
1

last time
device files:

open(/dev/snd/…) + write() to play audio
open(/dev/input/mouse…) + read() to get keypresses
etc.

device driver: implements talking to device

top half: handle read()/write() for device file
typically: read/write kernel buffer
if needed, setup device for bottom half

bottom half: handle exceptions from device
typically: if no DMA, copy from kernel buffer to device
respond to device being having input/ready for output/done

2

OS to disk interface
disk takes read/write requests

sector number(s)
location of data for sector
modern disk controllers: typically direct memory access

for spinning disks: close sector numbers → close physically
faster to read/write together

can have queue of pending requests

disk processes them in some order
OS can say “write X before Y”

3

filesystems

4

the FAT filesystem
FAT: File Allocation Table

probably simplest widely used filesystem (family)

named for important data structure: file allocation table

5

FAT and sectors
FAT divides disk into clusters

composed of one or more sectors

sector = minimum amount hardware can read/write
determined by disk hardware
historically 512 bytes, but often bigger now

cluster: typically 512 to 4096 bytes

…

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk

cluster
(filesytem unit)

sector
24

25

6

FAT and sectors
FAT divides disk into clusters

composed of one or more sectors

sector = minimum amount hardware can read/write
determined by disk hardware
historically 512 bytes, but often bigger now

cluster: typically 512 to 4096 bytes

…

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk

cluster
(filesytem unit)

sector
24

25
6

FAT: clusters and files
a file’s data stored in a list of clusters

file size isn’t multiple of cluster size? waste space

reading a file? need to find the list of clusters

…

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk

example.txt

7

FAT: clusters and files
a file’s data stored in a list of clusters

file size isn’t multiple of cluster size? waste space

reading a file? need to find the list of clusters

…

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk

example.txt

7

FAT: the file allocation table
big array on disk, one entry per cluster

each entry contains a number — usually “next cluster”
cluster num. entry value
0 4
1 7
2 5
3 1434… …
1000 4503
1001 1523… …

8

FAT: reading a file (1)
get (from elsewhere) first cluster of data

linked list of cluster numbers

next pointers? file allocation table entry for cluster
special value for NULL (-1 in this example; maybe different in real FAT)

cluster
num.

entry value
… …
10 14
11 23
12 54
13 (end mark)
14 15
15 13
… …

file starting at cluster 10 contains data in:
cluster 10, then 14, then 15, then 13

9

FAT: reading a file (2)
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
entry value index
… …
21 6
8 7
9 8
(end mark) 9
14 10
23 11
54 12
(end mark) 15
15 14
13 15
20 16
… …

file allocation table

block 0

block 1
block 2

block 3

block 0
block 1
block 2

10

FAT: reading a file (2)
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
entry value index
… …
21 6
8 7
9 8
(end mark) 9
14 10
23 11
54 12
(end mark) 15
15 14
13 15
20 16
… …

file allocation table

block 0

block 1
block 2

block 3

block 0
block 1
block 2

10

FAT: reading a file (2)
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
entry value index
… …
21 6
8 7
9 8
(end mark) 9
14 10
23 11
54 12
(end mark) 15
15 14
13 15
20 16
… …

file allocation table

block 0

block 1
block 2

block 3

block 0
block 1
block 2

10

FAT: reading files
to read a file given it’s start location

read the starting cluster X

get the next cluster Y from FAT entry X

read the next cluster

get the next cluster from FAT entry Y

…

until you see an end marker

11

start locations?
really want filenames

stored in directories!

in FAT: directory is a file, but its data is list of:

(name, starting location, other data about file)

12

finding files with directory
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

10

clu
st

er
nu

m
be

r

the disk

dir pt 0

dir pt 1

file “index.html” starting at cluster 10, 12792 bytes
file “assignments.html” starting at cluster 17, 4312 bytes
…
directory “examples” starting at cluster 20
unused entry
…
file “info.html” starting at cluster 50, 23789 bytes

index.html pt 0
index.html pt 1

index.html pt 2
index.html pt 3

(bytes 0-4095 of index.html)

(bytes 4096-8191 of index.html)

(bytes 8192-12287 of index.html)
(bytes 12278-12792 of index.html)
(unused bytes 12792-16384)

13

finding files with directory
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

10

clu
st

er
nu

m
be

r

the disk

dir pt 0

dir pt 1

file “index.html” starting at cluster 10, 12792 bytes
file “assignments.html” starting at cluster 17, 4312 bytes
…
directory “examples” starting at cluster 20
unused entry
…
file “info.html” starting at cluster 50, 23789 bytes

index.html pt 0
index.html pt 1

index.html pt 2
index.html pt 3

(bytes 0-4095 of index.html)

(bytes 4096-8191 of index.html)

(bytes 8192-12287 of index.html)
(bytes 12278-12792 of index.html)
(unused bytes 12792-16384)

13

finding files with directory
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

10

clu
st

er
nu

m
be

r

the disk

dir pt 0

dir pt 1

file “index.html” starting at cluster 10, 12792 bytes
file “assignments.html” starting at cluster 17, 4312 bytes
…
directory “examples” starting at cluster 20
unused entry
…
file “info.html” starting at cluster 50, 23789 bytes

index.html pt 0
index.html pt 1

index.html pt 2
index.html pt 3

(bytes 0-4095 of index.html)

(bytes 4096-8191 of index.html)

(bytes 8192-12287 of index.html)
(bytes 12278-12792 of index.html)
(unused bytes 12792-16384)

13

finding files with directory
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

10

clu
st

er
nu

m
be

r

the disk

dir pt 0

dir pt 1

file “index.html” starting at cluster 10, 12792 bytes
file “assignments.html” starting at cluster 17, 4312 bytes
…
directory “examples” starting at cluster 20
unused entry
…
file “info.html” starting at cluster 50, 23789 bytes

index.html pt 0
index.html pt 1

index.html pt 2
index.html pt 3

(bytes 0-4095 of index.html)

(bytes 4096-8191 of index.html)

(bytes 8192-12287 of index.html)
(bytes 12278-12792 of index.html)
(unused bytes 12792-16384)

13

FAT directory entry box = 1 byte

entry for README.TXT, 342 byte file, starting at cluster 0x104F4

'R' 'E' 'A' 'D' 'M' 'E' '␣''␣' 'T' 'X' 'T' 0x00

filename + extension (README.TXT) attrs
directory?
read-only?
hidden?
…0x000x9C0xA10x200x7D0x3C0x7D0x3C0x010x000xEC0x620x76

creation date + time
(2010-03-29 04:05:03.56)

last access
(2010-03-29)

cluster #
(high bits)

last write
(2010-03-22 12:23:12)

0x3C0xF40x040x560x010x000x00 'F' 'O' 'O' …
last

write
con’t

cluster #
(low bits)

file size
(0x156 bytes)

next directory entry…

32-bit first cluster number split into two parts
(history: used to only be 16-bits)

8 character filename + 3 character extension
longer filenames? encoded using extra directory entries
(special attrs values to distinguish from normal entries)

8 character filename + 3 character extension
history: used to be all that was supported

attributes: is a subdirectory, read-only, …
also marks directory entries used to hold extra filename data

convention: if first character is 0x0 or 0xE5 — unused
0x00: for filling empty space at end of directory
0xE5: ‘hole’ — e.g. from file deletion

14

FAT directory entry box = 1 byte

entry for README.TXT, 342 byte file, starting at cluster 0x104F4

'R' 'E' 'A' 'D' 'M' 'E' '␣''␣' 'T' 'X' 'T' 0x00

filename + extension (README.TXT) attrs
directory?
read-only?
hidden?
…0x000x9C0xA10x200x7D0x3C0x7D0x3C0x010x000xEC0x620x76

creation date + time
(2010-03-29 04:05:03.56)

last access
(2010-03-29)

cluster #
(high bits)

last write
(2010-03-22 12:23:12)

0x3C0xF40x040x560x010x000x00 'F' 'O' 'O' …
last

write
con’t

cluster #
(low bits)

file size
(0x156 bytes)

next directory entry…

32-bit first cluster number split into two parts
(history: used to only be 16-bits)

8 character filename + 3 character extension
longer filenames? encoded using extra directory entries
(special attrs values to distinguish from normal entries)

8 character filename + 3 character extension
history: used to be all that was supported

attributes: is a subdirectory, read-only, …
also marks directory entries used to hold extra filename data

convention: if first character is 0x0 or 0xE5 — unused
0x00: for filling empty space at end of directory
0xE5: ‘hole’ — e.g. from file deletion

14

FAT directory entry box = 1 byte

entry for README.TXT, 342 byte file, starting at cluster 0x104F4

'R' 'E' 'A' 'D' 'M' 'E' '␣''␣' 'T' 'X' 'T' 0x00

filename + extension (README.TXT) attrs
directory?
read-only?
hidden?
…0x000x9C0xA10x200x7D0x3C0x7D0x3C0x010x000xEC0x620x76

creation date + time
(2010-03-29 04:05:03.56)

last access
(2010-03-29)

cluster #
(high bits)

last write
(2010-03-22 12:23:12)

0x3C0xF40x040x560x010x000x00 'F' 'O' 'O' …
last

write
con’t

cluster #
(low bits)

file size
(0x156 bytes)

next directory entry…

32-bit first cluster number split into two parts
(history: used to only be 16-bits)

8 character filename + 3 character extension
longer filenames? encoded using extra directory entries
(special attrs values to distinguish from normal entries)

8 character filename + 3 character extension
history: used to be all that was supported

attributes: is a subdirectory, read-only, …
also marks directory entries used to hold extra filename data

convention: if first character is 0x0 or 0xE5 — unused
0x00: for filling empty space at end of directory
0xE5: ‘hole’ — e.g. from file deletion

14

FAT directory entry box = 1 byte

entry for README.TXT, 342 byte file, starting at cluster 0x104F4

'R' 'E' 'A' 'D' 'M' 'E' '␣''␣' 'T' 'X' 'T' 0x00

filename + extension (README.TXT) attrs
directory?
read-only?
hidden?
…0x000x9C0xA10x200x7D0x3C0x7D0x3C0x010x000xEC0x620x76

creation date + time
(2010-03-29 04:05:03.56)

last access
(2010-03-29)

cluster #
(high bits)

last write
(2010-03-22 12:23:12)

0x3C0xF40x040x560x010x000x00 'F' 'O' 'O' …
last

write
con’t

cluster #
(low bits)

file size
(0x156 bytes)

next directory entry…

32-bit first cluster number split into two parts
(history: used to only be 16-bits)

8 character filename + 3 character extension
longer filenames? encoded using extra directory entries
(special attrs values to distinguish from normal entries)

8 character filename + 3 character extension
history: used to be all that was supported

attributes: is a subdirectory, read-only, …
also marks directory entries used to hold extra filename data

convention: if first character is 0x0 or 0xE5 — unused
0x00: for filling empty space at end of directory
0xE5: ‘hole’ — e.g. from file deletion

14

FAT directory entry box = 1 byte

entry for README.TXT, 342 byte file, starting at cluster 0x104F4

'R' 'E' 'A' 'D' 'M' 'E' '␣''␣' 'T' 'X' 'T' 0x00

filename + extension (README.TXT) attrs
directory?
read-only?
hidden?
…0x000x9C0xA10x200x7D0x3C0x7D0x3C0x010x000xEC0x620x76

creation date + time
(2010-03-29 04:05:03.56)

last access
(2010-03-29)

cluster #
(high bits)

last write
(2010-03-22 12:23:12)

0x3C0xF40x040x560x010x000x00 'F' 'O' 'O' …
last

write
con’t

cluster #
(low bits)

file size
(0x156 bytes)

next directory entry…

32-bit first cluster number split into two parts
(history: used to only be 16-bits)

8 character filename + 3 character extension
longer filenames? encoded using extra directory entries
(special attrs values to distinguish from normal entries)

8 character filename + 3 character extension
history: used to be all that was supported

attributes: is a subdirectory, read-only, …
also marks directory entries used to hold extra filename data

convention: if first character is 0x0 or 0xE5 — unused
0x00: for filling empty space at end of directory
0xE5: ‘hole’ — e.g. from file deletion

14

FAT directory entry box = 1 byte

entry for README.TXT, 342 byte file, starting at cluster 0x104F4

'R' 'E' 'A' 'D' 'M' 'E' '␣''␣' 'T' 'X' 'T' 0x00

filename + extension (README.TXT) attrs
directory?
read-only?
hidden?
…0x000x9C0xA10x200x7D0x3C0x7D0x3C0x010x000xEC0x620x76

creation date + time
(2010-03-29 04:05:03.56)

last access
(2010-03-29)

cluster #
(high bits)

last write
(2010-03-22 12:23:12)

0x3C0xF40x040x560x010x000x00 'F' 'O' 'O' …
last

write
con’t

cluster #
(low bits)

file size
(0x156 bytes)

next directory entry…

32-bit first cluster number split into two parts
(history: used to only be 16-bits)

8 character filename + 3 character extension
longer filenames? encoded using extra directory entries
(special attrs values to distinguish from normal entries)

8 character filename + 3 character extension
history: used to be all that was supported

attributes: is a subdirectory, read-only, …
also marks directory entries used to hold extra filename data

convention: if first character is 0x0 or 0xE5 — unused
0x00: for filling empty space at end of directory
0xE5: ‘hole’ — e.g. from file deletion

14

FAT directory entries (from C)
struct __attribute__((packed)) DirEntry {
uint8_t DIR_Name[11]; // short name
uint8_t DIR_Attr; // File attribute
uint8_t DIR_NTRes; // set value to 0, never change this
uint8_t DIR_CrtTimeTenth; // millisecond timestamp for file creation time
uint16_t DIR_CrtTime; // time file was created
uint16_t DIR_CrtDate; // date file was created
uint16_t DIR_LstAccDate; // last access date
uint16_t DIR_FstClusHI; // high word of this entry's first cluster number
uint16_t DIR_WrtTime; // time of last write
uint16_t DIR_WrtDate; // dat eof last write
uint16_t DIR_FstClusLO; // low word of this entry's first cluster number
uint32_t DIR_FileSize; // file size in bytes

};

GCC/Clang extension to disable padding
normally compilers add padding to structs
(to avoid splitting values across cache blocks or pages)

8/16/32-bit unsigned integer
use exact size that’s on disk
just copy byte-by-byte from disk to memory
(and everything happens to be little-endian)

why are the names so bad (“FstClusHI”, etc.)?
comes from Microsoft’s documentation this way

15

FAT directory entries (from C)
struct __attribute__((packed)) DirEntry {
uint8_t DIR_Name[11]; // short name
uint8_t DIR_Attr; // File attribute
uint8_t DIR_NTRes; // set value to 0, never change this
uint8_t DIR_CrtTimeTenth; // millisecond timestamp for file creation time
uint16_t DIR_CrtTime; // time file was created
uint16_t DIR_CrtDate; // date file was created
uint16_t DIR_LstAccDate; // last access date
uint16_t DIR_FstClusHI; // high word of this entry's first cluster number
uint16_t DIR_WrtTime; // time of last write
uint16_t DIR_WrtDate; // dat eof last write
uint16_t DIR_FstClusLO; // low word of this entry's first cluster number
uint32_t DIR_FileSize; // file size in bytes

};

GCC/Clang extension to disable padding
normally compilers add padding to structs
(to avoid splitting values across cache blocks or pages)

8/16/32-bit unsigned integer
use exact size that’s on disk
just copy byte-by-byte from disk to memory
(and everything happens to be little-endian)

why are the names so bad (“FstClusHI”, etc.)?
comes from Microsoft’s documentation this way

15

FAT directory entries (from C)
struct __attribute__((packed)) DirEntry {
uint8_t DIR_Name[11]; // short name
uint8_t DIR_Attr; // File attribute
uint8_t DIR_NTRes; // set value to 0, never change this
uint8_t DIR_CrtTimeTenth; // millisecond timestamp for file creation time
uint16_t DIR_CrtTime; // time file was created
uint16_t DIR_CrtDate; // date file was created
uint16_t DIR_LstAccDate; // last access date
uint16_t DIR_FstClusHI; // high word of this entry's first cluster number
uint16_t DIR_WrtTime; // time of last write
uint16_t DIR_WrtDate; // dat eof last write
uint16_t DIR_FstClusLO; // low word of this entry's first cluster number
uint32_t DIR_FileSize; // file size in bytes

};

GCC/Clang extension to disable padding
normally compilers add padding to structs
(to avoid splitting values across cache blocks or pages)

8/16/32-bit unsigned integer
use exact size that’s on disk
just copy byte-by-byte from disk to memory
(and everything happens to be little-endian)

why are the names so bad (“FstClusHI”, etc.)?
comes from Microsoft’s documentation this way

15

FAT directory entries (from C)
struct __attribute__((packed)) DirEntry {
uint8_t DIR_Name[11]; // short name
uint8_t DIR_Attr; // File attribute
uint8_t DIR_NTRes; // set value to 0, never change this
uint8_t DIR_CrtTimeTenth; // millisecond timestamp for file creation time
uint16_t DIR_CrtTime; // time file was created
uint16_t DIR_CrtDate; // date file was created
uint16_t DIR_LstAccDate; // last access date
uint16_t DIR_FstClusHI; // high word of this entry's first cluster number
uint16_t DIR_WrtTime; // time of last write
uint16_t DIR_WrtDate; // dat eof last write
uint16_t DIR_FstClusLO; // low word of this entry's first cluster number
uint32_t DIR_FileSize; // file size in bytes

};

GCC/Clang extension to disable padding
normally compilers add padding to structs
(to avoid splitting values across cache blocks or pages)

8/16/32-bit unsigned integer
use exact size that’s on disk
just copy byte-by-byte from disk to memory
(and everything happens to be little-endian)

why are the names so bad (“FstClusHI”, etc.)?
comes from Microsoft’s documentation this way

15

nested directories
foo/bar/baz/file.txt

read root directory entries to find foo

read foo’s directory entries to find bar

read bar’s directory entries to find baz

read baz’s directory entries to find file.txt

16

the root directory?
but where is the first directory?

17

FAT disk header

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
(OS startup data) …

bytes per sector 512
reserved sectors 5

sectors per cluster 4
… …

total sectors 4096
FAT size 11

Number of FATs 2
root directory cluster 10

… …

filesystem header

FAT

backup FAT

root directory
starts here

reserved sectors

18

FAT disk header

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
(OS startup data) …

bytes per sector 512
reserved sectors 5

sectors per cluster 4
… …

total sectors 4096
FAT size 11

Number of FATs 2
root directory cluster 10

… …

filesystem header

FAT

backup FAT

root directory
starts here

reserved sectors

18

FAT disk header

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
(OS startup data) …

bytes per sector 512
reserved sectors 5

sectors per cluster 4
… …

total sectors 4096
FAT size 11

Number of FATs 2
root directory cluster 10

… …

filesystem header

FAT

backup FAT

root directory
starts here

reserved sectors

18

FAT disk header

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
(OS startup data) …

bytes per sector 512
reserved sectors 5

sectors per cluster 4
… …

total sectors 4096
FAT size 11

Number of FATs 2
root directory cluster 10

… …

filesystem header

FAT

backup FAT

root directory
starts here

reserved sectors

18

FAT disk header

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
(OS startup data) …

bytes per sector 512
reserved sectors 5

sectors per cluster 4
… …

total sectors 4096
FAT size 11

Number of FATs 2
root directory cluster 10

… …

filesystem header

FAT

backup FAT

root directory
starts here

reserved sectors

18

FAT disk header

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
(OS startup data) …

bytes per sector 512
reserved sectors 5

sectors per cluster 4
… …

total sectors 4096
FAT size 11

Number of FATs 2
root directory cluster 10

… …

filesystem header

FAT
backup FAT

root directory
starts here

reserved sectors

18

filesystem header
fixed location near beginning of disk

determines size of clusters, etc.

tells where to find FAT, root directory, etc.

19

FAT header (C)
struct __attribute__((packed)) Fat32BPB {
uint8_t BS_jmpBoot[3]; // jmp instr to boot code
uint8_t BS_oemName[8]; // indicates what system formatted this field, default=MSWIN4.1
uint16_t BPB_BytsPerSec; // count of bytes per sector
uint8_t BPB_SecPerClus; // no.of sectors per allocation unit
uint16_t BPB_RsvdSecCnt; // no.of reserved sectors in the reserved region of the volume starting at 1st sector
uint8_t BPB_NumFATs; // count of FAT datastructures on the volume
uint16_t BPB_rootEntCnt; // count of 32-byte entries in root dir, for FAT32 set to 0
uint16_t BPB_totSec16; // total sectors on the volume
uint8_t BPB_media; // value of fixed media

....
uint16_t BPB_ExtFlags; // flags indicating which FATs are active

size of sector (in bytes) and size of cluster (in sectors)

space before file allocation tablenumber of copies of file allocation table
extra copies in case disk is damaged
typically two with writes made to both

20

FAT header (C)
struct __attribute__((packed)) Fat32BPB {
uint8_t BS_jmpBoot[3]; // jmp instr to boot code
uint8_t BS_oemName[8]; // indicates what system formatted this field, default=MSWIN4.1
uint16_t BPB_BytsPerSec; // count of bytes per sector
uint8_t BPB_SecPerClus; // no.of sectors per allocation unit
uint16_t BPB_RsvdSecCnt; // no.of reserved sectors in the reserved region of the volume starting at 1st sector
uint8_t BPB_NumFATs; // count of FAT datastructures on the volume
uint16_t BPB_rootEntCnt; // count of 32-byte entries in root dir, for FAT32 set to 0
uint16_t BPB_totSec16; // total sectors on the volume
uint8_t BPB_media; // value of fixed media

....
uint16_t BPB_ExtFlags; // flags indicating which FATs are active

size of sector (in bytes) and size of cluster (in sectors)

space before file allocation tablenumber of copies of file allocation table
extra copies in case disk is damaged
typically two with writes made to both

20

FAT header (C)
struct __attribute__((packed)) Fat32BPB {
uint8_t BS_jmpBoot[3]; // jmp instr to boot code
uint8_t BS_oemName[8]; // indicates what system formatted this field, default=MSWIN4.1
uint16_t BPB_BytsPerSec; // count of bytes per sector
uint8_t BPB_SecPerClus; // no.of sectors per allocation unit
uint16_t BPB_RsvdSecCnt; // no.of reserved sectors in the reserved region of the volume starting at 1st sector
uint8_t BPB_NumFATs; // count of FAT datastructures on the volume
uint16_t BPB_rootEntCnt; // count of 32-byte entries in root dir, for FAT32 set to 0
uint16_t BPB_totSec16; // total sectors on the volume
uint8_t BPB_media; // value of fixed media

....
uint16_t BPB_ExtFlags; // flags indicating which FATs are active

size of sector (in bytes) and size of cluster (in sectors)

space before file allocation table

number of copies of file allocation table
extra copies in case disk is damaged
typically two with writes made to both

20

FAT header (C)
struct __attribute__((packed)) Fat32BPB {
uint8_t BS_jmpBoot[3]; // jmp instr to boot code
uint8_t BS_oemName[8]; // indicates what system formatted this field, default=MSWIN4.1
uint16_t BPB_BytsPerSec; // count of bytes per sector
uint8_t BPB_SecPerClus; // no.of sectors per allocation unit
uint16_t BPB_RsvdSecCnt; // no.of reserved sectors in the reserved region of the volume starting at 1st sector
uint8_t BPB_NumFATs; // count of FAT datastructures on the volume
uint16_t BPB_rootEntCnt; // count of 32-byte entries in root dir, for FAT32 set to 0
uint16_t BPB_totSec16; // total sectors on the volume
uint8_t BPB_media; // value of fixed media

....
uint16_t BPB_ExtFlags; // flags indicating which FATs are active

size of sector (in bytes) and size of cluster (in sectors)

space before file allocation table

number of copies of file allocation table
extra copies in case disk is damaged
typically two with writes made to both

20

FAT: creating a file
add a directory entry

choose clusters to store file data (how???)

update FAT to link clusters together

21

FAT: creating a file
add a directory entry

choose clusters to store file data (how???)

update FAT to link clusters together

21

FAT: free clusters
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
entry value index
… …
20 18
(free) 19
(end mark) 20
(free) 21
(free) 22
(end mark) 23
(free) 24
35 25
48 26
(free) 27
… …

file allocation table

22

FAT: writing file data
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
entry value index
… …
20 18
(free) 19
-1 (end mark) 20
(free) 22 21
(free) 24 22
-1 (end) 23
(free) (end mark) 24
35 25
48 26
(free) 27
… …

file allocation table

23

FAT: replacing unused directory entry
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
entry value index
… …
20 18
(free) 19
-1 (end mark) 20
(free) 22 21
(free) 24 22
-1 (end) 23
(free) -1 (end) 24
35 25
48 26
(free) 27
… …

file allocation table

directory of new file

“foo.txt”, cluster 11, size …, created …
…
unused entry“new.txt”, cluster 21, size …
…

directory’s data

24

FAT: extending directory
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
entry value index
… …
20 18
(free) 19
-1 (end mark) 20
(free) 22 21
(free) 24 22
-1 (end) 23
(free) -1 (end) 24
35 25
48 26
(free) 27
… …

file allocation table

directory of new file

“foo.txt”, cluster 11, size …, created …
…
“quux.txt”, cluster 104, size …, created …

directory’s data (first cluster)

“new.txt”, cluster 21, size …, created …
unused entry
unused entry
unused entry
…

directory’s data (new second cluster)

25

FAT: exercise
C.txt is file in directory B which is in directory A

consider the following items on disk:
[a] FAT entries for A’s cluster(s)
[b] FAT entries for B’s clsuter(s)
[c] FAT entries for C.txt’s cluster(s)
[d] data clusters for A
[e] data clusters for B
[f] data clusters for C.txt

Ignoring modification timestamp updates,
which of the above may be modified to:

1) assuming directores existed previously, create C.txt
2) truncate C.txt, making it have size 0 bytes (assume prev. not empty)
3) move C.txt from directory B into directory A

26

FAT: exercise
C.txt is file in directory B which is in directory A

consider the following items on disk:
[a] FAT entries for A’s cluster(s)
[b] FAT entries for B’s clsuter(s)
[c] FAT entries for C.txt’s cluster(s)
[d] data clusters for A
[e] data clusters for B
[f] data clusters for C.txt

Ignoring modification timestamp updates,
which of the above may be modified to:

1) assuming directores existed previously, create C.txt

27

FAT: exercise
C.txt is file in directory B which is in directory A

consider the following items on disk:
[a] FAT entries for A’s cluster(s)
[b] FAT entries for B’s clsuter(s)
[c] FAT entries for C.txt’s cluster(s)
[d] data clusters for A
[e] data clusters for B
[f] data clusters for C.txt

Ignoring modification timestamp updates,
which of the above may be modified to:

2) truncate C.txt, making it have size 0 bytes (assume prev. not empty)

28

FAT: exercise
C.txt is file in directory B which is in directory A

consider the following items on disk:
[a] FAT entries for A’s cluster(s)
[b] FAT entries for B’s clsuter(s)
[c] FAT entries for C.txt’s cluster(s)
[d] data clusters for A
[e] data clusters for B
[f] data clusters for C.txt

Ignoring modification timestamp updates,
which of the above may be modified to:

3) move C.txt from directory B into directory A

29

FAT: deleting files
reset FAT entries for file clusters to free (0)

write “unused” character in filename for directory entry
maybe rewrite directory if that’ll save space?

30

exercise
say FAT filesystem with:

4-byte FAT entries
32-byte directory entries
2048-byte clusters

how many FAT entries+clusters (outside of the FAT) is used to
store a directory of 200 30KB files?

count clusters for both directory entries and the file data

how many FAT entries+clusters is used to store a directory of 2000
3KB files?

31

xv6 filesystem
xv6’s filesystem similar to modern Unix filesytems

better at doing contiguous reads than FAT

better at handling crashes

supports hard links

divides disk into blocks instead of clusters

file block numbers, free blocks, etc. in different tables

33

xv6 disk layout

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

bl
oc

k
nu

m
be

r

the disk
(boot block)
super block

log

inode array

free block map

data blocks

superblock — “header”
struct superblock {

uint size;
// Size of file system image (blocks)

uint nblocks;
// # of data blocks

uint ninodes;
// # of inodes

uint nlog;
// # of log blocks

uint logstart;
// block # of first log block

uint inodestart;
// block # of first inode block

uint bmapstart;
// block # of first free map block

};

nblocks

ninodes
inode size

←logstart

←inodestart

←bmapstart

inode — file information
struct dinode {

short type; // File type
// T_DIR, T_FILE, T_DEV

short major; short minor; // T_DEV only

short nlink;
// Number of links to inode in file system

uint size; // Size of file (bytes)
uint addrs[NDIRECT+1];
// Data block addresses

};

location of data as block numbers:
e.g. addrs[0] = 11; addrs[1] = 14;
special case for larger files

free block map — 1 bit per data block
1 if available, 0 if used

allocating blocks: scan for 1 bits
contiguous 1s — contigous blocks

what about finding free inodes
xv6 solution: scan for type = 0

typical Unix solution: separate free inode map

34

xv6 disk layout

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

bl
oc

k
nu

m
be

r

the disk
(boot block)
super block

log

inode array

free block map

data blocks

superblock — “header”
struct superblock {

uint size;
// Size of file system image (blocks)

uint nblocks;
// # of data blocks

uint ninodes;
// # of inodes

uint nlog;
// # of log blocks

uint logstart;
// block # of first log block

uint inodestart;
// block # of first inode block

uint bmapstart;
// block # of first free map block

};

nblocks

ninodes
inode size

←logstart

←inodestart

←bmapstart

inode — file information
struct dinode {

short type; // File type
// T_DIR, T_FILE, T_DEV

short major; short minor; // T_DEV only

short nlink;
// Number of links to inode in file system

uint size; // Size of file (bytes)
uint addrs[NDIRECT+1];
// Data block addresses

};

location of data as block numbers:
e.g. addrs[0] = 11; addrs[1] = 14;
special case for larger files

free block map — 1 bit per data block
1 if available, 0 if used

allocating blocks: scan for 1 bits
contiguous 1s — contigous blocks

what about finding free inodes
xv6 solution: scan for type = 0

typical Unix solution: separate free inode map

34

xv6 disk layout

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

bl
oc

k
nu

m
be

r

the disk
(boot block)
super block

log

inode array

free block map

data blocks

superblock — “header”
struct superblock {

uint size;
// Size of file system image (blocks)

uint nblocks;
// # of data blocks

uint ninodes;
// # of inodes

uint nlog;
// # of log blocks

uint logstart;
// block # of first log block

uint inodestart;
// block # of first inode block

uint bmapstart;
// block # of first free map block

};

nblocks

ninodes
inode size

←logstart

←inodestart

←bmapstart

inode — file information
struct dinode {

short type; // File type
// T_DIR, T_FILE, T_DEV

short major; short minor; // T_DEV only

short nlink;
// Number of links to inode in file system

uint size; // Size of file (bytes)
uint addrs[NDIRECT+1];

// Data block addresses
};

location of data as block numbers:
e.g. addrs[0] = 11; addrs[1] = 14;
special case for larger files

free block map — 1 bit per data block
1 if available, 0 if used

allocating blocks: scan for 1 bits
contiguous 1s — contigous blocks

what about finding free inodes
xv6 solution: scan for type = 0

typical Unix solution: separate free inode map

34

xv6 disk layout

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

bl
oc

k
nu

m
be

r

the disk
(boot block)
super block

log

inode array

free block map

data blocks

superblock — “header”
struct superblock {

uint size;
// Size of file system image (blocks)

uint nblocks;
// # of data blocks

uint ninodes;
// # of inodes

uint nlog;
// # of log blocks

uint logstart;
// block # of first log block

uint inodestart;
// block # of first inode block

uint bmapstart;
// block # of first free map block

};

nblocks

ninodes
inode size

←logstart

←inodestart

←bmapstart

inode — file information
struct dinode {

short type; // File type
// T_DIR, T_FILE, T_DEV

short major; short minor; // T_DEV only

short nlink;
// Number of links to inode in file system

uint size; // Size of file (bytes)
uint addrs[NDIRECT+1];

// Data block addresses
};

location of data as block numbers:
e.g. addrs[0] = 11; addrs[1] = 14;
special case for larger files

free block map — 1 bit per data block
1 if available, 0 if used

allocating blocks: scan for 1 bits
contiguous 1s — contigous blocks

what about finding free inodes
xv6 solution: scan for type = 0

typical Unix solution: separate free inode map

34

xv6 disk layout

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

bl
oc

k
nu

m
be

r

the disk
(boot block)
super block

log

inode array

free block map

data blocks

superblock — “header”
struct superblock {

uint size;
// Size of file system image (blocks)

uint nblocks;
// # of data blocks

uint ninodes;
// # of inodes

uint nlog;
// # of log blocks

uint logstart;
// block # of first log block

uint inodestart;
// block # of first inode block

uint bmapstart;
// block # of first free map block

};

nblocks

ninodes
inode size

←logstart

←inodestart

←bmapstart

inode — file information
struct dinode {

short type; // File type
// T_DIR, T_FILE, T_DEV

short major; short minor; // T_DEV only

short nlink;
// Number of links to inode in file system

uint size; // Size of file (bytes)
uint addrs[NDIRECT+1];
// Data block addresses

};

location of data as block numbers:
e.g. addrs[0] = 11; addrs[1] = 14;
special case for larger files

free block map — 1 bit per data block
1 if available, 0 if used

allocating blocks: scan for 1 bits
contiguous 1s — contigous blocks

what about finding free inodes
xv6 solution: scan for type = 0

typical Unix solution: separate free inode map

34

xv6 disk layout

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

bl
oc

k
nu

m
be

r

the disk
(boot block)
super block

log

inode array

free block map

data blocks

superblock — “header”
struct superblock {

uint size;
// Size of file system image (blocks)

uint nblocks;
// # of data blocks

uint ninodes;
// # of inodes

uint nlog;
// # of log blocks

uint logstart;
// block # of first log block

uint inodestart;
// block # of first inode block

uint bmapstart;
// block # of first free map block

};

nblocks

ninodes
inode size

←logstart

←inodestart

←bmapstart

inode — file information
struct dinode {

short type; // File type
// T_DIR, T_FILE, T_DEV

short major; short minor; // T_DEV only

short nlink;
// Number of links to inode in file system

uint size; // Size of file (bytes)
uint addrs[NDIRECT+1];
// Data block addresses

};

location of data as block numbers:
e.g. addrs[0] = 11; addrs[1] = 14;
special case for larger files

free block map — 1 bit per data block
1 if available, 0 if used

allocating blocks: scan for 1 bits
contiguous 1s — contigous blocks

what about finding free inodes
xv6 solution: scan for type = 0

typical Unix solution: separate free inode map

34

xv6 directory entries
struct dirent {
ushort inum;
char name[DIRSIZ];

};

inum — index into inode array on disk

name — name of file or directory

each directory reference to inode called a hard link
multiple hard links to file allowed!

35

xv6 allocating inodes/blocks
need new inode or data block: linear search

simplest solution: xv6 always takes the first one that’s free

36

xv6 inode: direct and indirect blocks
addrs[0]
addrs[1]

…

addrs[11]
addrs[12]

addrs

…

data blocks

…

indirect block of
direct blocks

37

xv6 file sizes
512 byte blocks

2-byte block pointers: 256 block pointers in the indirect block

256 blocks = 131072 bytes of data referenced

12 direct blocks @ 512 bytes each = 6144 bytes

1 indirect block @ 131072 bytes each = 131072 bytes

maximum file size = 6144 + 131072 bytes

38

Linux ext2 inode
struct ext2_inode {

__le16 i_mode; /* File mode */
__le16 i_uid; /* Low 16 bits of Owner Uid */
__le32 i_size; /* Size in bytes */
__le32 i_atime; /* Access time */
__le32 i_ctime; /* Creation time */
__le32 i_mtime; /* Modification time */
__le32 i_dtime; /* Deletion Time */
__le16 i_gid; /* Low 16 bits of Group Id */
__le16 i_links_count; /* Links count */
__le32 i_blocks; /* Blocks count */
__le32 i_flags; /* File flags */
...
__le32 i_block[EXT2_N_BLOCKS]; /* Pointers to blocks */
...

};

type (regular, directory, device)
and permissions (read/write/execute for owner/group/others)

owner and groupwhole bunch of timessimilar pointers like xv6 FS — but more indirection

39

Linux ext2 inode
struct ext2_inode {

__le16 i_mode; /* File mode */
__le16 i_uid; /* Low 16 bits of Owner Uid */
__le32 i_size; /* Size in bytes */
__le32 i_atime; /* Access time */
__le32 i_ctime; /* Creation time */
__le32 i_mtime; /* Modification time */
__le32 i_dtime; /* Deletion Time */
__le16 i_gid; /* Low 16 bits of Group Id */
__le16 i_links_count; /* Links count */
__le32 i_blocks; /* Blocks count */
__le32 i_flags; /* File flags */
...
__le32 i_block[EXT2_N_BLOCKS]; /* Pointers to blocks */
...

};

type (regular, directory, device)
and permissions (read/write/execute for owner/group/others)

owner and groupwhole bunch of timessimilar pointers like xv6 FS — but more indirection

39

Linux ext2 inode
struct ext2_inode {

__le16 i_mode; /* File mode */
__le16 i_uid; /* Low 16 bits of Owner Uid */
__le32 i_size; /* Size in bytes */
__le32 i_atime; /* Access time */
__le32 i_ctime; /* Creation time */
__le32 i_mtime; /* Modification time */
__le32 i_dtime; /* Deletion Time */
__le16 i_gid; /* Low 16 bits of Group Id */
__le16 i_links_count; /* Links count */
__le32 i_blocks; /* Blocks count */
__le32 i_flags; /* File flags */
...
__le32 i_block[EXT2_N_BLOCKS]; /* Pointers to blocks */
...

};

type (regular, directory, device)
and permissions (read/write/execute for owner/group/others)

owner and group

whole bunch of timessimilar pointers like xv6 FS — but more indirection

39

Linux ext2 inode
struct ext2_inode {

__le16 i_mode; /* File mode */
__le16 i_uid; /* Low 16 bits of Owner Uid */
__le32 i_size; /* Size in bytes */
__le32 i_atime; /* Access time */
__le32 i_ctime; /* Creation time */
__le32 i_mtime; /* Modification time */
__le32 i_dtime; /* Deletion Time */
__le16 i_gid; /* Low 16 bits of Group Id */
__le16 i_links_count; /* Links count */
__le32 i_blocks; /* Blocks count */
__le32 i_flags; /* File flags */
...
__le32 i_block[EXT2_N_BLOCKS]; /* Pointers to blocks */
...

};

type (regular, directory, device)
and permissions (read/write/execute for owner/group/others)

owner and group

whole bunch of times

similar pointers like xv6 FS — but more indirection

39

Linux ext2 inode
struct ext2_inode {

__le16 i_mode; /* File mode */
__le16 i_uid; /* Low 16 bits of Owner Uid */
__le32 i_size; /* Size in bytes */
__le32 i_atime; /* Access time */
__le32 i_ctime; /* Creation time */
__le32 i_mtime; /* Modification time */
__le32 i_dtime; /* Deletion Time */
__le16 i_gid; /* Low 16 bits of Group Id */
__le16 i_links_count; /* Links count */
__le32 i_blocks; /* Blocks count */
__le32 i_flags; /* File flags */
...
__le32 i_block[EXT2_N_BLOCKS]; /* Pointers to blocks */
...

};

type (regular, directory, device)
and permissions (read/write/execute for owner/group/others)

owner and groupwhole bunch of times

similar pointers like xv6 FS — but more indirection

39

double/triple indirect

i_block[0]
i_block[1]
i_block[2]
i_block[3]
i_block[4]
i_block[5]
i_block[6]
i_block[7]
i_block[8]
i_block[9]
i_block[10]
i_block[11]
i_block[12]
i_block[13]
i_block[14]

…

……
…

… …

block pointers

blocks of block pointers

data blocks

12 direct pointers

indirect pointer
double-indirect pointer
triple-indirect pointer

40

double/triple indirect

i_block[0]
i_block[1]
i_block[2]
i_block[3]
i_block[4]
i_block[5]
i_block[6]
i_block[7]
i_block[8]
i_block[9]
i_block[10]
i_block[11]
i_block[12]
i_block[13]
i_block[14]

…

……
…

… …

block pointers

blocks of block pointers

data blocks

12 direct pointers

indirect pointer
double-indirect pointer
triple-indirect pointer

40

double/triple indirect

i_block[0]
i_block[1]
i_block[2]
i_block[3]
i_block[4]
i_block[5]
i_block[6]
i_block[7]
i_block[8]
i_block[9]
i_block[10]
i_block[11]
i_block[12]
i_block[13]
i_block[14]

…

……
…

… …

block pointers

blocks of block pointers

data blocks

12 direct pointers

indirect pointer
double-indirect pointer
triple-indirect pointer

40

double/triple indirect

i_block[0]
i_block[1]
i_block[2]
i_block[3]
i_block[4]
i_block[5]
i_block[6]
i_block[7]
i_block[8]
i_block[9]
i_block[10]
i_block[11]
i_block[12]
i_block[13]
i_block[14]

…

……
…

… …

block pointers

blocks of block pointers

data blocks

12 direct pointers

indirect pointer

double-indirect pointer
triple-indirect pointer

40

double/triple indirect

i_block[0]
i_block[1]
i_block[2]
i_block[3]
i_block[4]
i_block[5]
i_block[6]
i_block[7]
i_block[8]
i_block[9]
i_block[10]
i_block[11]
i_block[12]
i_block[13]
i_block[14]

…

……
…

… …

block pointers

blocks of block pointers

data blocks

12 direct pointers

indirect pointer

double-indirect pointer

triple-indirect pointer

40

double/triple indirect

i_block[0]
i_block[1]
i_block[2]
i_block[3]
i_block[4]
i_block[5]
i_block[6]
i_block[7]
i_block[8]
i_block[9]
i_block[10]
i_block[11]
i_block[12]
i_block[13]
i_block[14]

…

……
…

… …

block pointers

blocks of block pointers

data blocks

12 direct pointers

indirect pointer
double-indirect pointer

triple-indirect pointer

40

ext2 indirect blocks (1)
12 direct block pointers

1 indirect block pointer
pointer to block containing more direct block pointers

1 double indirect block pointer
pointer to block containing more indirect block pointers

1 triple indirect block pointer
pointer to block containing more double indirect block pointers

exercise: if 1K blocks, 4 byte block pointers, how big can a file be?

41

ext2 indirect blocks (1)
12 direct block pointers

1 indirect block pointer
pointer to block containing more direct block pointers

1 double indirect block pointer
pointer to block containing more indirect block pointers

1 triple indirect block pointer
pointer to block containing more double indirect block pointers

exercise: if 1K blocks, 4 byte block pointers, how big can a file be?

41

ext2 indirect blocks (solution)
12 direct pointers: first 1K (block size) × 12 bytes of data
1 indirect pointer:

points to block with 1K (block size)/4 byte (pointer size) = 256 pointers
256 pointers point to 1K blocks
next 256KB of data

1 double indirect pointer
points to block with 1K (block size)/4 byte (pointer size) = 256 pointers
256 pointers point to pointers that each are like an indirect pointer
256KB per indirect pointer → next 256 · 256 KB of data

1 triple indiret
next 256 · 256 · 256 KB of data

total size: 12 + 256 + 2562 + 2563 KB = 16843020 KB ≈ 16GB
42

ext2 indirect blocks (2)
12 direct block pointers

1 indirect block pointer

1 double indirect block pointer

1 triple indirect block pointer

exercise: if 1K (210 byte) blocks, 4 byte block pointers,
how does OS find byte 215 of the file?

(1) using indirect pointer or double-indirect pointer in inode?
(2) what index of block pointer array pointed to by pointer in inode?

43

ext2 indirect blocks (2) (solution)
byte 215 = 32KB into file

12 direct pointers: first 1K (block size) × 12 bytes of data

1 indirect pointer:
points to block with 1K (block size)/4 byte (pointer size) = 256 pointers
256 pointers point to 1K blocks
next 256KB of data

going to be (32 - 12)th element

44

empirical file sizes

Roselli et al, “A Comparison of Filesystem Workloads”, in FAST 2000 45

typical file sizes
most files are small

sometimes 50+% less than 1kbyte
often 80-95% less than 10kbyte
reason to want small block sizes
sometimes other optimizations for small files

doens’t mean large files are unimportant
still take up most of the space
biggest performance problems
reason to want large block sizes?

46

extents
large file? lists of many thousands of blocks is awkward

…and requires multiple reads from disk to get

solution: store extents: (start disk block, size)
replaces or supplements block list

Linux’s ext4 and Windows’s NTFS both use this

47

allocating extents
challenge: finding contiguous sets of free blocks

NTFS: scan block map for “best fit”
look for big enough chunk of free blocks
choose smallest among all the candidates

don’t find any? okay: use more than one extent

48

seeking with extents
challenge: finding byte X of the file

with block pointers: can compute index

with extents: need to scan list?

49

filesystem reliability
a crash happens — what’s the state of my filesystem?

50

hard disk atomicity
interrupt a hard drive write?

write whole disk sector or corrupt it

hard drive/SSD stores checksum for each sector

write interrupted? — checksum mismatch
hard drive/SSD returns read error

51

reliability issues
is the filesystem in a consistent state?

do we know what blocks are free?
do we know what files exist?
is the data for files actually what was written?

also important topics, but won’t spend much time on these:

what data will I lose if storage fails?
mirroring, erasure coding (e.g. RAID) — using multiple storage devices
idea: if one storage device fails, other(s) still have data

what data will I lose if I make a mistake?
filesystem can store multiple versions
“snapshots” of what was previously there

52

several bad options (1)
suppose we’re moving a file from one directory to another on xv6
steps:

A: write new directory entry
B: overwrite (remove) old directory entry

if we do A before B and crash happens after A:
can have extra pointer of file
problem: if old directory entry removed later, will get confused and free
the file!

if we do B before A and crash happens after B:
the file disappeared entirely!

53

several bad options (1)
suppose we’re moving a file from one directory to another on xv6
steps:

A: write new directory entry
B: overwrite (remove) old directory entry

if we do A before B and crash happens after A:
can have extra pointer of file
problem: if old directory entry removed later, will get confused and free
the file!

if we do B before A and crash happens after B:
the file disappeared entirely!

53

several bad options (1)
suppose we’re moving a file from one directory to another on xv6
steps:

A: write new directory entry
B: overwrite (remove) old directory entry

if we do A before B and crash happens after A:
can have extra pointer of file
problem: if old directory entry removed later, will get confused and free
the file!

if we do B before A and crash happens after B:
the file disappeared entirely!

53

beyond ordering
recall: updating a sector is atomic

happens entirely or doesn’t

can we make filesystem updates work this way?

yes — ‘just’ make updating one sector do the update

54

beyond ordering
recall: updating a sector is atomic

happens entirely or doesn’t

can we make filesystem updates work this way?

yes — ‘just’ make updating one sector do the update

54

concept: transaction
transaction: bunch of updates that happen all at once

implementation trick: one update means transaction “commits”
update done — whole transaction happened
update not done — whole transaction did not happen

55

redo logging: file creation

B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactionslater, start applying results to actual diskwhen everything is written, can overwrite log

56

redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 =

C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operations

write commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactionslater, start applying results to actual diskwhen everything is written, can overwrite log

56

redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operations

write commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactionslater, start applying results to actual diskwhen everything is written, can overwrite log

56

redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactionslater, start applying results to actual diskwhen everything is written, can overwrite log

56

redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactions

later, start applying results to actual diskwhen everything is written, can overwrite log

56

redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactions

later, start applying results to actual disk

when everything is written, can overwrite log

56

redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactionslater, start applying results to actual disk

when everything is written, can overwrite log

56

redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactionslater, start applying results to actual disk

when everything is written, can overwrite log

56

redo logging: file creation

write to log transaction steps:
data blocks to create
direcotry entry, inode to write
directory inode (size, time)
update

normal operation

write to log “commit transaction”
in any order:

update file data blocks
update directory entry
update file inode
update directory inode

reclaim space in log
“garbage collection”

crash before commit?
file not created
no partial operation to real data

crash after commit?
file created
promise: will perform logged updates
(after system reboots/recovers)

read log and…

ignore any operation with no
“commit”

redo any operation with
“commit”

already done? — okay, setting
inode twice

reclaim space in log

recovery

57

redo logging: file creation

write to log transaction steps:
data blocks to create
direcotry entry, inode to write
directory inode (size, time)
update

normal operation

write to log “commit transaction”
in any order:

update file data blocks
update directory entry
update file inode
update directory inode

reclaim space in log
“garbage collection”

crash before commit?
file not created
no partial operation to real data

crash after commit?
file created
promise: will perform logged updates
(after system reboots/recovers)

read log and…

ignore any operation with no
“commit”

redo any operation with
“commit”

already done? — okay, setting
inode twice

reclaim space in log

recovery

57

redo logging: file creation

write to log transaction steps:
data blocks to create
direcotry entry, inode to write
directory inode (size, time)
update

normal operation

write to log “commit transaction”
in any order:

update file data blocks
update directory entry
update file inode
update directory inode

reclaim space in log
“garbage collection”

crash before commit?
file not created
no partial operation to real data

crash after commit?
file created
promise: will perform logged updates
(after system reboots/recovers)

read log and…

ignore any operation with no
“commit”

redo any operation with
“commit”

already done? — okay, setting
inode twice

reclaim space in log

recovery

57

redo logging: file creation

write to log transaction steps:
data blocks to create
direcotry entry, inode to write
directory inode (size, time)
update

normal operation

write to log “commit transaction”
in any order:

update file data blocks
update directory entry
update file inode
update directory inode

reclaim space in log
“garbage collection”

crash before commit?
file not created
no partial operation to real data

crash after commit?
file created
promise: will perform logged updates
(after system reboots/recovers)

read log and…

ignore any operation with no
“commit”

redo any operation with
“commit”

already done? — okay, setting
inode twice

reclaim space in log

recovery

57

redo logging: file creation

write to log transaction steps:
data blocks to create
direcotry entry, inode to write
directory inode (size, time)
update

normal operation

write to log “commit transaction”
in any order:

update file data blocks
update directory entry
update file inode
update directory inode

reclaim space in log
“garbage collection”

crash before commit?
file not created
no partial operation to real data

crash after commit?
file created
promise: will perform logged updates
(after system reboots/recovers)

read log and…

ignore any operation with no
“commit”

redo any operation with
“commit”

already done? — okay, setting
inode twice

reclaim space in log

recovery

57

idempotency
logged operations should be okay to do twice = idempotent

good example: set inode link count to 4

bad example: increment inode link count

good example: overwrite inode number X with new value
as long as last committed inode value in log is right…

bad example: allocate new inode with particular contents

good example: overwrite data block with new value

bad example: append data to last used block of file

58

redo logging summary
write intended operation to the log

before ever touching ‘real’ data
in format that’s safe to do twice

write marker to commit to the log
if exists, the operation will be done eventually

actually update the real data

59

redo logging and filesystems
filesystems that do redo logging are called journalling filesystems

60

exercise (1)
suppose OS performing operation of appending 100KB to a 100KB
file X in directory Y and uses redo logging, ext2-like filesystem with
1KB blocks, 4B block pointers

part 1: what’s modified?
[A] free block map
[B] data blocks for file
[C] indirect blocks for file
[D] data blocks for directory
[E] inode for file
[F] inode for directory
[G] the log

61

exercise (2)
suppose OS performing operation of appending 100KB to a 100KB
file X in directory Y and uses redo logging

part 2: crash happens after writing:
log entries for entire operation
free block map changes
indirect blocks for file

…what is written after restart as part of this operation?
[A] free block map
[B] data blocks for file
[C] indirect blocks for file
[D] data blocks for directory
[E] inode for file
[F] inode for directory
[G] the log 62

degrees of consistency
not all journalling filesystem use redo logging for everything

some use it only for metadata operations

some use it for both metadata and user data

only metadata: avoids lots of duplicate writing

metadata+user data: integrity of user data guaranteed

63

the xv6 journal

number of blocks
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction
start: num blocks = 0

1 write changed blocks

2 write log header
(commits transaction)

3 write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

64

the xv6 journal

number of blocks
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction

start: num blocks = 0

1 write changed blocks

2 write log header
(commits transaction)

3 write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

64

the xv6 journal

number of blocks = 0
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction

start: num blocks = 0

1 write changed blocks

2 write log header
(commits transaction)

3 write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

64

the xv6 journal

number of blocks = 0
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction
start: num blocks = 0

1 write changed blocks

2 write log header
(commits transaction)

3 write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

64

the xv6 journal

number of blocks = N
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction
start: num blocks = 0

1 write changed blocks

2 write log header
(commits transaction)

3 write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

64

the xv6 journal

number of blocks = N
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction
start: num blocks = 0

1 write changed blocks

2 write log header
(commits transaction)

3 write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

64

the xv6 journal

number of blocks = N= 0
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction
start: num blocks = 0

1 write changed blocks

2 write log header
(commits transaction)

3 write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

64

what is a transaction?
so far: each file update?

faster to do batch of updates together
one log write finishes lots of things
don’t wait to write

xv6 solution: combine lots of updates into one transaction

only commit when…
no active file operation, or
not enough room left in log for more operations

65

what is a transaction?
so far: each file update?

faster to do batch of updates together
one log write finishes lots of things
don’t wait to write

xv6 solution: combine lots of updates into one transaction

only commit when…
no active file operation, or
not enough room left in log for more operations

65

mounting filesystems
Unix-like system

root filesystem appears as /

other filesystems appear as directory
e.g. lab machines: my home dir is in filesystem at /net/zf15

directories that are filesystems look like normal directories
/net/zf15/.. is /net (even though in different filesystems)

66

mounts on a dept. machine
/dev/sda1 on / type ext4 (rw,errors=remount−ro)
proc on /proc type proc (rw,noexec,nosuid,nodev)
...
udev on /dev type devtmpfs (rw,mode=0755)
devpts on /dev/pts type devpts (rw,noexec,nosuid,gid=5,mode=0620)
tmpfs on /run type tmpfs (rw,noexec,nosuid,size=10%,mode=0755)
...
/dev/sda3 on /localtmp type ext4 (rw)
...
zfs1:/zf2 on /net/zf2 type nfs (rw,hard,intr,proto=udp,nfsvers=3,

noacl,sloppy,addr=128.143.136.9)
zfs3:/zf19 on /net/zf19 type nfs (rw,hard,intr,proto=udp,nfsvers=3,

noacl,sloppy,addr=128.143.67.236)
zfs4:/sw on /net/sw type nfs (rw,hard,intr,proto=udp,nfsvers=3,

noacl,sloppy,addr=128.143.136.9)
zfs3:/zf14 on /net/zf14 type nfs (rw,hard,intr,proto=udp,nfsvers=3,

noacl,sloppy,addr=128.143.67.236)
...

67

kernel FS abstractions
Linux: virtual file system API

object-oriented, based on FFS-style filesystem

to implement a filesystem, create object types for:
superblock (represents “header”)
inode (represents file)
dentry (represents cached directory entry)
file (represents open file)

common code handles directory traversal
and caches directory traversals

common code handles file descriptors, etc.
68

backup slides

69

exercise
say xv6 filesystem with:

64-byte inodes (12 direct + 1 indirect pointer)
16-byte directory entries
512 byte blocks
2-byte block pointers

how many blocks (not storing inodes) is used to store a directory of
200 30464B (29 · 1024 + 256 byte) files?

remember: blocks could include blocks storing data or block pointers or
directory enties

how many blocks is used to store a directory of 2000 3KB files?

70

fragments
Linux FS: a file’s last block can be a fragment — only part of a
block

each block split into approx. 4 fragments
each fragment has its own index

extra field in inode indicates that last block is fragment

allows one block to store data for several small files

71

beyond mirroring
mirroring seems to waste a lot of space

10 disks of data? mirroring → 20 disks

10 disks of data? how good can we do with 15 disks?

best possible: lose 5 disks, still okay
can’t do better or it wasn’t really 10 disks of data

schemes that do this based on erasure codes
erasure code: encode data in way that handles parts missing (being
erased)

72

erasure code example
store 2 disks of data on 3 disks

recompute original 2 disks of data from any 2 of the 3 disks

extra disk of data: some formula based on the original disks
common choice: bitwise XOR

common set of schemes like this: RAID
Redundant Array of Independent Disks

73

snapshots
filesystem snapshots

idea: filesystem keeps old versions of files around
accidental deletion? old version stil there
eventually discard some old versions

can access snapshot of files at prior time

mechanism: copy-on-write

changing file makes new copy of filesystem

common parts shared between versions

74

snapshots
filesystem snapshots

idea: filesystem keeps old versions of files around
accidental deletion? old version stil there
eventually discard some old versions

can access snapshot of files at prior time

mechanism: copy-on-write

changing file makes new copy of filesystem

common parts shared between versions

74

inode and copy-on-write

inode

indirect blocks

…

…

file data

…

new inode

update: new data blocks
+ new indirect blocks
+ new inode

both old+new inode valid

unchanged parts of file sharedchallenge: FFS/xv6/ext2 design
has big array of inodes

don’t want to write new copy
of entire inode array

75

inode and copy-on-write

old
inode

indirect blocks

…

…

file data

…

new inode

update: new data blocks
+ new indirect blocks
+ new inode

both old+new inode valid

unchanged parts of file sharedchallenge: FFS/xv6/ext2 design
has big array of inodes

don’t want to write new copy
of entire inode array

75

inode and copy-on-write

old
inode

indirect blocks

…

…

file data

…

new inode

update: new data blocks
+ new indirect blocks
+ new inode

both old+new inode valid

unchanged parts of file shared

challenge: FFS/xv6/ext2 design
has big array of inodes

don’t want to write new copy
of entire inode array

75

inode and copy-on-write

old
inode

indirect blocks

…

…

file data

…

new inode

update: new data blocks
+ new indirect blocks
+ new inode

both old+new inode valid

unchanged parts of file shared

challenge: FFS/xv6/ext2 design
has big array of inodes

don’t want to write new copy
of entire inode array

75

extra indirection for inode array

root inode
indirect blocks

…

arrays of inodes
split into pieces

…

old
inode

update one inode?

create new root inode
+ pointers

unchanged parts of
inode array
shared between versions

multiple snapshots?
array of root inodes

76

extra indirection for inode array

root inode
indirect blocks

…

arrays of inodes
split into pieces

…

old
inode

update one inode?

create new root inode
+ pointers

unchanged parts of
inode array
shared between versions

multiple snapshots?
array of root inodes

76

extra indirection for inode array

root inode
indirect blocks

…

arrays of inodes
split into pieces

…

old
inode

update one inode?

create new root inode
+ pointers

unchanged parts of
inode array
shared between versions

multiple snapshots?
array of root inodes

76

extra indirection for inode array

root inode
indirect blocks

…

arrays of inodes
split into pieces

…

old
inode

update one inode?

create new root inode
+ pointers

unchanged parts of
inode array
shared between versions

multiple snapshots?
array of root inodes

76

extra indirection for inode array

root inode
indirect blocks

…

arrays of inodes
split into pieces

…

old
inode

update one inode?

create new root inode
+ pointers

unchanged parts of
inode array
shared between versions

multiple snapshots?
array of root inodes

76

copy-on-write indirection
file update = replace with new version

array of versions of entire filesystem

only copy modified parts
keep reference counts, like for paging assignment

lots of pointers — only change pointers where modifications happen

77

snapshots in practice
ZFS supports this (if turned on)

example: .zfs/snapshots/11.11.18-06 pseudo-directory

contains contents of files at 11 November 2018 6AM

78

multiple copies
FAT: multiple copies of file allocation table and header

in inode-based filesystems: often multiple copies of superblocks

if part of disk’s data is lost, have an extra copy
always update both copies
hope: disk failure to small group of sectors

hope: enough to recover most files on disk failure
extra copy of metadata that is important for all files
but won’t recover specific files/directories whose data was lost

79

aside: FAT date encoding
seperate date and time fields (16 bits, little-endian integers)

bits 0-4: seconds (divided by 2), 5-10: minute, 11-15: hour

bits 0-4: day, 5-8: month, 9-15: year (minus 1980)

sometimes extra field for 100s(?) of a second

80

Fast File System
the Berkeley Fast File System (FFS) ‘solved’ some of these
problems

McKusick et al, “A Fast File System for UNIX” https:
//people.eecs.berkeley.edu/~brewer/cs262/FFS.pdf
avoids long seek times, wasting space for tiny files

Linux’s ext2 filesystem based on FFS

some other notable newer solutions (beyond what FFS/ext2 do)
better handling of very large files
avoiding linear directory searches

81

https://people.eecs.berkeley.edu/~brewer/cs262/FFS.pdf
https://people.eecs.berkeley.edu/~brewer/cs262/FFS.pdf

block groups
(AKA cluster groups)

blocks
for /bigfile.txt

more blocks
for /bigfile.txt

more blocks
for /bigfile.txt

split disk into block groups
each block group like a mini-filesystem

split block + inode numbers across the groups
inode in one block group can reference blocks in another
(but would rather not)

goal: most data for each directory within a block group
directory entries + inodes + file data close on disk
lower seek times!

large files might need to be split across block groups

disk
super
block

free
map

inode
array data for block group 1

block group 1

inodes
0–1023

blocks 1–8191for directories /, /a/b/c, /w/f

free
map

inode
array data for block group 2

block group 2

inodes
1024–2047

blocks 8192–16383for directories /a, /d, /q

free
map

inode
array data for block group 2

block group 2

inodes
1024–2047

blocks 8192–16383for directories /a, /d, /q

free
map

inode
array data for block group 3

block group 3

inodes
2048–3071

blocks 16384–24575for directories /b, /a/b, /w

free
map

inode
array data for block group 4

block group 4

inodes
3072–4095

blocks 16384–24575for directories /c, /d/g, /r

free
map

inode
array data for block group 4

block group 4

inodes
3072–4095

blocks 16384–24575for directories /c, /d/g, /r

free
map

inode
array data for block group 5

block group 5

inodes
4096–5119

blocks 24576–32767for directories /e, /a/b/d

82

block groups
(AKA cluster groups)

blocks
for /bigfile.txt

more blocks
for /bigfile.txt

more blocks
for /bigfile.txt

split disk into block groups
each block group like a mini-filesystem

split block + inode numbers across the groups
inode in one block group can reference blocks in another
(but would rather not)

goal: most data for each directory within a block group
directory entries + inodes + file data close on disk
lower seek times!

large files might need to be split across block groups

disk
super
block

free
map

inode
array data for block group 1

block group 1

inodes
0–1023

blocks 1–8191

for directories /, /a/b/c, /w/f

free
map

inode
array data for block group 2

block group 2

inodes
1024–2047

blocks 8192–16383

for directories /a, /d, /q

free
map

inode
array data for block group 2

block group 2

inodes
1024–2047

blocks 8192–16383

for directories /a, /d, /q

free
map

inode
array data for block group 3

block group 3

inodes
2048–3071

blocks 16384–24575

for directories /b, /a/b, /w

free
map

inode
array data for block group 4

block group 4

inodes
3072–4095

blocks 16384–24575

for directories /c, /d/g, /r

free
map

inode
array data for block group 4

block group 4

inodes
3072–4095

blocks 16384–24575

for directories /c, /d/g, /r

free
map

inode
array data for block group 5

block group 5

inodes
4096–5119

blocks 24576–32767

for directories /e, /a/b/d

82

block groups
(AKA cluster groups)

blocks
for /bigfile.txt

more blocks
for /bigfile.txt

more blocks
for /bigfile.txt

split disk into block groups
each block group like a mini-filesystem

split block + inode numbers across the groups
inode in one block group can reference blocks in another
(but would rather not)

goal: most data for each directory within a block group
directory entries + inodes + file data close on disk
lower seek times!

large files might need to be split across block groups

disk
super
block

free
map

inode
array data for block group 1

block group 1inodes
0–1023

blocks 1–8191

for directories /, /a/b/c, /w/f

free
map

inode
array data for block group 2

block group 2inodes
1024–2047

blocks 8192–16383

for directories /a, /d, /q

free
map

inode
array data for block group 2

block group 2inodes
1024–2047

blocks 8192–16383

for directories /a, /d, /q

free
map

inode
array data for block group 3

block group 3inodes
2048–3071

blocks 16384–24575

for directories /b, /a/b, /w

free
map

inode
array data for block group 4

block group 4inodes
3072–4095

blocks 16384–24575

for directories /c, /d/g, /r

free
map

inode
array data for block group 4

block group 4inodes
3072–4095

blocks 16384–24575

for directories /c, /d/g, /r

free
map

inode
array data for block group 5

block group 5inodes
4096–5119

blocks 24576–32767

for directories /e, /a/b/d

82

block groups
(AKA cluster groups)

blocks
for /bigfile.txt

more blocks
for /bigfile.txt

more blocks
for /bigfile.txt

split disk into block groups
each block group like a mini-filesystem

split block + inode numbers across the groups
inode in one block group can reference blocks in another
(but would rather not)

goal: most data for each directory within a block group
directory entries + inodes + file data close on disk
lower seek times!

large files might need to be split across block groups

disk
super
block

free
map

inode
array data for block group 1

block group 1inodes
0–1023

blocks 1–8191for directories /, /a/b/c, /w/f

free
map

inode
array data for block group 2

block group 2inodes
1024–2047

blocks 8192–16383for directories /a, /d, /q

free
map

inode
array data for block group 2

block group 2inodes
1024–2047

blocks 8192–16383for directories /a, /d, /q

free
map

inode
array data for block group 3

block group 3inodes
2048–3071

blocks 16384–24575for directories /b, /a/b, /w

free
map

inode
array data for block group 4

block group 4inodes
3072–4095

blocks 16384–24575for directories /c, /d/g, /r

free
map

inode
array data for block group 4

block group 4inodes
3072–4095

blocks 16384–24575for directories /c, /d/g, /r

free
map

inode
array data for block group 5

block group 5inodes
4096–5119

blocks 24576–32767for directories /e, /a/b/d

82

allocation within block groups
In-use block

Expected typical arrangement.

Start of
Block Group

Free block

Small files fill holes near start of block group.

Start of
Block Group

Write a two block file

Large files fill holes near start of block group and then write
most data to sequential range blocks.

Write a large file
Start of

Block Group

Anderson and Dahlin, Operating Systems: Principles and Practice 2nd edition, Figure 13.14 83

FFS block groups
making a subdirectory: new block group

for inode + data (entries) in different

writing a file: same block group as directory, first free block
intuition: non-small files get contiguous groups at end of block
FFS keeps disk deliberately underutilized (e.g. 10% free) to ensure this

can wait until dirty file data flushed from cache to allocate blocks
makes it easier to allocate contiguous ranges of blocks

84

several bad options (2)
suppose we’re creating a new file

A: mark blocks as used in free block map
B: write inode for file
C: write directory entry for file

if we do A before B+C and crash happens after A:
have blocks we can’t use (not free), but which are unused

if we do B before A+C and crash happens after B:
have inode we can’t use (not free), but which is not really used

if we do C before A+B and crash happens after C:
have directory entry that points to junk — will behave weirdly

85

several bad options (2)
suppose we’re creating a new file

A: mark blocks as used in free block map
B: write inode for file
C: write directory entry for file

if we do A before B+C and crash happens after A:
have blocks we can’t use (not free), but which are unused

if we do B before A+C and crash happens after B:
have inode we can’t use (not free), but which is not really used

if we do C before A+B and crash happens after C:
have directory entry that points to junk — will behave weirdly

85

several bad options (2)
suppose we’re creating a new file

A: mark blocks as used in free block map
B: write inode for file
C: write directory entry for file

if we do A before B+C and crash happens after A:
have blocks we can’t use (not free), but which are unused

if we do B before A+C and crash happens after B:
have inode we can’t use (not free), but which is not really used

if we do C before A+B and crash happens after C:
have directory entry that points to junk — will behave weirdly

85

several bad options (2)
suppose we’re creating a new file

A: mark blocks as used in free block map
B: write inode for file
C: write directory entry for file

if we do A before B+C and crash happens after A:
have blocks we can’t use (not free), but which are unused

if we do B before A+C and crash happens after B:
have inode we can’t use (not free), but which is not really used

if we do C before A+B and crash happens after C:
have directory entry that points to junk — will behave weirdly

85

xv6 filesystem performance issues
inode, block map stored far away from file data

long seek times for reading files

unintelligent choice of file/directory data blocks
xv6 finds first free block/inode
result: files/directory entries scattered about

blocks are pretty small — needs lots of space for metadata
could change size? but waste space for small files
large files have giant lists of blocks

linear searches of directory entries to resolve paths

87

xv6 filesystem performance issues
inode, block map stored far away from file data

long seek times for reading files

unintelligent choice of file/directory data blocks
xv6 finds first free block/inode
result: files/directory entries scattered about

blocks are pretty small — needs lots of space for metadata
could change size? but waste space for small files
large files have giant lists of blocks

linear searches of directory entries to resolve paths

88

xv6 filesystem performance issues
inode, block map stored far away from file data

long seek times for reading files

unintelligent choice of file/directory data blocks
xv6 finds first free block/inode
result: files/directory entries scattered about

blocks are pretty small — needs lots of space for metadata
could change size? but waste space for small files
large files have giant lists of blocks

linear searches of directory entries to resolve paths

89

xv6 filesystem performance issues
inode, block map stored far away from file data

long seek times for reading files

unintelligent choice of file/directory data blocks
xv6 finds first free block/inode
result: files/directory entries scattered about

blocks are pretty small — needs lots of space for metadata
could change size? but waste space for small files
large files have giant lists of blocks

linear searches of directory entries to resolve paths

90

recall: FAT: file creation (1)
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
entry value index
… …
20 18
0 (free) 19
-1 (end mark) 20
0 (free) 22 21
0 (free) 24 22
-1 (end) 23
0 (free) -1 (end) 24
35 25
48 26
0 (free) 27
… …

file allocation table

91

recall: FAT: file creation (2)
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
entry value index
… …
20 18
0 (free) 19
-1 (end mark) 20
0 (free) 22 21
0 (free) 24 22
-1 (end) 23
0 (free) -1 (end) 24
35 25
48 26
0 (free) 27
… …

file allocation table

directory of new file

“foo.txt”, cluster 11, size …, created …
…
“quux.txt”, cluster 104, size …, created …

“new.txt”, cluster 21, size …, created …
unused entry
unused entry
unused entry
…

92

exercise: FAT file creation
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
1 FAT entries for directory + file
2
3 new directory cluster

4
5 new file clusters
6

6 clusters to write
on loss of power: only some completed

exercise: what happens if only 1, 2 complete?
everything but 3?

93

exercise: FAT file creation
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
1 FAT entries for directory + file
2
3 new directory cluster

4
5 new file clusters
6

6 clusters to write
on loss of power: only some completed
exercise: what happens if only 1, 2 complete?
everything but 3?

93

exercise: FAT ordering
(creating a file that needs new cluster of direntries)
1. FAT entry for extra directory cluster
2. FAT entry for new file clusters
3. file clusters
4. file’s directory entry (in new directory cluster)

what ordering is best if a crash happens in the middle?
A. 1, 2, 3, 4
B. 4, 3, 1, 2
C. 1, 3, 4, 2
D. 3, 4, 2, 1
E. 3, 1, 4, 2

94

exercise: xv6 FS ordering
(creating a file that neeeds new block of direntries)
1. free block map for new directory block
2. free block map for new file block
3. directory inode
4. new file inode
5. new directory entry for file (in new directory block)
6. file data blocks

what ordering is best if a crash happens in the middle?
A. 1, 2, 3, 4, 5, 6
B. 6, 5, 4, 3, 2, 1
C. 1, 2, 6, 5, 4, 3
D. 2, 6, 4, 1, 5, 3
E. 3, 4, 1, 2, 5, 6

ignoring journalling for now — we’ll talk about it later
95

inode-based FS: careful ordering
mark blocks as allocated before referring to them from directories

write data blocks before writing pointers to them from inodes

write inodes before directory entries pointing to it

remove inode from directory before marking inode as free
or decreasing link count, if there’s another hard link

idea: better to waste space than point to bad data

96

recovery with careful ordering
avoiding data loss → can ‘fix’ inconsistencies

programs like fsck (filesystem check), chkdsk (check disk)
run manually or periodically or after abnormal shutdown

97

inode-based FS: creating a file

allocate data block

write data block

update free block map

update file inode

update directory entry
filename+inode number

update direcotry inode
modification time

normal operation

general rule:
better to waste space
than point to bad data

mark blocks/inodes used before writing block/inode pointers

read all directory entries

scan all inodes

free unused inodes
unused = not in directory

free unused data blocks
unused = not in inode lists

scan directories for missing
update/access times

recovery (fsck)

98

inode-based FS: creating a file

allocate data block

write data block

update free block map

update file inode

update directory entry
filename+inode number

update direcotry inode
modification time

normal operation
general rule:
better to waste space
than point to bad data

mark blocks/inodes used before writing block/inode pointers

read all directory entries

scan all inodes

free unused inodes
unused = not in directory

free unused data blocks
unused = not in inode lists

scan directories for missing
update/access times

recovery (fsck)

98

inode-based FS: creating a file

allocate data block

write data block

update free block map

update file inode

update directory entry
filename+inode number

update direcotry inode
modification time

normal operation

general rule:
better to waste space
than point to bad data

mark blocks/inodes used before writing block/inode pointers

read all directory entries

scan all inodes

free unused inodes
unused = not in directory

free unused data blocks
unused = not in inode lists

scan directories for missing
update/access times

recovery (fsck)

98

inode-based FS: exercise: unlink
what order to remove a hard link (= directory entry) for file?

1. overwrite directroy entry for file
2. decrement link count in inode (but link count still > 1 so don’t remove)

assume not the last hard link

what does recovery operation do?

99

inode-based FS: exercise: unlink
what order to remove a hard link (= directory entry) for file?

1. overwrite directroy entry for file
2. decrement link count in inode (but link count still > 1 so don’t remove)

assume not the last hard link

what does recovery operation do?

99

inode-based FS: exercise: unlink last
what order to remove a hard link (= directory entry) for file?

1. overwrite last directroy entry for file
2. mark inode as free (link count = 0 now)
3. mark inode’s data blocks as free

assume is the last hard link

what does recovery operation do?

100

inode-based FS: exercise: unlink last
what order to remove a hard link (= directory entry) for file?

1. overwrite last directroy entry for file
2. mark inode as free (link count = 0 now)
3. mark inode’s data blocks as free

assume is the last hard link

what does recovery operation do?

100

fsck
Unix typically has an fsck utility

Windows equivalent: chkdsk

checks for filesystem consistency
is a data block marked as used that no inodes uses?
is a data block referred to by two different inodes?
is a inode marked as used that no directory references?
is the link count for each inode = number of directories referencing it?
…

assuming careful ordering, can fix errors after a crash without loss

maybe can fix other errors, too

101

fsck costs
my desktop’s filesystem:
2.4M used inodes; 379.9M of 472.4M used blocks

recall: check for data block marked as used that no inode uses:
read blocks containing all of the 2.4M used inodes
add each block pointer to a list of used blocks
if they have indirect block pointers, read those blocks, too
get list of all used blocks (via direct or indirect pointers)
compare list of used blocks to actual free block bitmap

pretty expensive and slow

102

running fsck automatically
common to have “clean” bit in superblock

last thing written (to set) on shutdown

first thing written (to clear) on startup

on boot: if clean bit clear, run fsck first

103

ordering and disk performance
recall: seek times

would like to order writes based on locations on disk
write many things in one pass of disk head
write many things in cylinder in one rotation

ordering constraints make this hard:

free block map for file (start), then file blocks (middle), then…

file inode (start), then directory (middle), …

104

ordering and disk performance
recall: seek times

would like to order writes based on locations on disk
write many things in one pass of disk head
write many things in cylinder in one rotation

ordering constraints make this hard:

free block map for file (start), then file blocks (middle), then…

file inode (start), then directory (middle), …

104

mirroring whole disks
alternate strategy: write everything to two disks

always write to both

read from either
(or different parts of both – faster!)

105

mirroring whole disks
alternate strategy: write everything to two disks

always write to both

read from either
(or different parts of both – faster!)

105

mirroring whole disks
alternate strategy: write everything to two disks

always write to both

read from either
(or different parts of both – faster!)

105

beyond mirroring
mirroring seems to waste a lot of space

10 disks of data? mirroring → 20 disks

10 disks of data? how good can we do with 15 disks?

best possible: lose 5 disks, still okay
can’t do better or it wasn’t really 10 disks of data

schemes that do this based on erasure codes
erasure code: encode data in way that handles parts missing (being
erased)

106

erasure code example
store 2 disks of data on 3 disks

recompute original 2 disks of data from any 2 of the 3 disks

extra disk of data: some formula based on the original disks
common choice: bitwise XOR

common set of schemes like this: RAID
Redundant Array of Independent Disks

107

exericse
filesystem has:

root directory with 2 subdirectories
each subdirectory contains 3 512B files, 2 4MB files
(1MB = 1024KB; 1KB = 1024B)
32B directory entries
4B block pointers
4KB blocks
inode: 12 direct pointers, 1 indirect pointer, 1 double-indirect, 1
triple-indirect

(a) how many inodes used?
(b) how many blocks (outside of inodes) with 1KB fragments?
[minimum w/partial blocks]
(c) how many blocks (outside of inodes) with block pointers
replaced by 8B extents (no fragments)? [compute minimum] 108

inodes used
per each of 2 subdirectories: 5 files + 1 inode for subdirectory = 6

plus 1 for root directory itself

= 12 + 1 = 13

110

blocks with fragments
each of 6 512B files uses a single 1KB fragment

wastes 512Bs of it

each of 2 subdirectory needs 32B · 5 � 1KB (1 fragment)
(5 directory entries; probably also additional entries for ..)

root directory needs 32B · 2 � 1KB (1 fragment)

9 1KB fragments → minimum 3 (4KB) blocks

each of 4 4MB file uses 1024 data blocks
1 indirect block for blocks 13-(1024+13) [last 12 pointers unused]

= 4096 blocks (4MB files data) + 4 (4MB file indirects) + 3 (for fragments)
= 4103 blocks

112

blocks with extents
each of 6 512B files uses a single 4KB block

extent specifying block

each of 2 subdirectory needs 32B · 5 � 4KB (1 block)

root directory needs 32B · 2 � 4KB (1 block)

each of 2 4MB file uses 2048 data blocks

no indirect blocks assuming 2048 data blocks are contiguous (one
extent in inode)

= 4096 blocks (4MB files data) + 6 (small files) + 3 (directory entries) =
4105 blocks

114

redo logging problems
doesn’t the log get infinitely big?

writing everything twice?

115

redo logging problems
doesn’t the log get infinitely big?

writing everything twice?

116

limiting log size
once transaction is written to real data, can discard

sometimes called “garbage collecting” the log

may sometimes need to block to free up log space
perform logged updates before adding more to log

hope: usually log cleanup happens “in the background”

117

redo logging problems
doesn’t the log get infinitely big?

writing everything twice?

118

lots of writing?
entire log can be written sequentially

ideal for hard disk performance
also pretty good for SSDs

no waiting for ‘real’ updates
application can proceed while updates are happening
files will be updated even if system crashes

often better for performance!

119

readahead implementation ideas?
which of these is probably best?

(a) when there’s a page fault requring reading page X of a file from
disk, read pages X and X + 1
(b) when there’s a page fault requring reading page X > 200 of a
file from disk, read the rest of the file
(c) when page fault occurs for page X of a file, read pages X
through X + 200 and proactively add all to the current program’s
page table
(d) when page fault occurs for page X of a file, read pages X
through X + 200 but don’t place pages X + 1 through X + 200 in
the page table yet

120

readahead heuristics
exercise: devise an algorithm to detect to do readahead.

how to detect the reading pattern?

need to record subset of accesses to see sequential pattern
not enough to look at misses!
want to check when readahead pages are used — keep up with program

when to start reads?

takes some time to read in data — well before needed

how much to readahead?

if too much: evict other stuff programs need
if too little: won’t keep up with program
if too little: won’t make efficient use of HDD/SSD/etc.

121

readahead heuristics
exercise: devise an algorithm to detect to do readahead.

how to detect the reading pattern?
need to record subset of accesses to see sequential pattern
not enough to look at misses!
want to check when readahead pages are used — keep up with program

when to start reads?

takes some time to read in data — well before needed

how much to readahead?

if too much: evict other stuff programs need
if too little: won’t keep up with program
if too little: won’t make efficient use of HDD/SSD/etc.

121

readahead heuristics
exercise: devise an algorithm to detect to do readahead.

how to detect the reading pattern?
need to record subset of accesses to see sequential pattern
not enough to look at misses!
want to check when readahead pages are used — keep up with program

when to start reads?
takes some time to read in data — well before needed

how much to readahead?

if too much: evict other stuff programs need
if too little: won’t keep up with program
if too little: won’t make efficient use of HDD/SSD/etc.

121

readahead heuristics
exercise: devise an algorithm to detect to do readahead.

how to detect the reading pattern?
need to record subset of accesses to see sequential pattern
not enough to look at misses!
want to check when readahead pages are used — keep up with program

when to start reads?
takes some time to read in data — well before needed

how much to readahead?
if too much: evict other stuff programs need
if too little: won’t keep up with program
if too little: won’t make efficient use of HDD/SSD/etc.

121

problems with LRU
question: when does LRU perform poorly?

only reading things once

repeated scans of large amounts of data

both common access patterns for files

122

exercise: which of these is LRU bad for?
code in a text editor for handling out-of-disk-space errors

initial values of the shell’s global variales

on a desktop, long movies that are too big to fit in memory and
played from beginning to end

on web server, long movies that are too big to fit in memory and
frequently downloaded by clients

files that are parsed when loaded and overwritten when saved

on web server, frequently requested HTML files

123

problems with LRU
question: when does LRU perform poorly?

only reading things once

repeated scans of large amounts of data

both common access patterns for files

124

problems with LRU
question: when does LRU perform poorly?

only reading things once

repeated scans of large amounts of data

both common access patterns for files

124

solution for LRU being bad?
one idea that Linux uses:

for file data, use different replacement policy

tries to avoid keeping around file data accessed only once

125

CLOCK-Pro: special casing for one-use pages
by default, Linux tries to handle scanning of files

one read of file data — e.g. play a video, load file into memory

basic idea: delay considering pages active until second access
second access = second scan of accessed bits/etc.

single scans of file won’t “pollute” cache

without this change: reading large files slows down other programs
recently read part of large file steals space from active programs

126

solid state disk architecture
controller

(includes CPU)

RAM

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

127

flash
no moving parts

no seek time, rotational latency

can read in sector-like sizes (“pages”) (e.g. 4KB or 16KB)

write once between erasures

erasure only in large erasure blocks (often 256KB to megabytes!)

can only rewrite blocks order tens of thousands of times
after that, flash starts failing

128

SSDs: flash as disk
SSDs: implement hard disk interface for NAND flash

read/write sectors at a time
sectors much smaller than erasure blocks
sectors sometimes smaller than flash ‘pages’
read/write with use sector numbers, not addresses
queue of read/writes

need to hide erasure blocks
trick: block remapping — move where sectors are in flash

need to hide limit on number of erases
trick: wear levening — spread writes out

129

block remapping

being written

Flash
Translation

Layer

logical physical
0 93
1 260
… …
31 74
32 75
… …

remapping table

OS sector numbers flash locations

pages 0–63

pages 64–127

pages 128–191

pages 192-255

pages 256-319

pages 320-383

pages 128–191

pages 192–255

pages 256–319
erased block

can only erase
whole “erasure block”

“garbage collection”
(free up new space)

copied from erased

active data
erased + ready-to-write

unused (rewritten elsewhere)

read sector 31write sector 32

130

block remapping

being written

Flash
Translation

Layer

logical physical
0 93
1 260
… …
31 74
32 75
… …

remapping table

OS sector numbers flash locations

pages 0–63

pages 64–127

pages 128–191

pages 192-255

pages 256-319

pages 320-383

pages 128–191

pages 192–255

pages 256–319
erased block

can only erase
whole “erasure block”

“garbage collection”
(free up new space)

copied from erased

active data
erased + ready-to-write

unused (rewritten elsewhere)

read sector 31write sector 32

130

block remapping

being written

Flash
Translation

Layer

logical physical
0 93
1 260
… …
31 74
32 75
… …

remapping table

OS sector numbers flash locations

pages 0–63

pages 64–127

pages 128–191

pages 192-255

pages 256-319

pages 320-383

pages 128–191

pages 192–255

pages 256–319
erased block

can only erase
whole “erasure block”

“garbage collection”
(free up new space)

copied from erased

active data
erased + ready-to-write

unused (rewritten elsewhere)

read sector 31

write sector 32

130

block remapping

being written

Flash
Translation

Layer

logical physical
0 93
1 260
… …
31 74
32 75 163
… …

remapping table

OS sector numbers flash locations

pages 0–63

pages 64–127

pages 128–191

pages 192-255

pages 256-319

pages 320-383

pages 128–191

pages 192–255

pages 256–319
erased block

can only erase
whole “erasure block”

“garbage collection”
(free up new space)

copied from erased

active data
erased + ready-to-write

unused (rewritten elsewhere)

read sector 31

write sector 32

130

block remapping

being written

Flash
Translation

Layer

logical physical
0 93
1 260 187
… …
31 74
32 75 163
… …

remapping table

OS sector numbers flash locations

pages 0–63

pages 64–127

pages 128–191

pages 192-255

pages 256-319

pages 320-383

pages 128–191

pages 192–255

pages 256–319
erased block

can only erase
whole “erasure block”

“garbage collection”
(free up new space)

copied from erased

active data
erased + ready-to-write

unused (rewritten elsewhere)

read sector 31write sector 32

130

block remapping
controller contains mapping: sector → location in flash

on write: write sector to new location

eventually do garbage collection of sectors
if erasure block contains some replaced sectors and some current sectors…
copy current blocks to new locationt to reclaim space from replaced
sectors

doing this efficiently is very complicated

SSDs sometimes have a ‘real’ processor for this purpose

131

exercise
Assuming a FAT-like filesystem on an SSD, which of the following
are likely to be stored in the same (or very small number of) erasure
block?

[a] the clusters of a set of log file all in one directory written continuously
over months by a server and assigned a contiguous range of cluster
numbers
[b] the data clusters of a set of images, copied all at once from a camera
and assigned a variety of cluster numbers
[c] all the entires of the FAT (assume the OS only rewrites a sector of
the FAT if it is changed)

132

SSD performance
reads/writes: sub-millisecond

contiguous blocks don’t really matter

can depend a lot on the controller
faster/slower ways to handle block remapping

writing can be slower, especially when almost full
controller may need to move data around to free up erasure blocks
erasing an erasure block is pretty slow (milliseconds?)

133

extra SSD operations
SSDs sometimes implement non-HDD operations

on operation: TRIM

way for OS to mark sectors as unused/erase them

SSD can remove sectors from block map
more efficient than zeroing blocks
frees up more space for writing new blocks

134

aside: future storage
emerging non-volatile memories…

slower than DRAM (“normal memory”)

faster than SSDs

read/write interface like DRAM but persistent

capacities similar to/larger than DRAM

135

	last time
	disk interface: sectors
	filesystems
	the FAT filesystem
	intro and file allocation table
	reading a file
	directories are files
	header for the disk
	allocating files
	exercise: space used (one file)
	deleting files
	exercise: space used (multiple files)

	xv6 filesystem
	inodes, direct, indirect blocks
	exercise 1

	empirical file sizes
	extents
	redundancy/reliability
	filesystem corruption

	write-ahead logging
	idea: beyond ordering
	redo logging
	exercise
	degrees of consistency
	the xv6 FS journal
	mounts

	backup slides
	xv6 space exercise
	fragments
	erasure coding (extremely briefly)
	snapshots and copy-on-write
	redundancy [if time]
	FAT date encoding
	FFS

	block groups
	filesystem corruption (alt)
	xv6 filesystem performance problems
	FAT update ordering and crashes
	xv6 FS update ordering and crashes
	ordering rules
	aside: ordering and disk performance
	mirroring disks
	erasure coding (extremely briefly)

	fragments+extent exercise
	redo logging overhead/GC
	redo logging: lots of writing?
	exercise?

	readahead heuristics, generally

	non-LRU patterns
	when is LRU bad?
	read once patterns

	SSD operation and performance
	generally
	block remapping
	exercise
	performance
	TRIM

	misc. storage media

