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last time
page replacement (= page allocation)

maximizing hit rate: Belady’s MIN
assuming entirely reactive

referenced (or accessed) bits

dirty bits

locality assumption: least recently used

approximating least recently used
second chance
Linux’s SEQ policy — inactive list (scan for access), active list (don’t)

when LRU fails
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being proactive
previous assumption: load on demand

why is something loaded?
page fault
maybe because application starts

can we do better?
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readahead
program accesses page 4 of a file, page 5, page 6. What’s next?

page 7 — idea: guess this
on page fault, does it look like contiguous accesses?

called readahead
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being less lazy elsewhere
showed OS: proactively reading in pages

can also proactively free pages (faster replacement)

and proactively write out pages ‘dirty’ pages
save time writing later
avoid data loss on power failure
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page cache/replacement summary
program memory + files — swapped to disk, cached in memory

mostly, assume temporal locality
least recently used variants

special cases for non-LRU-friendly patterns (e.g. scans)
maybe more we haven’t discussed?

being proactive (writeback early, readahead, pre-evicted pages)

missing: handling non-miss-rate goals?
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kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read

buffer: keyboard input
waiting for program

read char
from terminal …via buffer read char

from file

read block of data from disk

buffer: recently read
data from disk

…via buffer
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kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk
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layering
application

standard library

system calls

kernel’s file interface

device drivers

hardware interfaces

kernel’s buffers

read/write

cout/printf — and their own buffers
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ways to talk to I/O devices
user program

read/write/mmap/etc. file interface
regular files

filesystems
device files

device drivers
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devices as files
talking to device? open/read/write/close

typically similar interface within the kernel

device driver implements the file interface
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example device files from a Linux desktop
/dev/snd/pcmC0D0p — audio playback

configure, then write audio data

/dev/sda, /dev/sdb — SATA-based SSD and hard drive
usually access via filesystem, but can mmap/read/write directly

/dev/input/event3, /dev/input/event10 — mouse and
keyboard

can read list of keypress/mouse movement/etc. events

/dev/dri/renderD128 — builtin graphics
DRI = direct rendering infrastructure
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devices: extra operations?
read/write/mmap not enough?

audio output device — set format of audio? headphones plugged in?
terminal — whether to echo back what user types?
CD/DVD — open the disk tray? is a disk present?
…

extra POSIX file descriptor operations:
ioctl (general I/O control) — device driver-specific interface
tcsetattr (for terminal settings)
fcntl
…

also possibly extra device files for same device:
/dev/snd/controlC0 to configure audio settings for
/dev/snd/pcmC0D0p, /dev/snd/pcmC0D10p, …
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Linux example: file operations
(selected subset — table of pointers to functions)
struct file_operations {

...
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*write) (struct file *, const char __user *,x

size_t, loff_t *);
...
long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
...
int (*mmap) (struct file *, struct vm_area_struct *);
unsigned long mmap_supported_flags;
int (*open) (struct inode *, struct file *);
...
int (*release) (struct inode *, struct file *);
...

};
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special case: block devices
devices like disks often have a different interface

unlike normal file interface, works in terms of ‘blocks’
block size usually equal to page size

for working with page cache
read/write page at a time
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Linux example: block device operations
struct block_device_operations {

int (*open) (struct block_device *, fmode_t);
void (*release) (struct gendisk *, fmode_t);
int (*rw_page)(struct block_device *,

sector_t, struct page *, bool);
int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
...

};

read/write a page for a sector number (= block number)
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device driver flow

thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send I/O operation (if needed)
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store data into result
return (if result complete)

device hardware

trap handler “bottom half”
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xv6: device files (1)
struct devsw {
int (*read)(struct inode*, char*, int);
int (*write)(struct inode*, char*, int);

};

extern struct devsw devsw[];

inode = represents file on disk

pointed to by struct file referenced by fd
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xv6: device files (2)
struct devsw {
int (*read)(struct inode*, char*, int);
int (*write)(struct inode*, char*, int);

};

extern struct devsw devsw[];

array of types of devices
special type of file on disk has index into array

“device number”
created via mknod() system call

similar scheme used on real Unix/Linux
two numbers: major + minor device number
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xv6: console devsw
code run at boot:
devsw[CONSOLE].write = consolewrite;
devsw[CONSOLE].read = consoleread;

CONSOLE is the constant 1

consoleread/consolewrite: run when you read/write console
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device driver flow

thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send I/O operation (if needed)
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store data into result
return (if result complete)

device hardware

trap handler “bottom half”
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xv6: console top half (read)
int
consoleread(struct inode *ip, char *dst, int n)
{
...
target = n;
acquire(&cons.lock);
while(n > 0){
while(input.r == input.w){

if(myproc()−>killed){
...
return −1;

}
sleep(&input.r, &cons.lock);

}
...

}
release(&cons.lock)
...

}

if at end of buffer
r = reading location, w = writing location

put thread to sleep
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device driver flow

thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send I/O operation (if needed)
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store data into result
return (if result complete)

device hardware

trap handler “bottom half”
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xv6: console top half (read)
int
consoleread(struct inode *ip, char *dst, int n)
{
...
target = n;
acquire(&cons.lock);
while(n > 0){
...
c = input.buf[input.r++ % INPUT_BUF];
...
*dst++ = c;
−−n;
if (c == '\n')

break;
}
release(&cons.lock)
...
return target − n;

}

copy from kernel buffer
to user buffer (passed to read)
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xv6: console top half
wait for buffer to fill

no special work to request data — keyboard input always sent

copy from buffer

check if done (newline or enough chars), if not repeat
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device driver flow

thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send I/O operation (if needed)
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store data into result
return (if result complete)

device hardware

trap handler “bottom half”
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xv6: console interrupt (one case)
void
trap(struct trapframe *tf) {
...
switch(tf−>trapno) {
...

case T_IRQ0 + IRQ_KBD:
kbdintr();
lapcieoi();
break;
...

}
...

}

kbdintr: actually read from keyboard device
lapcieoi: tell CPU “I’m done with this interrupt”
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device driver flow

thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)
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xv6: console interrupt reading
kbdintr fuction actually reads from device

adds data to buffer (if room)

wakes up sleeping thread (if any)
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connecting devices

processor
interrupt
controller

memory bus

other processors… actual memory

other devicesdevice controller
status
read?
write?…

control registers buffers/queues

external hardware?

0x80004800:
0x80004808:
0x80004810:

…:

control registers have memory addresses
looks like write to memory

actually changes value in device controller

control registers might not really be registers
e.g. maybe writing to write? “control register”

actually just sends the value the external hardware

buffers/queues will also have memory addressesway to send “please interrupt” signal
component of processor decides when to handle

(deals with ordering, interrupt disabling,
which of several processors handles it, …, etc.)
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bus adaptors

processor
interrupt
controller

memory bus

other processors… actual memory

other devices
or

other bus adaptors

bus adaptor

other devices

device controller
status
read?
write?…

control registers buffers/queues

external hardware?

different bus

32



devices as magic memory (1)
devices expose memory locations to read/write

use read/write instructions to manipulate device

example: keyboard controller

read from magic memory location — get last keypress/release

reading location clears buffer for next keypress/release

get interrupt whenever new keypress/release you haven’t read
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device as magic memory (2)
example: display controller

write to pixels to magic memory location — displayed on screen

other memory locations control format/screen size

example: network interface

write to buffers

write “send now” signal to magic memory location — send data

read from “status” location, buffers to receive
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what about caching?
caching “last keypress/release”?

I press ‘h’, OS reads ‘h’, does that get cached?

…I press ‘e’, OS reads what?

solution: OS can mark memory uncachable

x86: bit in page table entry can say “no caching”
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aside: I/O space
x86 has a “I/O addresses”

like memory addresses, but accessed with different instruction
in and out instructions

historically — and sometimes still: separate I/O bus

more recent processors/devices usually use memory addresses
no need for more instructions, buses
always have layers of bus adaptors to handle compatibility issues
other reasons to have devices and memory close (later)
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xv6 keyboard access
two control registers:

KBSTATP: status register (I/O address 0x64)
KBDATAP: data buffer (I/O address 0x60)

// inb() runs 'in' instruction: read from I/O address
st = inb(KBSTATP);
// KBS_DIB: bit indicates data in buffer
if ((st & KBS_DIB) == 0)
return −1;

data = inb(KBDATAP); // read from data --- *clears* buffer

/* interpret data to learn what kind of keypress/release */
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exercise
system is running two applications

A: reading from network
B: doing tons of computation

timeline:
A calls read() to 8KB of data from network

not immediately available
16KB of data comes in 10ms later
A calls read() again to get 4KB more

exercise 1: how many kernel/user mode switches?

exercise 2: how many context switches?
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how many mode switches?
A calls read() to 8KB of data from network
16KB of data comes in 10ms later
A calls read() again to get 4KB more

read() 8KB start
wait for device

(driver ‘top half’)

run B while A waits

copy from device
(driver ‘bottom half’)

mark A ready
run scheduler

switch to A (kernel)
copy first 8KB

(resume driver ‘top half’)

return from
read() syscall

read() syscall
copy 4KB from buffer

(driver ‘top half’)

return from
read() syscall

user mode (running A) user mode (running B)
kernel mode
depends — does scheduler run A right away?

1 2 3 4? 5? 6?1 2 3 4? 5? 6? 7? 8?
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how many context switches?
A calls read() to 8KB of data from network
16KB of data comes in 10ms later
A calls read() again to get remaining 4KB

read() 8KB start
wait for device

(driver ‘top half’)

run B while A waits

copy from device
(driver ‘bottom half’)

mark A ready
run scheduler

switch to A (kernel)
copy first 8KB

(resume driver ‘top half’)

return from
read() syscall

read() syscall
copy 4KB from buffer

(driver ‘top half’)

return from
read() syscall

user mode (running A) user mode (running B)
kernel mode
depends — does scheduler run A right away?

1 2
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programmed I/O
“programmed I/O”: write to or read from device controller buffers
directly

OS runs loop to transfer data to or from device controller

might still be triggered by interrupt
new data in buffer to read?
device processed data previously written to buffer?
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direct memory access (DMA)

processor
interrupt
controller

memory bus

other processors… actual memory

other devicesdevice controller

external hardware?

observation: devices can read/write memory

can have device copy data to/from memory

42



direct memory access (DMA)

processor
interrupt
controller

memory bus

actual memory

other devicesdevice controller
status
read?
write?
buffer addr…

control registers buffers/queues

external hardware?

OS chooses
memory address

(this example: 0x9000 (physical))

write to 0x9000
(instead of internal buffer)

OS reads from 0x9000
rather than copying

from device buffer

best case: OS chooses
location user program
passed to read()/etc.
(avoids copy!)
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direct memory access (DMA)
much faster, e.g., for disk or network I/O

avoids having processor run a loop to copy data
OS can run normal program during data transfer
interrupt tells OS when copy finished

device uses memory as very large buffer space

device puts data where OS wants it directly (maybe)
OS specifies physical address to use…
instead of reading from device controller
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OS puts data where it wants
so far: where it wants is the device driver’s buffer

seems like OS could also put it directly where application wants it?

i.e. pointer passed to read() system call
called “zero-copy I/O”

should be faster, but, in practice, very rarely done:
if part of regular file, can’t easily share with page cache
device might expect contiguous physical addresses
device might expect physical address is at start of physical page
device might write data in differnt format than application expects
device might read too much data
need to deal with application exiting/being killed before device finishes
…
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devices summary
device controllers connected via memory bus

usually assigned physical memory addresses
sometimes separate “I/O addresses” (special load/store instructions)

controller looks like “magic memory” to OS
load/store from device controller registers like memory
setting/reading control registers can trigger device operations

two options for data transfer
programmed I/O: OS reads from/writes to buffer within device controller
direct memory access (DMA): device controller reads/writes normal
memory
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