next accessed in 4 time units
choose to replace C

A next accessed in ∞ time units
B next accessed in 1 time units
D next accessed in ∞ time units
choose to replace A or D (equally good)

8

Belady’s MIN

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A next accessed in 1 time unit
B next accessed in 3 time units
C next accessed in 4 time units
choose to replace C

A next accessed in ∞ time units
B next accessed in 1 time units
D next accessed in ∞ time units
choose to replace A or D (equally good)

8

Belady’s MIN

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A next accessed in 1 time unit
B next accessed in 3 time units
C next accessed in 4 time units
choose to replace C

A next accessed in ∞ time units
B next accessed in 1 time units
D next accessed in ∞ time units
choose to replace A or D (equally good)

8

Belady’s MIN exercise

A B C D B B A C A D C

1 A
2 B
3 C

phys.
page#

referenced (virtual) pages:
time

exercise: What does this access to D replace? (A, B, or C?)

9

practically optimizing for hit-rate
recall?: locality assumption

temporal locality: things accessed now will be accessed again soon

(for now: not concerned about spatial locality)

more possible policies: least recently used or least frequently used

10

practically optimizing for hit-rate
recall?: locality assumption

temporal locality: things accessed now will be accessed again soon

(for now: not concerned about spatial locality)

more possible policies: least recently used or least frequently used

10

least recently used (the good case)

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A last accessed 2 time units ago
B last accessed 1 time unit ago
C last accessed 3 time units ago
choose to replace C

A last accessed in 3 time units ago
B last accessed in 1 time unit ago
D last accessed in 2 time units ago
choose to replace A

11

least recently used (the good case)

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A last accessed 2 time units ago
B last accessed 1 time unit ago
C last accessed 3 time units ago
choose to replace C

A last accessed in 3 time units ago
B last accessed in 1 time unit ago
D last accessed in 2 time units ago
choose to replace A

11

least recently used (the good case)

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A last accessed 2 time units ago
B last accessed 1 time unit ago
C last accessed 3 time units ago
choose to replace C

A last accessed in 3 time units ago
B last accessed in 1 time unit ago
D last accessed in 2 time units ago
choose to replace A

11

least recently used (the good case)

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A last accessed 2 time units ago
B last accessed 1 time unit ago
C last accessed 3 time units ago
choose to replace C

A last accessed in 3 time units ago
B last accessed in 1 time unit ago
D last accessed in 2 time units ago
choose to replace A

11

least recently used (the good case)

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A last accessed 2 time units ago
B last accessed 1 time unit ago
C last accessed 3 time units ago
choose to replace C

A last accessed in 3 time units ago
B last accessed in 1 time unit ago
D last accessed in 2 time units ago
choose to replace A

11

least recently used (the worst case)

A B C D A B C D A B C

1 A D C B
2 B A D C
3 C B A

phys.
page#

time

1 A B
2 B C
3 C D

8 replacements with LRU
versus 3 replacements with MIN:

12

least recently used (the worst case)

A B C D A B C D A B C

1 A D C B
2 B A D C
3 C B A

phys.
page#

time

1 A B
2 B C
3 C D

8 replacements with LRU
versus 3 replacements with MIN:

12

least recently used (exercise) [intro]
A B A D C B D B C D A

1
2
3

13

least recently used (exercise)
A B A D C B D B C D A

1 A A A A
2 B B B
3 D

14

least recently used (exercise) (2)
A B A D C B D B C D A

1 A A A A A
2 B B B C
3 D D

16

least recently used (exercise) (3)
A B A D C B D B C D A

1 A A A A A B B B B B
2 B B B C C C C C C
3 D D D D D D D

18

least recently used (exercise) (4)
A B A D C B D B C D A

1 A A A A A B B B B B A
2 B B B C C C C C C C
3 D D D D D D D D

20

pure LRU implementation
implementing LRU in software

maintain doubly-linked list of all physical pages

whenever a page is accessed:
remove page from linked list, then
add page to head of list

whenever a page needs to replaced:
remove a page from the tail of the linked list, then
evict that page from all page tables (and anything else)
and use that page for whatever needs to be loaded

need to run code on every access
probably 100+x slowdown?

21

pure LRU implementation
implementing LRU in software

maintain doubly-linked list of all physical pages

whenever a page is accessed:
remove page from linked list, then
add page to head of list

whenever a page needs to replaced:
remove a page from the tail of the linked list, then
evict that page from all page tables (and anything else)
and use that page for whatever needs to be loaded

need to run code on every access
probably 100+x slowdown?

21

so, what’s practical
probably won’t implement LRU — too slow

what can we practically do?

22

practically tracking accesses
approximating LRU = “was this accessed recently”?

don’t need to detect all accesses, only one recent one
“was this accessed since we started looking a few seconds ago?”

one idea: track ‘referenced’ (or ‘accessed’) bit per page table entry

set to true when page table entry used for lookup

if OS clears periodically: indicates if accessed ‘recently’
(‘recently’ = since last time it was cleared)

23

practically tracking accesses
approximating LRU = “was this accessed recently”?

don’t need to detect all accesses, only one recent one
“was this accessed since we started looking a few seconds ago?”

one idea: track ‘referenced’ (or ‘accessed’) bit per page table entry

set to true when page table entry used for lookup

if OS clears periodically: indicates if accessed ‘recently’
(‘recently’ = since last time it was cleared)

23

implementing referenced bit
software: mark PTE invalid
if page fault happens, make valid and record ‘referenced’

hardware: ‘referenced’ bit in page table entry
when hardware uses page table entry, sets bit

x86: accessed flag in page table entries (PTE_A in xv6)
not all hardware supports this

same idea applies for detecting writes
to know whether replaced page needs to be saved to disk
called “dirty” bit

24

implementing referenced bit
software: mark PTE invalid
if page fault happens, make valid and record ‘referenced’

hardware: ‘referenced’ bit in page table entry
when hardware uses page table entry, sets bit

x86: accessed flag in page table entries (PTE_A in xv6)
not all hardware supports this

same idea applies for detecting writes
to know whether replaced page needs to be saved to disk
called “dirty” bit

24

implementing referenced bit
software: mark PTE invalid
if page fault happens, make valid and record ‘referenced’

hardware: ‘referenced’ bit in page table entry
when hardware uses page table entry, sets bit

x86: accessed flag in page table entries (PTE_A in xv6)
not all hardware supports this

same idea applies for detecting writes
to know whether replaced page needs to be saved to disk
called “dirty” bit

24

referenced bit and multiple mappings
suppose two processes map same physical page

example: two processees are running ‘example.exe’
physical pages holding that process’s code

was the page accessed recently?
yes, if referenced by either process

need to check multiple page tables

… …
VPN 0x40 not referenced, PPN 0x8332
VPN 0x41 referenced, PPN 0x8493
VPN 0x42 not referenced, PPN 0x8A31
… …
VPN 0x50 referenced, PPN 0x8403
VPN 0x51 not referenced, PPN 0x8537
VPN 0x52 not referenced, PPN 0x8BCD
… …

process A page table
… …
VPN 0x40 not referenced, PPN 0x859A
VPN 0x41 referenced, PPN 0x8002
VPN 0x42 referenced, PPN 0x8004
… …
VPN 0x50 referenced, PPN 0x8332
VPN 0x51 not referenced, PPN 0x8493
VPN 0x52 not referenced, PPN 0x8A31
… …

process B page table

25

referenced bit and multiple mappings
suppose two processes map same physical page

example: two processees are running ‘example.exe’
physical pages holding that process’s code

was the page accessed recently?
yes, if referenced by either process

need to check multiple page tables

… …
VPN 0x40 not referenced, PPN 0x8332
VPN 0x41 referenced, PPN 0x8493
VPN 0x42 not referenced, PPN 0x8A31
… …
VPN 0x50 referenced, PPN 0x8403
VPN 0x51 not referenced, PPN 0x8537
VPN 0x52 not referenced, PPN 0x8BCD
… …

process A page table
… …
VPN 0x40 not referenced, PPN 0x859A
VPN 0x41 referenced, PPN 0x8002
VPN 0x42 referenced, PPN 0x8004
… …
VPN 0x50 referenced, PPN 0x8332
VPN 0x51 not referenced, PPN 0x8493
VPN 0x52 not referenced, PPN 0x8A31
… …

process B page table

25

referenced bit and multiple mappings
suppose two processes map same physical page

example: two processees are running ‘example.exe’
physical pages holding that process’s code

was the page accessed recently?
yes, if referenced by either process

need to check multiple page tables

… …
VPN 0x40 not referenced, PPN 0x8332
VPN 0x41 referenced, PPN 0x8493
VPN 0x42 not referenced, PPN 0x8A31
… …
VPN 0x50 referenced, PPN 0x8403
VPN 0x51 not referenced, PPN 0x8537
VPN 0x52 not referenced, PPN 0x8BCD
… …

process A page table
… …
VPN 0x40 not referenced, PPN 0x859A
VPN 0x41 referenced, PPN 0x8002
VPN 0x42 referenced, PPN 0x8004
… …
VPN 0x50 referenced, PPN 0x8332
VPN 0x51 not referenced, PPN 0x8493
VPN 0x52 not referenced, PPN 0x8A31
… …

process B page table

25

referenced bit and multiple mappings
suppose two processes map same physical page

example: two processees are running ‘example.exe’
physical pages holding that process’s code

was the page accessed recently?
yes, if referenced by either process

need to check multiple page tables

… …
VPN 0x40 not referenced, PPN 0x8332
VPN 0x41 referenced, PPN 0x8493
VPN 0x42 not referenced, PPN 0x8A31
… …
VPN 0x50 referenced, PPN 0x8403
VPN 0x51 not referenced, PPN 0x8537
VPN 0x52 not referenced, PPN 0x8BCD
… …

process A page table
… …
VPN 0x40 not referenced, PPN 0x859A
VPN 0x41 referenced, PPN 0x8002
VPN 0x42 referenced, PPN 0x8004
… …
VPN 0x50 referenced, PPN 0x8332
VPN 0x51 not referenced, PPN 0x8493
VPN 0x52 not referenced, PPN 0x8A31
… …

process B page table

25

approximating LRU: second chance
ordered list

of physical pages

‘referenced’ bit set?

“new” pages start at top of list

yes, reset referenced bit
and put back on list

no, evict this page

page made it to the bottom
was it referenced in that time?
yes — give a second chance

page made it to the bottom
was it referenced in that time?
no — good choice to evict

26

approximating LRU: second chance
ordered list

of physical pages

‘referenced’ bit set?

“new” pages start at top of list

yes, reset referenced bit
and put back on list

no, evict this page

page made it to the bottom
was it referenced in that time?
yes — give a second chance

page made it to the bottom
was it referenced in that time?
no — good choice to evict

26

approximating LRU: second chance
ordered list

of physical pages

‘referenced’ bit set?

“new” pages start at top of list

yes, reset referenced bit
and put back on list

no, evict this page

page made it to the bottom
was it referenced in that time?
yes — give a second chance

page made it to the bottom
was it referenced in that time?
no — good choice to evict

26

second chance example (0)

A B C

1 A
2 B
3 C

page list
last added 3NR 1NR *1R 2NR *2R 3NR *3R

— 2NR 3NR 3NR 1R 1R 2R 2R

end of list 1NR 2NR 2NR 3NR 3NR 1R 1R

place A in physical page 1
accessed right after → becomes referenced
place B in physical page 2
accessed right after → becomes referenced

future slides:
going to skip writing
these intermediate steps
(just for space)

27

second chance example (0)

A B C

1 A
2 B
3 C

page list
last added 3NR 1NR *1R 2NR *2R 3NR *3R

— 2NR 3NR 3NR 1R 1R 2R 2R

end of list 1NR 2NR 2NR 3NR 3NR 1R 1R

place A in physical page 1
accessed right after → becomes referenced

place B in physical page 2
accessed right after → becomes referenced

future slides:
going to skip writing
these intermediate steps
(just for space)

27

second chance example (0)

A B C

1 A
2 B
3 C

page list
last added 3NR 1NR *1R 2NR *2R 3NR *3R

— 2NR 3NR 3NR 1R 1R 2R 2R

end of list 1NR 2NR 2NR 3NR 3NR 1R 1R

place A in physical page 1
accessed right after → becomes referenced

place B in physical page 2
accessed right after → becomes referenced

future slides:
going to skip writing
these intermediate steps
(just for space)

27

second chance example (0)

A B C

1 A
2 B
3 C

page list
last added 3NR 1NR *1R 2NR *2R 3NR *3R

— 2NR 3NR 3NR 1R 1R 2R 2R

end of list 1NR 2NR 2NR 3NR 3NR 1R 1R

place A in physical page 1
accessed right after → becomes referenced
place B in physical page 2
accessed right after → becomes referenced

future slides:
going to skip writing
these intermediate steps
(just for space)

27

second chance example (1)

A B C D — — — B

1 A D
2 B
3 C C

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R

place A in page 1
not referenced on return from page fault handler
immediately referenced by program when page fault handler returns

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

28

second chance example (1)

A B C D — — — B

1 A D
2 B
3 C C

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R

place A in page 1
not referenced on return from page fault handler
immediately referenced by program when page fault handler returns

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

28

second chance example (1)

A B C D — — — B

1 A D
2 B
3 C C

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R

place A in page 1
not referenced on return from page fault handler
immediately referenced by program when page fault handler returns

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

28

second chance example (1)

A B C D — — — B

1 A D
2 B
3 C C

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R

place A in page 1
not referenced on return from page fault handler
immediately referenced by program when page fault handler returns

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

28

second chance example (1)

A B C D — — — B

1 A D
2 B
3 C C

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R

place A in page 1
not referenced on return from page fault handler
immediately referenced by program when page fault handler returns

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

28

second chance example (1)

A B C D — — — B

1 A D
2 B
3 C C

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R

place A in page 1
not referenced on return from page fault handler
immediately referenced by program when page fault handler returns

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — use

B referenced — flips referenced bit

28

second chance example (1)

A B C D — — — B

1 A D
2 B
3 C C

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R

place A in page 1
not referenced on return from page fault handler
immediately referenced by program when page fault handler returns

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — use

B referenced — flips referenced bit

28

second chance example: exercise (1)
A B C D — — — B A

1 A D
2 B
3 C C

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R

exercise: What does this access to A replace? (D, B, or C?)
what is at end of list after? (PP 1, 2, or 3?)

29

second chance example: exercise (2)
A B C D — — — B A — C

1 A D ?
2 B ?
3 C C A ?

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R

exercise: What does this access to C replace? (D, B, or A?)
what is at end of list after? (PP 1, 2, or 3?)

30

second chance example: exercise (2)
A B C D — — — B A — C

1 A D ?
2 B ?
3 C C A ?

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R

exercise: What does this access to C replace? (D, B, or A?)
what is at end of list after? (PP 1, 2, or 3?)

30

second chance example (2)
A B C D — — — B A — C —

1 A D
2 B C
3 C C A

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R 1NR *2R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR 3R 1NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R 2NR 3R

32

second chance cons
performs poorly with big memories…

may need to scan through lots of pages to find unaccessed

likely to count accesses from a long time ago

want some variation to tune its sensitivity

one idea: smaller list of pages to scan for accesses

33

second chance cons
performs poorly with big memories…

may need to scan through lots of pages to find unaccessed

likely to count accesses from a long time ago

want some variation to tune its sensitivity

one idea: smaller list of pages to scan for accesses

33

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

34

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

34

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

34

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

34

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

34

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

34

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

34

tracking usage: CLOCK (view 1)

page #4: last referenced bits: Y Y Y…
page #5: last referenced bits: N N N…
page #6: last referenced bits: N Y Y…
page #7: last referenced bits: Y N Y…
page #8: last referenced bits: Y Y N…
page #1: last referenced bits: Y Y Y…
page #2: last referenced bits: N N N…
page #3: last referenced bits: Y Y N…

ordered list
of physical pages

periodically:
take page from bottom of list
record current referenced bit
clear reference bit for next pass
add to top of list

35

tracking usage: CLOCK (view 2)

page #1:
last ref. bits: Y Y Y…

page #2:
last ref. bits: N N N…

page #3:
last ref. bits: N Y Y…

page #4:
last ref. bits: Y N Y…

page #5:
last ref. bits: Y Y N…

page #6:
last ref. bits: Y Y Y…

page #7:
last ref. bits: N N N…

page #8:
last ref. bits: Y Y N…

36

problems with LRU
question: when does LRU perform poorly?

only reading things once

repeated scans of large amounts of data

both common access patterns for files

37

exercise: which of these is LRU bad for?
code in a text editor for handling out-of-disk-space errors

initial values of the shell’s global variales

on a desktop, long movies that are too big to fit in memory and
played from beginning to end

on web server, long movies that are too big to fit in memory and
frequently downloaded by clients

files that are parsed when loaded and overwritten when saved

on web server, frequently requested HTML files

38

problems with LRU
question: when does LRU perform poorly?

only reading things once

repeated scans of large amounts of data

both common access patterns for files

39

problems with LRU
question: when does LRU perform poorly?

only reading things once

repeated scans of large amounts of data

both common access patterns for files

39

solution for LRU being bad?
one idea that Linux uses:

for file data, use different replacement policy

tries to avoid keeping around file data accessed only once

40

CLOCK-Pro: special casing for one-use pages
by default, Linux tries to handle scanning of files

one read of file data — e.g. play a video, load file into memory

basic idea: delay considering pages active until second access
second access = second scan of accessed bits/etc.

single scans of file won’t “pollute” cache

without this change: reading large files slows down other programs
recently read part of large file steals space from active programs

41

backup slides

42

x86-32 page table entries

page table base register (CR3)

first-level page table entries

second-level page table entries

43

x86-32 page table entries

page table base register (CR3)

first-level page table entries

second-level page table entries

43

x86-32 page table entries

page table base register (CR3)

first-level page table entries

second-level page table entries

43

x86-32 page table entries

page table base register (CR3)

first-level page table entries

second-level page table entries

43

x86-32 page table entry v addresses

flags

physical page number zeros
phys.
page
byte
addr

trick: page table entry with lower bits zeroed =
physical byte address of corresponding page

page # is address of page (212 byte units)

makes constructing page table entries simpler:
physicalAddress | flagsBits

44

x86-32 pagetables: page table entries
xv6 header: mmu.h
// Page table/directory entry flags.
#define PTE_P 0x001 // Present
#define PTE_W 0x002 // Writeable
#define PTE_U 0x004 // User
#define PTE_PWT 0x008 // Write-Through
#define PTE_PCD 0x010 // Cache-Disable
#define PTE_A 0x020 // Accessed
#define PTE_D 0x040 // Dirty
#define PTE_PS 0x080 // Page Size
#define PTE_MBZ 0x180 // Bits must be zero

// Address in page table or page directory entry
#define PTE_ADDR(pte) ((uint)(pte) & ~0xFFF)
#define PTE_FLAGS(pte) ((uint)(pte) & 0xFFF)

45

xv6: extracting top-level page table entry
void output_top_level_pte_for(struct proc *p, void *address) {
pde_t *top_level_page_table = p−>pgdir;
// PDX = Page Directory indeX
// next level uses PTX(....)
int index_into_pgdir = PDX(address);
pde_t top_level_pte = top_level_page_table[index_into_pgdir];
cprintf("top level PT for %x in PID %d\n", address, p−>pid);
if (top_level_pte & PTE_P) {
cprintf("is present (valid)\n");

}
if (top_level_pte & PTE_W) {
cprintf("is writable (may be overriden in next level)\n");

}
if (top_level_pte & PTE_U) {
cprintf("is user-accessible (may be overriden in next level)\n");

}
cprintf("has base address %x\n", PTE_ADDR(top_level_pte));

}

46

xv6: extracting top-level page table entry
void output_top_level_pte_for(struct proc *p, void *address) {
pde_t *top_level_page_table = p−>pgdir;
// PDX = Page Directory indeX
// next level uses PTX(....)
int index_into_pgdir = PDX(address);
pde_t top_level_pte = top_level_page_table[index_into_pgdir];
cprintf("top level PT for %x in PID %d\n", address, p−>pid);
if (top_level_pte & PTE_P) {
cprintf("is present (valid)\n");

}
if (top_level_pte & PTE_W) {
cprintf("is writable (may be overriden in next level)\n");

}
if (top_level_pte & PTE_U) {
cprintf("is user-accessible (may be overriden in next level)\n");

}
cprintf("has base address %x\n", PTE_ADDR(top_level_pte));

}

46

xv6: extracting top-level page table entry
void output_top_level_pte_for(struct proc *p, void *address) {
pde_t *top_level_page_table = p−>pgdir;
// PDX = Page Directory indeX
// next level uses PTX(....)
int index_into_pgdir = PDX(address);
pde_t top_level_pte = top_level_page_table[index_into_pgdir];
cprintf("top level PT for %x in PID %d\n", address, p−>pid);
if (top_level_pte & PTE_P) {
cprintf("is present (valid)\n");

}
if (top_level_pte & PTE_W) {
cprintf("is writable (may be overriden in next level)\n");

}
if (top_level_pte & PTE_U) {
cprintf("is user-accessible (may be overriden in next level)\n");

}
cprintf("has base address %x\n", PTE_ADDR(top_level_pte));

}

46

xv6: extracting top-level page table entry
void output_top_level_pte_for(struct proc *p, void *address) {
pde_t *top_level_page_table = p−>pgdir;
// PDX = Page Directory indeX
// next level uses PTX(....)
int index_into_pgdir = PDX(address);
pde_t top_level_pte = top_level_page_table[index_into_pgdir];
cprintf("top level PT for %x in PID %d\n", address, p−>pid);
if (top_level_pte & PTE_P) {
cprintf("is present (valid)\n");

}
if (top_level_pte & PTE_W) {
cprintf("is writable (may be overriden in next level)\n");

}
if (top_level_pte & PTE_U) {
cprintf("is user-accessible (may be overriden in next level)\n");

}
cprintf("has base address %x\n", PTE_ADDR(top_level_pte));

}

46

xv6: extracting top-level page table entry
void output_top_level_pte_for(struct proc *p, void *address) {
pde_t *top_level_page_table = p−>pgdir;
// PDX = Page Directory indeX
// next level uses PTX(....)
int index_into_pgdir = PDX(address);
pde_t top_level_pte = top_level_page_table[index_into_pgdir];
cprintf("top level PT for %x in PID %d\n", address, p−>pid);
if (top_level_pte & PTE_P) {
cprintf("is present (valid)\n");

}
if (top_level_pte & PTE_W) {
cprintf("is writable (may be overriden in next level)\n");

}
if (top_level_pte & PTE_U) {
cprintf("is user-accessible (may be overriden in next level)\n");

}
cprintf("has base address %x\n", PTE_ADDR(top_level_pte));

}

46

xv6: manually setting page table entry
pde_t *some_page_table; // if top-level table
pte_t *some_page_table; // if next-level table
...
...
some_page_table[index] =

PTE_P | PTE_W | PTE_U | base_physical_address;
/* P = present; W = writable; U = user-mode accessible */

47

skipping the guard page
void example() {

int array[2000];
array[0] = 1000;
...

}

example:
subl $8024, %esp // allocate 8024 bytes on stack
movl $1000, 12(%esp) // write near bottom of allocation

// goes beyond guard page
// since not all of array init'd

....

48

create new page table (kernel mappings)
pde_t*
setupkvm(void)
{
pde_t *pgdir;
struct kmap *k;

if((pgdir = (pde_t*)kalloc()) == 0)
return 0;

memset(pgdir, 0, PGSIZE);
if (P2V(PHYSTOP) > (void*)DEVSPACE)
panic("PHYSTOP too high");

for(k = kmap; k < &kmap[NELEM(kmap)]; k++)
if(mappages(pgdir, k−>virt, k−>phys_end − k−>phys_start,

(uint)k−>phys_start, k−>perm) < 0) {
freevm(pgdir);
return 0;

}
return pgdir;

}

allocate first-level page table
(“page directory”)

initialize to 0 — every page invaliditerate through list of kernel-space mappings
for everything above address 0x8000 0000
(hard-coded table including flag bits, etc.
because some addresses need different flags
and not all physical addresses are usable)

on failure (no space for new second-level page tales)
free everything

49

create new page table (kernel mappings)
pde_t*
setupkvm(void)
{
pde_t *pgdir;
struct kmap *k;

if((pgdir = (pde_t*)kalloc()) == 0)
return 0;

memset(pgdir, 0, PGSIZE);
if (P2V(PHYSTOP) > (void*)DEVSPACE)
panic("PHYSTOP too high");

for(k = kmap; k < &kmap[NELEM(kmap)]; k++)
if(mappages(pgdir, k−>virt, k−>phys_end − k−>phys_start,

(uint)k−>phys_start, k−>perm) < 0) {
freevm(pgdir);
return 0;

}
return pgdir;

}

allocate first-level page table
(“page directory”)

initialize to 0 — every page invaliditerate through list of kernel-space mappings
for everything above address 0x8000 0000
(hard-coded table including flag bits, etc.
because some addresses need different flags
and not all physical addresses are usable)

on failure (no space for new second-level page tales)
free everything

49

create new page table (kernel mappings)
pde_t*
setupkvm(void)
{
pde_t *pgdir;
struct kmap *k;

if((pgdir = (pde_t*)kalloc()) == 0)
return 0;

memset(pgdir, 0, PGSIZE);
if (P2V(PHYSTOP) > (void*)DEVSPACE)
panic("PHYSTOP too high");

for(k = kmap; k < &kmap[NELEM(kmap)]; k++)
if(mappages(pgdir, k−>virt, k−>phys_end − k−>phys_start,

(uint)k−>phys_start, k−>perm) < 0) {
freevm(pgdir);
return 0;

}
return pgdir;

}

allocate first-level page table
(“page directory”)

initialize to 0 — every page invalid

iterate through list of kernel-space mappings
for everything above address 0x8000 0000
(hard-coded table including flag bits, etc.
because some addresses need different flags
and not all physical addresses are usable)

on failure (no space for new second-level page tales)
free everything

49

create new page table (kernel mappings)
pde_t*
setupkvm(void)
{
pde_t *pgdir;
struct kmap *k;

if((pgdir = (pde_t*)kalloc()) == 0)
return 0;

memset(pgdir, 0, PGSIZE);
if (P2V(PHYSTOP) > (void*)DEVSPACE)
panic("PHYSTOP too high");

for(k = kmap; k < &kmap[NELEM(kmap)]; k++)
if(mappages(pgdir, k−>virt, k−>phys_end − k−>phys_start,

(uint)k−>phys_start, k−>perm) < 0) {
freevm(pgdir);
return 0;

}
return pgdir;

}

allocate first-level page table
(“page directory”)

initialize to 0 — every page invalid

iterate through list of kernel-space mappings
for everything above address 0x8000 0000
(hard-coded table including flag bits, etc.
because some addresses need different flags
and not all physical addresses are usable)

on failure (no space for new second-level page tales)
free everything

49

create new page table (kernel mappings)
pde_t*
setupkvm(void)
{
pde_t *pgdir;
struct kmap *k;

if((pgdir = (pde_t*)kalloc()) == 0)
return 0;

memset(pgdir, 0, PGSIZE);
if (P2V(PHYSTOP) > (void*)DEVSPACE)
panic("PHYSTOP too high");

for(k = kmap; k < &kmap[NELEM(kmap)]; k++)
if(mappages(pgdir, k−>virt, k−>phys_end − k−>phys_start,

(uint)k−>phys_start, k−>perm) < 0) {
freevm(pgdir);
return 0;

}
return pgdir;

}

allocate first-level page table
(“page directory”)

initialize to 0 — every page invaliditerate through list of kernel-space mappings
for everything above address 0x8000 0000
(hard-coded table including flag bits, etc.
because some addresses need different flags
and not all physical addresses are usable)

on failure (no space for new second-level page tales)
free everything

49

reading executables (headers)
xv6 executables contain list of sections to load, represented by:
struct proghdr {
uint type; /* <-- debugging-only or not? */
uint off; /* <-- location in file */
uint vaddr; /* <-- location in memory */
uint paddr; /* <-- confusing ignored field */
uint filesz; /* <-- amount to load */
uint memsz; /* <-- amount to allocate */
uint flags; /* <-- readable/writeable (ignored) */
uint align;

};

50

reading executables (headers)
xv6 executables contain list of sections to load, represented by:
struct proghdr {
uint type; /* <-- debugging-only or not? */
uint off; /* <-- location in file */
uint vaddr; /* <-- location in memory */
uint paddr; /* <-- confusing ignored field */
uint filesz; /* <-- amount to load */
uint memsz; /* <-- amount to allocate */
uint flags; /* <-- readable/writeable (ignored) */
uint align;

};

...
if((sz = allocuvm(pgdir, sz, ph.vaddr + ph.memsz)) == 0)
goto bad;

...
if(loaduvm(pgdir, (char*)ph.vaddr, ip, ph.off, ph.filesz) < 0)
goto bad;

50

reading executables (headers)
xv6 executables contain list of sections to load, represented by:
struct proghdr {
uint type; /* <-- debugging-only or not? */
uint off; /* <-- location in file */
uint vaddr; /* <-- location in memory */
uint paddr; /* <-- confusing ignored field */
uint filesz; /* <-- amount to load */
uint memsz; /* <-- amount to allocate */
uint flags; /* <-- readable/writeable (ignored) */
uint align;

};

...
if((sz = allocuvm(pgdir, sz, ph.vaddr + ph.memsz)) == 0)
goto bad;

...
if(loaduvm(pgdir, (char*)ph.vaddr, ip, ph.off, ph.filesz) < 0)
goto bad;

sz — top of heap of new program
name of the field in struct proc

50

loading user pages from executable
loaduvm(pde_t *pgdir, char *addr, struct inode *ip, uint offset, uint sz)
{
...
for(i = 0; i < sz; i += PGSIZE){
if((pte = walkpgdir(pgdir, addr+i, 0)) == 0)

panic("loaduvm: address should exist");
pa = PTE_ADDR(*pte);
if(sz − i < PGSIZE)

n = sz − i;
else

n = PGSIZE;
if(readi(ip, P2V(pa), offset+i, n) != n)

return −1;
}
return 0;

}

get page table entry being loaded
already allocated earlier
look up address to load into

get physical address from page table entry
convert back to (kernel) virtual address
for read from disk

exercise: why don’t we just use addr directly?
(instead of turning it into a physical address,
then into a virtual address again)

copy from file (represented by struct inode) into memory
P2V(pa) — mapping of physical addresss in kernel memory

51

loading user pages from executable
loaduvm(pde_t *pgdir, char *addr, struct inode *ip, uint offset, uint sz)
{
...
for(i = 0; i < sz; i += PGSIZE){
if((pte = walkpgdir(pgdir, addr+i, 0)) == 0)

panic("loaduvm: address should exist");
pa = PTE_ADDR(*pte);
if(sz − i < PGSIZE)

n = sz − i;
else

n = PGSIZE;
if(readi(ip, P2V(pa), offset+i, n) != n)

return −1;
}
return 0;

}

get page table entry being loaded
already allocated earlier
look up address to load into

get physical address from page table entry
convert back to (kernel) virtual address
for read from disk

exercise: why don’t we just use addr directly?
(instead of turning it into a physical address,
then into a virtual address again)

copy from file (represented by struct inode) into memory
P2V(pa) — mapping of physical addresss in kernel memory

51

loading user pages from executable
loaduvm(pde_t *pgdir, char *addr, struct inode *ip, uint offset, uint sz)
{
...
for(i = 0; i < sz; i += PGSIZE){
if((pte = walkpgdir(pgdir, addr+i, 0)) == 0)

panic("loaduvm: address should exist");
pa = PTE_ADDR(*pte);
if(sz − i < PGSIZE)

n = sz − i;
else

n = PGSIZE;
if(readi(ip, P2V(pa), offset+i, n) != n)

return −1;
}
return 0;

}

get page table entry being loaded
already allocated earlier
look up address to load into

get physical address from page table entry
convert back to (kernel) virtual address
for read from disk

exercise: why don’t we just use addr directly?
(instead of turning it into a physical address,
then into a virtual address again)

copy from file (represented by struct inode) into memory
P2V(pa) — mapping of physical addresss in kernel memory

51

loading user pages from executable
loaduvm(pde_t *pgdir, char *addr, struct inode *ip, uint offset, uint sz)
{
...
for(i = 0; i < sz; i += PGSIZE){
if((pte = walkpgdir(pgdir, addr+i, 0)) == 0)

panic("loaduvm: address should exist");
pa = PTE_ADDR(*pte);
if(sz − i < PGSIZE)

n = sz − i;
else

n = PGSIZE;
if(readi(ip, P2V(pa), offset+i, n) != n)

return −1;
}
return 0;

}

get page table entry being loaded
already allocated earlier
look up address to load into

get physical address from page table entry
convert back to (kernel) virtual address
for read from disk

exercise: why don’t we just use addr directly?
(instead of turning it into a physical address,
then into a virtual address again)

copy from file (represented by struct inode) into memory
P2V(pa) — mapping of physical addresss in kernel memory

51

loading user pages from executable
loaduvm(pde_t *pgdir, char *addr, struct inode *ip, uint offset, uint sz)
{
...
for(i = 0; i < sz; i += PGSIZE){
if((pte = walkpgdir(pgdir, addr+i, 0)) == 0)

panic("loaduvm: address should exist");
pa = PTE_ADDR(*pte);
if(sz − i < PGSIZE)

n = sz − i;
else

n = PGSIZE;
if(readi(ip, P2V(pa), offset+i, n) != n)

return −1;
}
return 0;

}

get page table entry being loaded
already allocated earlier
look up address to load into

get physical address from page table entry
convert back to (kernel) virtual address
for read from disk

exercise: why don’t we just use addr directly?
(instead of turning it into a physical address,
then into a virtual address again)

copy from file (represented by struct inode) into memory
P2V(pa) — mapping of physical addresss in kernel memory

51

Linux: forward mapping
process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

used to fill
(for mmap)

read()/write()

52

Linux: forward mapping
process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

used to fill
(for mmap)

read()/write()

53

Linux: forward mapping
process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

used to fill
(for mmap)

read()/write()

54

Linux: forward mapping
process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

used to fill
(for mmap)

read()/write()

55

Linux: forward mapping
process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

used to fill
(for mmap)

read()/write()

56

sketch: implementing mmap
access mapped file for first time, read from disk

(like swapping when memory was swapped out)

write “mapped” memory, write to disk eventually
need to detect whether writes happened
usually hardware support: dirty bit

extra detail: other processes should see changes
all accesses to file use same physical memory
how? OS tracks copies of files in memory

57

xv6: setting process page tables (exec())
exec step 1: create new page table with kernel mappings

done in setupkvm(), which calls mappages()

exec step 2a: allocate memory for executable pages
allocuvm() in loop
new physical pages chosen by kalloc()

exec step 2b: load from executable file
copying from executable file implemented by loaduvm()

exec step 3: allocate pages for heap, stack (allocuvm() calls)

58

xv6: setting process page tables (exec())
exec step 1: create new page table with kernel mappings

done in setupkvm(), which calls mappages()

exec step 2a: allocate memory for executable pages
allocuvm() in loop
new physical pages chosen by kalloc()

exec step 2b: load from executable file
copying from executable file implemented by loaduvm()

exec step 3: allocate pages for heap, stack (allocuvm() calls)

59

minor and major faults
minor page fault

page is already in memory (“page cache”)
just fill in page table entry

major page fault
page not already in memory (“page cache”)
need to allocate space
possibly need to read data from disk/etc.

60

Linux: reporting minor/major faults
$ /usr/bin/time --verbose some-command

Command being timed: "some-command"
User time (seconds): 18.15
System time (seconds): 0.35
Percent of CPU this job got: 94%
Elapsed (wall clock) time (h:mm:ss or m:ss): 0:19.57

...
Maximum resident set size (kbytes): 749820
Average resident set size (kbytes): 0
Major (requiring I/O) page faults: 0
Minor (reclaiming a frame) page faults: 230166
Voluntary context switches: 1423
Involuntary context switches: 53
Swaps: 0

...
Exit status: 0

61

swapping
historical major use of virtual memory is supporting “swapping”

using disk (or SSD, …) as the next level of the memory hierarchy

process is allocated space on disk/SSD

memory is a cache for disk/SSD
only need keep ‘currently active’ pages in physical memory

swapping ≈ mmap with “default” files to use

62

swapping
historical major use of virtual memory is supporting “swapping”

using disk (or SSD, …) as the next level of the memory hierarchy

process is allocated space on disk/SSD

memory is a cache for disk/SSD
only need keep ‘currently active’ pages in physical memory

swapping ≈ mmap with “default” files to use

62

HDD/SDDs are slow
HDD reads and writes: milliseconds to tens of milliseconds

minimum size: 512 bytes
writing tens of kilobytes basically as fast as writing 512 bytes

SSD writes and writes: hundreds of microseconds
designed for writes/reads of kilobytes (not much smaller)

page fault handler is going switch to another program

63

HDD/SDDs are slow
HDD reads and writes: milliseconds to tens of milliseconds

minimum size: 512 bytes
writing tens of kilobytes basically as fast as writing 512 bytes

SSD writes and writes: hundreds of microseconds
designed for writes/reads of kilobytes (not much smaller)

page fault handler is going switch to another program

63

HDD/SDDs are slow
HDD reads and writes: milliseconds to tens of milliseconds

minimum size: 512 bytes
writing tens of kilobytes basically as fast as writing 512 bytes

SSD writes and writes: hundreds of microseconds
designed for writes/reads of kilobytes (not much smaller)

page fault handler is going switch to another program

63

virtual address/file offset → location on disk
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

page table

OS datastructureOS datastructure

OS datastructure

based on filesystem — later topic

(Linux)
if part of file: track mmap ‘regions’ + use filesystem
if swapped out non-file: trick: unused bits of PTEs

64

Linux: tracking swapped out pages
need to lookup location on disk

potentially one location for every virtual page

trick: store location in “ignored” part of page table entry
instead of physical page #, permission bits, etc., store offset on disk

65

Linux: reverse mapping (file pages)
process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

per-physical page info
(struct page) page number

given page number
find references to that page
(e.g. to remove/change them)

66

tracking physical pages: finding free pages
Linux has list of “least recently used” pages:
struct page {

...
struct list_head lru; /* list_head ~ next/prev pointer */
...

};

how we’re going to find a page to allocate
(and evict from something else)

later — what this list actually looks like (how many lists, …)

67

predicting the future?
can’t really…

look for common patterns

68

working set intuition
say we’re executing a loop

what memory does this require?

code for the loop

code for functions called in the loop
and functions they call

data structures used by the loop and functions called in it, etc.

only uses a subset of the program’s memory

69

the working set model
one common pattern: working sets

at any time, program is using a subset of its memory

…called its working set

rest of memory is inactive

…until program switches to different working set

70

working sets and running many programs
give each program its working set

…and, to run as much as possible, not much more
inactive — won’t be used

replacement policy: identify working sets ≈ recently used data

replace anything that’s not in in it

71

working sets and running many programs
give each program its working set

…and, to run as much as possible, not much more
inactive — won’t be used

replacement policy: identify working sets ≈ recently used data

replace anything that’s not in in it

71

cache size versus miss rate

Bienia et al, “The PARSEC Benchmark Suite: Characterization and Architectural Implications” 72

estimating working sets
working set ≈ what’s been used recently

except when program switching working sets

so, what a program recently used ≈ working set

can use this idea to estimate working set (from list of memory
accesses)

73

estimating working sets
working set ≈ what’s been used recently

except when program switching working sets

so, what a program recently used ≈ working set

can use this idea to estimate working set (from list of memory
accesses)

73

recording accesses
goal: “check is this physical page still being used?”

software support: temporarily mark page table invalid
use resulting page fault to detect “yes”

hardware support: accessed bits in page tables
hardware sets to 1 when accessed

74

temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 0 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 (never) …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next accessprocessor does lookup

oops! page fault
update page info +
mark present

75

temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 0 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 (never) …
… … …

OS page info
processor does lookup

oops! page fault

update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next accessprocessor does lookup

oops! page fault
update page info +
mark present

75

temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 1 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time X …
… … …

OS page info

processor does lookup

oops! page fault

update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next accessprocessor does lookup

oops! page fault
update page info +
mark present

75

temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 1 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time X …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next accessprocessor does lookup

oops! page fault
update page info +
mark present

75

temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 1 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time X …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next accessprocessor does lookup

oops! page fault
update page info +
mark present

75

temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 1 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time X …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next access

processor does lookup
oops! page fault

update page info +
mark present

75

temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 0 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time X …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next access

processor does lookup
oops! page fault

update page info +
mark present

75

temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 0 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time X …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next access

processor does lookup
oops! page fault

update page info +
mark present

75

temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 1 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time Y …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next accessprocessor does lookup

oops! page fault

update page info +
mark present

75

accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 0 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1
processor does lookup
keeps access bit set to 1 OS reads + records +

clears access bit

processor does lookup
sets accessed bit to 1 (again)

76

accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 0 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1

processor does lookup
keeps access bit set to 1 OS reads + records +

clears access bit

processor does lookup
sets accessed bit to 1 (again)

76

accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 1 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1

processor does lookup
keeps access bit set to 1 OS reads + records +

clears access bit

processor does lookup
sets accessed bit to 1 (again)

76

accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 1 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1

processor does lookup
keeps access bit set to 1

OS reads + records +
clears access bit

processor does lookup
sets accessed bit to 1 (again)

76

accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 1 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1

processor does lookup
keeps access bit set to 1

OS reads + records +
clears access bit

processor does lookup
sets accessed bit to 1 (again)

76

accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 1 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1
processor does lookup
keeps access bit set to 1

OS reads + records +
clears access bit

processor does lookup
sets accessed bit to 1 (again)

76

accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 0 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1
processor does lookup
keeps access bit set to 1

OS reads + records +
clears access bit

processor does lookup
sets accessed bit to 1 (again)

76

accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 0 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1
processor does lookup
keeps access bit set to 1 OS reads + records +

clears access bit

processor does lookup
sets accessed bit to 1 (again)

76

accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 1 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1
processor does lookup
keeps access bit set to 1 OS reads + records +

clears access bit

processor does lookup
sets accessed bit to 1 (again)

76

accessed bits: multiple processes

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 0 0 … 0x4442
… … … … … …

page table for program 1

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00483 1 1 0 … 0x4442
… … … … … …

page table for program 2

OS needs to clear+check
all accessed bits
for the physical page

77

dirty bits
“was this part of the mmap’d file changed?”

“is the old swapped copy still up to date?”

software support: temporarily mark read-only

hardware support: dirty bit set by hardware
same idea as accessed bit, but only changed on writes

78

x86-32 accessed and dirty bit

A: acccessed — processor sets to 1 when PTE used
used = for read or write or execute
likely implementation: part of loading PTE into TLB

D: dirty — processor sets to 1 when PTE is used for write

79

lazy replacement?
so far: don’t do anything special until memory is full

only then is there a reason to writeback pages or evict pages

but real OSes are more proactive

80

lazy replacement?
so far: don’t do anything special until memory is full

only then is there a reason to writeback pages or evict pages

but real OSes are more proactive

80

non-lazy writeback
what happens when a computer loses power

how much data can you lose?

if we never run out of memory…all of it?
no changed data written back

solution: track or scan for dirty pages and writeback

example goals:
lose no more than 90 seconds of data
force writeback at file close
…

81

non-lazy eviction
so far — allocating memory involves evicting pages

hopefully pages that haven’t been used a long time anyways

alternative: evict earlier “in the background”
“free”: probably have some idle processor time anyways

allocation = remove already evicted page from linked list
(instead of changing page tables, file cache info, etc.)

82

non-lazy eviction
so far — allocating memory involves evicting pages

hopefully pages that haven’t been used a long time anyways

alternative: evict earlier “in the background”
“free”: probably have some idle processor time anyways

allocation = remove already evicted page from linked list
(instead of changing page tables, file cache info, etc.)

82

xv6 page table-related functions
kalloc/kfree — allocate physical page, return kernel address
walkpgdir — get pointer to second-level page table entry

…to check it/make it valid/invalid/point somewhere/etc.

mappages — set range of page table entries
implementation: loop using walkpgdir

allockvm — create new set of page tables, set kernel (high) part
entries for 0x8000 0000 and up set
allocate new first-level table plus several second-level tables

allocuvm — allocate new user memory
setup user-accessible memory
allocate new second-level tables as needed

deallocuvm — deallocate user memory
83

	last time
	page replacement
	page replacement policy goals
	Belady's MIN
	LRU
	exercise

	implementing pure LRU

	implementing LRU-like page replacement
	tracking accesses
	approximating LRU: second-chance
	example
	exercise

	approximating LRU: SEQ
	approximating LRU: CLOCK

	non-LRU patterns
	when is LRU bad?
	read once patterns

	backup slides
	x86-32 page table entries
	skipping the guard page
	setupkvm
	program headers (detail)
	loaduvm
	Linux data structures
	extra on mmap
	setting up process page tables
	major/minor faults

	generalizing mmap: swapping
	trick for swapped pages
	reverse mapping detail
	Linux free list
	the working set model
	accessed/dirty bit
	faster allocation: dirty writeback and free lists
	preview: xv6 PT functions

