
1



Changelog
12 April 2022: change xv6 file sizes slide to correct block pointer
size

2



last time
FAT filesystem

header — global/general information

divide disk into clusters (possibly larger than sector)

files+directory ‘data’ stored in one+ whole clusters

linked list identifies clusters making up file/directory
file allocation table — one number per (potential data) cluster

next pointers for linked list
indicate which clusters are free

directory entries
‘data’ for directories
starting location, name, etc. about file/dir in directory

3



on debugging issues
having better tests for paging/protection helped less than I hoped

too many students not getting to the point of looking at tests

tests not good enough at diagnosing certain types of memory
corruption

e.g. freeing non-heap pages incorrectly

probably should have discouraged students from modifying kfree()
more elegant/less code, but harder to debug than other options

4



on office hour queues
too much OH time per student given number waiting

we can’t spend 15 uninterrupted minutes/student with one TA + 15
students waiting
TAs/I sometimes have trouble switching away from students (e.g. while
they’re gathering debugging info, when they get to a new problem)
adjusting the queue ordering can’t really fix this issue

we can be more useful with better problems
we’re less useful when student has done less investigation of what ran
before crash/etc.

need faster switching between students
ideally can help other students while waiting for student to add
debugging/etc.
in practice: especially on Discord, doesn’t happen as much as I hoped

5



xv6 filesystem
xv6’s filesystem similar to modern Unix filesytems

better at doing contiguous reads than FAT

better at handling crashes

supports hard links

divides disk into blocks instead of clusters

file block numbers, free blocks, etc. in different tables

7



xv6 disk layout

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

bl
oc

k
nu

m
be

r

the disk
(boot block)
super block

log

inode array

free block map

data blocks

superblock — “header”
struct superblock {

uint size;
// Size of file system image (blocks)

uint nblocks;
// # of data blocks

uint ninodes;
// # of inodes

uint nlog;
// # of log blocks

uint logstart;
// block # of first log block

uint inodestart;
// block # of first inode block

uint bmapstart;
// block # of first free map block

};

nblocks

ninodes
inode size

←logstart

←inodestart

←bmapstart

inode — file information
struct dinode {

short type; // File type
// T_DIR, T_FILE, T_DEV

short major; short minor; // T_DEV only

short nlink;
// Number of links to inode in file system

uint size; // Size of file (bytes)
uint addrs[NDIRECT+1];
// Data block addresses

};

location of data as block numbers:
e.g. addrs[0] = 11; addrs[1] = 14;
special case for larger files

free block map — 1 bit per data block
1 if available, 0 if used

allocating blocks: scan for 1 bits
contiguous 1s — contigous blocks

what about finding free inodes
xv6 solution: scan for type = 0

typical Unix solution: separate free inode map

8



xv6 disk layout

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

bl
oc

k
nu

m
be

r

the disk
(boot block)
super block

log

inode array

free block map

data blocks

superblock — “header”
struct superblock {

uint size;
// Size of file system image (blocks)

uint nblocks;
// # of data blocks

uint ninodes;
// # of inodes

uint nlog;
// # of log blocks

uint logstart;
// block # of first log block

uint inodestart;
// block # of first inode block

uint bmapstart;
// block # of first free map block

};

nblocks

ninodes
inode size

←logstart

←inodestart

←bmapstart

inode — file information
struct dinode {

short type; // File type
// T_DIR, T_FILE, T_DEV

short major; short minor; // T_DEV only

short nlink;
// Number of links to inode in file system

uint size; // Size of file (bytes)
uint addrs[NDIRECT+1];
// Data block addresses

};

location of data as block numbers:
e.g. addrs[0] = 11; addrs[1] = 14;
special case for larger files

free block map — 1 bit per data block
1 if available, 0 if used

allocating blocks: scan for 1 bits
contiguous 1s — contigous blocks

what about finding free inodes
xv6 solution: scan for type = 0

typical Unix solution: separate free inode map

8



xv6 disk layout

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

bl
oc

k
nu

m
be

r

the disk
(boot block)
super block

log

inode array

free block map

data blocks

superblock — “header”
struct superblock {

uint size;
// Size of file system image (blocks)

uint nblocks;
// # of data blocks

uint ninodes;
// # of inodes

uint nlog;
// # of log blocks

uint logstart;
// block # of first log block

uint inodestart;
// block # of first inode block

uint bmapstart;
// block # of first free map block

};

nblocks

ninodes
inode size

←logstart

←inodestart

←bmapstart

inode — file information
struct dinode {

short type; // File type
// T_DIR, T_FILE, T_DEV

short major; short minor; // T_DEV only

short nlink;
// Number of links to inode in file system

uint size; // Size of file (bytes)
uint addrs[NDIRECT+1];

// Data block addresses
};

location of data as block numbers:
e.g. addrs[0] = 11; addrs[1] = 14;
special case for larger files

free block map — 1 bit per data block
1 if available, 0 if used

allocating blocks: scan for 1 bits
contiguous 1s — contigous blocks

what about finding free inodes
xv6 solution: scan for type = 0

typical Unix solution: separate free inode map

8



xv6 disk layout

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

bl
oc

k
nu

m
be

r

the disk
(boot block)
super block

log

inode array

free block map

data blocks

superblock — “header”
struct superblock {

uint size;
// Size of file system image (blocks)

uint nblocks;
// # of data blocks

uint ninodes;
// # of inodes

uint nlog;
// # of log blocks

uint logstart;
// block # of first log block

uint inodestart;
// block # of first inode block

uint bmapstart;
// block # of first free map block

};

nblocks

ninodes
inode size

←logstart

←inodestart

←bmapstart

inode — file information
struct dinode {

short type; // File type
// T_DIR, T_FILE, T_DEV

short major; short minor; // T_DEV only

short nlink;
// Number of links to inode in file system

uint size; // Size of file (bytes)
uint addrs[NDIRECT+1];

// Data block addresses
};

location of data as block numbers:
e.g. addrs[0] = 11; addrs[1] = 14;
special case for larger files

free block map — 1 bit per data block
1 if available, 0 if used

allocating blocks: scan for 1 bits
contiguous 1s — contigous blocks

what about finding free inodes
xv6 solution: scan for type = 0

typical Unix solution: separate free inode map

8



xv6 disk layout

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

bl
oc

k
nu

m
be

r

the disk
(boot block)
super block

log

inode array

free block map

data blocks

superblock — “header”
struct superblock {

uint size;
// Size of file system image (blocks)

uint nblocks;
// # of data blocks

uint ninodes;
// # of inodes

uint nlog;
// # of log blocks

uint logstart;
// block # of first log block

uint inodestart;
// block # of first inode block

uint bmapstart;
// block # of first free map block

};

nblocks

ninodes
inode size

←logstart

←inodestart

←bmapstart

inode — file information
struct dinode {

short type; // File type
// T_DIR, T_FILE, T_DEV

short major; short minor; // T_DEV only

short nlink;
// Number of links to inode in file system

uint size; // Size of file (bytes)
uint addrs[NDIRECT+1];
// Data block addresses

};

location of data as block numbers:
e.g. addrs[0] = 11; addrs[1] = 14;
special case for larger files

free block map — 1 bit per data block
1 if available, 0 if used

allocating blocks: scan for 1 bits
contiguous 1s — contigous blocks

what about finding free inodes
xv6 solution: scan for type = 0

typical Unix solution: separate free inode map

8



xv6 disk layout

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

bl
oc

k
nu

m
be

r

the disk
(boot block)
super block

log

inode array

free block map

data blocks

superblock — “header”
struct superblock {

uint size;
// Size of file system image (blocks)

uint nblocks;
// # of data blocks

uint ninodes;
// # of inodes

uint nlog;
// # of log blocks

uint logstart;
// block # of first log block

uint inodestart;
// block # of first inode block

uint bmapstart;
// block # of first free map block

};

nblocks

ninodes
inode size

←logstart

←inodestart

←bmapstart

inode — file information
struct dinode {

short type; // File type
// T_DIR, T_FILE, T_DEV

short major; short minor; // T_DEV only

short nlink;
// Number of links to inode in file system

uint size; // Size of file (bytes)
uint addrs[NDIRECT+1];
// Data block addresses

};

location of data as block numbers:
e.g. addrs[0] = 11; addrs[1] = 14;
special case for larger files

free block map — 1 bit per data block
1 if available, 0 if used

allocating blocks: scan for 1 bits
contiguous 1s — contigous blocks

what about finding free inodes
xv6 solution: scan for type = 0

typical Unix solution: separate free inode map

8



xv6 directory entries
struct dirent {
ushort inum;
char name[DIRSIZ];

};

inum — index into inode array on disk

name — name of file or directory

each directory reference to inode called a hard link
multiple hard links to file allowed!

9



xv6 allocating inodes/blocks
need new inode or data block: linear search

simplest solution: xv6 always takes the first one that’s free

10



xv6 FS pros versus FAT
support for reliability — log

more on this later

possibly easier to scan for free blocks
more compact free block map

easier to find location of kth block of file
element of addrs array

file type/size information held with block locations
inode number = everything about open file
easier to read/modify file info all at once?

11



missing pieces
what’s the log? (more on that later)

other file metadata?
creation times, etc. — xv6 doesn’t have it

not good at taking advantage of HDD architecture

12



xv6 inode: direct and indirect blocks
addrs[0]
addrs[1]

…

addrs[11]
addrs[12]

addrs

…

data blocks

…

indirect block of
direct blocks

13



xv6 file sizes
512 byte blocks

2-byte block pointers: 256 block pointers in the indirect block

256 blocks = 131072 bytes of data referenced

12 direct blocks @ 512 bytes each = 6144 bytes

1 indirect block @ 131072 bytes each = 131072 bytes

maximum file size = 6144 + 131072 bytes

14



Linux ext2 inode
struct ext2_inode {

__le16 i_mode; /* File mode */
__le16 i_uid; /* Low 16 bits of Owner Uid */
__le32 i_size; /* Size in bytes */
__le32 i_atime; /* Access time */
__le32 i_ctime; /* Creation time */
__le32 i_mtime; /* Modification time */
__le32 i_dtime; /* Deletion Time */
__le16 i_gid; /* Low 16 bits of Group Id */
__le16 i_links_count; /* Links count */
__le32 i_blocks; /* Blocks count */
__le32 i_flags; /* File flags */
...
__le32 i_block[EXT2_N_BLOCKS]; /* Pointers to blocks */
...

};

type (regular, directory, device)
and permissions (read/write/execute for owner/group/others)

owner and groupwhole bunch of timessimilar pointers like xv6 FS — but more indirection

15



Linux ext2 inode
struct ext2_inode {

__le16 i_mode; /* File mode */
__le16 i_uid; /* Low 16 bits of Owner Uid */
__le32 i_size; /* Size in bytes */
__le32 i_atime; /* Access time */
__le32 i_ctime; /* Creation time */
__le32 i_mtime; /* Modification time */
__le32 i_dtime; /* Deletion Time */
__le16 i_gid; /* Low 16 bits of Group Id */
__le16 i_links_count; /* Links count */
__le32 i_blocks; /* Blocks count */
__le32 i_flags; /* File flags */
...
__le32 i_block[EXT2_N_BLOCKS]; /* Pointers to blocks */
...

};

type (regular, directory, device)
and permissions (read/write/execute for owner/group/others)

owner and groupwhole bunch of timessimilar pointers like xv6 FS — but more indirection

15



Linux ext2 inode
struct ext2_inode {

__le16 i_mode; /* File mode */
__le16 i_uid; /* Low 16 bits of Owner Uid */
__le32 i_size; /* Size in bytes */
__le32 i_atime; /* Access time */
__le32 i_ctime; /* Creation time */
__le32 i_mtime; /* Modification time */
__le32 i_dtime; /* Deletion Time */
__le16 i_gid; /* Low 16 bits of Group Id */
__le16 i_links_count; /* Links count */
__le32 i_blocks; /* Blocks count */
__le32 i_flags; /* File flags */
...
__le32 i_block[EXT2_N_BLOCKS]; /* Pointers to blocks */
...

};

type (regular, directory, device)
and permissions (read/write/execute for owner/group/others)

owner and group

whole bunch of timessimilar pointers like xv6 FS — but more indirection

15



Linux ext2 inode
struct ext2_inode {

__le16 i_mode; /* File mode */
__le16 i_uid; /* Low 16 bits of Owner Uid */
__le32 i_size; /* Size in bytes */
__le32 i_atime; /* Access time */
__le32 i_ctime; /* Creation time */
__le32 i_mtime; /* Modification time */
__le32 i_dtime; /* Deletion Time */
__le16 i_gid; /* Low 16 bits of Group Id */
__le16 i_links_count; /* Links count */
__le32 i_blocks; /* Blocks count */
__le32 i_flags; /* File flags */
...
__le32 i_block[EXT2_N_BLOCKS]; /* Pointers to blocks */
...

};

type (regular, directory, device)
and permissions (read/write/execute for owner/group/others)

owner and group

whole bunch of times

similar pointers like xv6 FS — but more indirection

15



Linux ext2 inode
struct ext2_inode {

__le16 i_mode; /* File mode */
__le16 i_uid; /* Low 16 bits of Owner Uid */
__le32 i_size; /* Size in bytes */
__le32 i_atime; /* Access time */
__le32 i_ctime; /* Creation time */
__le32 i_mtime; /* Modification time */
__le32 i_dtime; /* Deletion Time */
__le16 i_gid; /* Low 16 bits of Group Id */
__le16 i_links_count; /* Links count */
__le32 i_blocks; /* Blocks count */
__le32 i_flags; /* File flags */
...
__le32 i_block[EXT2_N_BLOCKS]; /* Pointers to blocks */
...

};

type (regular, directory, device)
and permissions (read/write/execute for owner/group/others)

owner and groupwhole bunch of times

similar pointers like xv6 FS — but more indirection

15



double/triple indirect

i_block[0]
i_block[1]
i_block[2]
i_block[3]
i_block[4]
i_block[5]
i_block[6]
i_block[7]
i_block[8]
i_block[9]
i_block[10]
i_block[11]
i_block[12]
i_block[13]
i_block[14]

…

……
…

… …

block pointers

blocks of block pointers

data blocks

12 direct pointers

indirect pointer
double-indirect pointer
triple-indirect pointer

16



double/triple indirect

i_block[0]
i_block[1]
i_block[2]
i_block[3]
i_block[4]
i_block[5]
i_block[6]
i_block[7]
i_block[8]
i_block[9]
i_block[10]
i_block[11]
i_block[12]
i_block[13]
i_block[14]

…

……
…

… …

block pointers

blocks of block pointers

data blocks

12 direct pointers

indirect pointer
double-indirect pointer
triple-indirect pointer

16



double/triple indirect

i_block[0]
i_block[1]
i_block[2]
i_block[3]
i_block[4]
i_block[5]
i_block[6]
i_block[7]
i_block[8]
i_block[9]
i_block[10]
i_block[11]
i_block[12]
i_block[13]
i_block[14]

…

……
…

… …

block pointers

blocks of block pointers

data blocks

12 direct pointers

indirect pointer
double-indirect pointer
triple-indirect pointer

16



double/triple indirect

i_block[0]
i_block[1]
i_block[2]
i_block[3]
i_block[4]
i_block[5]
i_block[6]
i_block[7]
i_block[8]
i_block[9]
i_block[10]
i_block[11]
i_block[12]
i_block[13]
i_block[14]

…

……
…

… …

block pointers

blocks of block pointers

data blocks

12 direct pointers

indirect pointer

double-indirect pointer
triple-indirect pointer

16



double/triple indirect

i_block[0]
i_block[1]
i_block[2]
i_block[3]
i_block[4]
i_block[5]
i_block[6]
i_block[7]
i_block[8]
i_block[9]
i_block[10]
i_block[11]
i_block[12]
i_block[13]
i_block[14]

…

……
…

… …

block pointers

blocks of block pointers

data blocks

12 direct pointers

indirect pointer

double-indirect pointer

triple-indirect pointer

16



double/triple indirect

i_block[0]
i_block[1]
i_block[2]
i_block[3]
i_block[4]
i_block[5]
i_block[6]
i_block[7]
i_block[8]
i_block[9]
i_block[10]
i_block[11]
i_block[12]
i_block[13]
i_block[14]

…

……
…

… …

block pointers

blocks of block pointers

data blocks

12 direct pointers

indirect pointer
double-indirect pointer

triple-indirect pointer

16



ext2 indirect blocks (1)
12 direct block pointers

1 indirect block pointer
pointer to block containing more direct block pointers

1 double indirect block pointer
pointer to block containing more indirect block pointers

1 triple indirect block pointer
pointer to block containing more double indirect block pointers

exercise: if 1K blocks, 4 byte block pointers, how big can a file be?

17



ext2 indirect blocks (1)
12 direct block pointers

1 indirect block pointer
pointer to block containing more direct block pointers

1 double indirect block pointer
pointer to block containing more indirect block pointers

1 triple indirect block pointer
pointer to block containing more double indirect block pointers

exercise: if 1K blocks, 4 byte block pointers, how big can a file be?

17



ext2 indirect blocks (solution)
12 direct pointers: first 1K (block size) × 12 bytes of data
1 indirect pointer:

points to block with 1K (block size)/4 byte (pointer size) = 256 pointers
256 pointers point to 1K blocks
next 256KB of data

1 double indirect pointer
points to block with 1K (block size)/4 byte (pointer size) = 256 pointers
256 pointers point to pointers that each are like an indirect pointer
256KB per indirect pointer → next 256 · 256 KB of data

1 triple indiret
next 256 · 256 · 256 KB of data

total size: 12 + 256 + 2562 + 2563 KB = 16843020 KB ≈ 16GB
18



ext2 indirect blocks (2)
12 direct block pointers

1 indirect block pointer

1 double indirect block pointer

1 triple indirect block pointer

exercise: if 1K (210 byte) blocks, 4 byte block pointers,
how does OS find byte 215 of the file?

(1) using indirect pointer or double-indirect pointer in inode?
(2) what index of block pointer array pointed to by pointer in inode?

19



ext2 indirect blocks (2) (solution)
byte 215 = 32KB into file

12 direct pointers: first 1K (block size) × 12 bytes of data

1 indirect pointer:
points to block with 1K (block size)/4 byte (pointer size) = 256 pointers
256 pointers point to 1K blocks
next 256KB of data

going to be (32 - 12)th element

20



empirical file sizes

Roselli et al, “A Comparison of Filesystem Workloads”, in FAST 2000 21



typical file sizes
most files are small

sometimes 50+% less than 1kbyte
often 80-95% less than 10kbyte

doens’t mean large files are unimportant
still take up most of the space
biggest performance problems

22



extents
large file? lists of many thousands of blocks is awkward

…and requires multiple reads from disk to get

solution: store extents: (start disk block, size)
replaces or supplements block list

Linux’s ext4 and Windows’s NTFS both use this

23



allocating extents
challenge: finding contiguous sets of free blocks

NTFS: scan block map for “best fit”
look for big enough chunk of free blocks
choose smallest among all the candidates

don’t find any? okay: use more than one extent

24



seeking with extents
challenge: finding byte X of the file

with block pointers: can compute index

with extents: need to scan list?

25



filesystem reliability
a crash happens — what’s the state of my filesystem?

26



hard disk atomicity
interrupt a hard drive write?

write whole disk sector or corrupt it

hard drive/SSD stores checksum for each sector

write interrupted? — checksum mismatch
hard drive/SSD returns read error

27



reliability issues
is the filesystem in a consistent state?

do we know what blocks are free?
do we know what files exist?
is the data for files actually what was written?

also important topics, but won’t spend much time on these:

what data will I lose if storage fails?
mirroring, erasure coding (e.g. RAID) — using multiple storage devices
idea: if one storage device fails, other(s) still have data

what data will I lose if I make a mistake?
filesystem can store multiple versions
“snapshots” of what was previously there

28



several bad options (1)
suppose we’re moving a file from one directory to another on xv6
steps:

A: write new directory entry
B: overwrite (remove) old directory entry

if we do A before B and crash happens after A:
can have extra pointer of file
problem: if old directory entry removed later, will get confused and free
the file!

if we do B before A and crash happens after B:
the file disappeared entirely!

29



several bad options (1)
suppose we’re moving a file from one directory to another on xv6
steps:

A: write new directory entry
B: overwrite (remove) old directory entry

if we do A before B and crash happens after A:
can have extra pointer of file
problem: if old directory entry removed later, will get confused and free
the file!

if we do B before A and crash happens after B:
the file disappeared entirely!

29



several bad options (1)
suppose we’re moving a file from one directory to another on xv6
steps:

A: write new directory entry
B: overwrite (remove) old directory entry

if we do A before B and crash happens after A:
can have extra pointer of file
problem: if old directory entry removed later, will get confused and free
the file!

if we do B before A and crash happens after B:
the file disappeared entirely!

29



beyond ordering
recall: updating a sector is atomic

happens entirely or doesn’t

can we make filesystem updates work this way?

yes — ‘just’ make updating one sector do the update

30



beyond ordering
recall: updating a sector is atomic

happens entirely or doesn’t

can we make filesystem updates work this way?

yes — ‘just’ make updating one sector do the update

30



concept: transaction
transaction: bunch of updates that happen all at once

implementation trick: one update means transaction “commits”
update done — whole transaction happened
update not done — whole transaction did not happen

31



redo logging: file creation

B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactionslater, start applying results to actual diskwhen everything is written, can overwrite log

32



redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 =

C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operations

write commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactionslater, start applying results to actual diskwhen everything is written, can overwrite log

32



redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operations

write commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactionslater, start applying results to actual diskwhen everything is written, can overwrite log

32



redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactionslater, start applying results to actual diskwhen everything is written, can overwrite log

32



redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactions

later, start applying results to actual diskwhen everything is written, can overwrite log

32



redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactions

later, start applying results to actual disk

when everything is written, can overwrite log

32



redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactionslater, start applying results to actual disk

when everything is written, can overwrite log

32



redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactionslater, start applying results to actual disk

when everything is written, can overwrite log

32



redo logging: file creation

write to log transaction steps:
data blocks to create
direcotry entry, inode to write
directory inode (size, time)
update

normal operation

write to log “commit transaction”
in any order:

update file data blocks
update directory entry
update file inode
update directory inode

reclaim space in log
“garbage collection”

crash before commit?
file not created
no partial operation to real data

crash after commit?
file created
promise: will perform logged updates
(after system reboots/recovers)

read log and…

ignore any operation with no
“commit”

redo any operation with
“commit”

already done? — okay, setting
inode twice

reclaim space in log

recovery

33



redo logging: file creation

write to log transaction steps:
data blocks to create
direcotry entry, inode to write
directory inode (size, time)
update

normal operation

write to log “commit transaction”
in any order:

update file data blocks
update directory entry
update file inode
update directory inode

reclaim space in log
“garbage collection”

crash before commit?
file not created
no partial operation to real data

crash after commit?
file created
promise: will perform logged updates
(after system reboots/recovers)

read log and…

ignore any operation with no
“commit”

redo any operation with
“commit”

already done? — okay, setting
inode twice

reclaim space in log

recovery

33



redo logging: file creation

write to log transaction steps:
data blocks to create
direcotry entry, inode to write
directory inode (size, time)
update

normal operation

write to log “commit transaction”
in any order:

update file data blocks
update directory entry
update file inode
update directory inode

reclaim space in log
“garbage collection”

crash before commit?
file not created
no partial operation to real data

crash after commit?
file created
promise: will perform logged updates
(after system reboots/recovers)

read log and…

ignore any operation with no
“commit”

redo any operation with
“commit”

already done? — okay, setting
inode twice

reclaim space in log

recovery

33



redo logging: file creation

write to log transaction steps:
data blocks to create
direcotry entry, inode to write
directory inode (size, time)
update

normal operation

write to log “commit transaction”
in any order:

update file data blocks
update directory entry
update file inode
update directory inode

reclaim space in log
“garbage collection”

crash before commit?
file not created
no partial operation to real data

crash after commit?
file created
promise: will perform logged updates
(after system reboots/recovers)

read log and…

ignore any operation with no
“commit”

redo any operation with
“commit”

already done? — okay, setting
inode twice

reclaim space in log

recovery

33



redo logging: file creation

write to log transaction steps:
data blocks to create
direcotry entry, inode to write
directory inode (size, time)
update

normal operation

write to log “commit transaction”
in any order:

update file data blocks
update directory entry
update file inode
update directory inode

reclaim space in log
“garbage collection”

crash before commit?
file not created
no partial operation to real data

crash after commit?
file created
promise: will perform logged updates
(after system reboots/recovers)

read log and…

ignore any operation with no
“commit”

redo any operation with
“commit”

already done? — okay, setting
inode twice

reclaim space in log

recovery

33



idempotency
logged operations should be okay to do twice = idempotent

good example: set inode link count to 4

bad example: increment inode link count

good example: overwrite inode number X with new value
as long as last committed inode value in log is right…

bad example: allocate new inode with particular contents

good example: overwrite data block with new value

bad example: append data to last used block of file

34



redo logging summary
write intended operation to the log

before ever touching ‘real’ data
in format that’s safe to do twice

write marker to commit to the log
if exists, the operation will be done eventually

actually update the real data

35



redo logging and filesystems
filesystems that do redo logging are called journalling filesystems

36



backup slides

37



the xv6 journal

number of blocks
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction
start: num blocks = 0

1 write changed blocks

2 write log header
(commits transaction)

3 write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

38



the xv6 journal

number of blocks
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction

start: num blocks = 0

1 write changed blocks

2 write log header
(commits transaction)

3 write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

38



the xv6 journal

number of blocks = 0
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction

start: num blocks = 0

1 write changed blocks

2 write log header
(commits transaction)

3 write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

38



the xv6 journal

number of blocks = 0
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction
start: num blocks = 0

1 write changed blocks

2 write log header
(commits transaction)

3 write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

38



the xv6 journal

number of blocks = N
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction
start: num blocks = 0

1 write changed blocks

2 write log header
(commits transaction)

3 write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

38



the xv6 journal

number of blocks = N
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction
start: num blocks = 0

1 write changed blocks

2 write log header
(commits transaction)

3 write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

38



the xv6 journal

number of blocks = N= 0
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction
start: num blocks = 0

1 write changed blocks

2 write log header
(commits transaction)

3 write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

38



what is a transaction?
so far: each file update?

faster to do batch of updates together
one log write finishes lots of things
don’t wait to write

xv6 solution: combine lots of updates into one transaction

only commit when…
no active file operation, or
not enough room left in log for more operations

39



what is a transaction?
so far: each file update?

faster to do batch of updates together
one log write finishes lots of things
don’t wait to write

xv6 solution: combine lots of updates into one transaction

only commit when…
no active file operation, or
not enough room left in log for more operations

39



mounting filesystems
Unix-like system

root filesystem appears as /

other filesystems appear as directory
e.g. lab machines: my home dir is in filesystem at /net/zf15

directories that are filesystems look like normal directories
/net/zf15/.. is /net (even though in different filesystems)

40



mounts on a dept. machine
/dev/sda1 on / type ext4 (rw,errors=remount−ro)
proc on /proc type proc (rw,noexec,nosuid,nodev)
...
udev on /dev type devtmpfs (rw,mode=0755)
devpts on /dev/pts type devpts (rw,noexec,nosuid,gid=5,mode=0620)
tmpfs on /run type tmpfs (rw,noexec,nosuid,size=10%,mode=0755)
...
/dev/sda3 on /localtmp type ext4 (rw)
...
zfs1:/zf2 on /net/zf2 type nfs (rw,hard,intr,proto=udp,nfsvers=3,

noacl,sloppy,addr=128.143.136.9)
zfs3:/zf19 on /net/zf19 type nfs (rw,hard,intr,proto=udp,nfsvers=3,

noacl,sloppy,addr=128.143.67.236)
zfs4:/sw on /net/sw type nfs (rw,hard,intr,proto=udp,nfsvers=3,

noacl,sloppy,addr=128.143.136.9)
zfs3:/zf14 on /net/zf14 type nfs (rw,hard,intr,proto=udp,nfsvers=3,

noacl,sloppy,addr=128.143.67.236)
...

41



kernel FS abstractions
Linux: virtual file system API

object-oriented, based on FFS-style filesystem

to implement a filesystem, create object types for:
superblock (represents “header”)
inode (represents file)
dentry (represents cached directory entry)
file (represents open file)

common code handles directory traversal
and caches directory traversals

common code handles file descriptors, etc.
42



exercise
say xv6 filesystem with:

64-byte inodes (12 direct + 1 indirect pointer)
16-byte directory entries
512 byte blocks
2-byte block pointers

how many blocks (not storing inodes) is used to store a directory of
200 30464B (29 · 1024 + 256 byte) files?

remember: blocks could include blocks storing data or block pointers or
directory enties

how many blocks is used to store a directory of 2000 3KB files?

43



fragments
Linux FS: a file’s last block can be a fragment — only part of a
block

each block split into approx. 4 fragments
each fragment has its own index

extra field in inode indicates that last block is fragment

allows one block to store data for several small files

44



beyond mirroring
mirroring seems to waste a lot of space

10 disks of data? mirroring → 20 disks

10 disks of data? how good can we do with 15 disks?

best possible: lose 5 disks, still okay
can’t do better or it wasn’t really 10 disks of data

schemes that do this based on erasure codes
erasure code: encode data in way that handles parts missing (being
erased)

45



erasure code example
store 2 disks of data on 3 disks

recompute original 2 disks of data from any 2 of the 3 disks

extra disk of data: some formula based on the original disks
common choice: bitwise XOR

common set of schemes like this: RAID
Redundant Array of Independent Disks

46



snapshots
filesystem snapshots

idea: filesystem keeps old versions of files around
accidental deletion? old version stil there
eventually discard some old versions

can access snapshot of files at prior time

mechanism: copy-on-write

changing file makes new copy of filesystem

common parts shared between versions

47



snapshots
filesystem snapshots

idea: filesystem keeps old versions of files around
accidental deletion? old version stil there
eventually discard some old versions

can access snapshot of files at prior time

mechanism: copy-on-write

changing file makes new copy of filesystem

common parts shared between versions

47



inode and copy-on-write

inode

indirect blocks

…

…

file data

…

new inode

update: new data blocks
+ new indirect blocks
+ new inode

both old+new inode valid

unchanged parts of file sharedchallenge: FFS/xv6/ext2 design
has big array of inodes

don’t want to write new copy
of entire inode array

48



inode and copy-on-write

old
inode

indirect blocks

…

…

file data

…

new inode

update: new data blocks
+ new indirect blocks
+ new inode

both old+new inode valid

unchanged parts of file sharedchallenge: FFS/xv6/ext2 design
has big array of inodes

don’t want to write new copy
of entire inode array

48



inode and copy-on-write

old
inode

indirect blocks

…

…

file data

…

new inode

update: new data blocks
+ new indirect blocks
+ new inode

both old+new inode valid

unchanged parts of file shared

challenge: FFS/xv6/ext2 design
has big array of inodes

don’t want to write new copy
of entire inode array

48



inode and copy-on-write

old
inode

indirect blocks

…

…

file data

…

new inode

update: new data blocks
+ new indirect blocks
+ new inode

both old+new inode valid

unchanged parts of file shared

challenge: FFS/xv6/ext2 design
has big array of inodes

don’t want to write new copy
of entire inode array

48



extra indirection for inode array

root inode
indirect blocks

…

arrays of inodes
split into pieces

…

old
inode

update one inode?

create new root inode
+ pointers

unchanged parts of
inode array
shared between versions

multiple snapshots?
array of root inodes

49



extra indirection for inode array

root inode
indirect blocks

…

arrays of inodes
split into pieces

…

old
inode

update one inode?

create new root inode
+ pointers

unchanged parts of
inode array
shared between versions

multiple snapshots?
array of root inodes

49



extra indirection for inode array

root inode
indirect blocks

…

arrays of inodes
split into pieces

…

old
inode

update one inode?

create new root inode
+ pointers

unchanged parts of
inode array
shared between versions

multiple snapshots?
array of root inodes

49



extra indirection for inode array

root inode
indirect blocks

…

arrays of inodes
split into pieces

…

old
inode

update one inode?

create new root inode
+ pointers

unchanged parts of
inode array
shared between versions

multiple snapshots?
array of root inodes

49



extra indirection for inode array

root inode
indirect blocks

…

arrays of inodes
split into pieces

…

old
inode

update one inode?

create new root inode
+ pointers

unchanged parts of
inode array
shared between versions

multiple snapshots?
array of root inodes

49



copy-on-write indirection
file update = replace with new version

array of versions of entire filesystem

only copy modified parts
keep reference counts, like for paging assignment

lots of pointers — only change pointers where modifications happen

50



snapshots in practice
ZFS supports this (if turned on)

example: .zfs/snapshots/11.11.18-06 pseudo-directory

contains contents of files at 11 November 2018 6AM

51



multiple copies
FAT: multiple copies of file allocation table and header

in inode-based filesystems: often multiple copies of superblocks

if part of disk’s data is lost, have an extra copy
always update both copies
hope: disk failure to small group of sectors

hope: enough to recover most files on disk failure
extra copy of metadata that is important for all files
but won’t recover specific files/directories whose data was lost

52



aside: FAT date encoding
seperate date and time fields (16 bits, little-endian integers)

bits 0-4: seconds (divided by 2), 5-10: minute, 11-15: hour

bits 0-4: day, 5-8: month, 9-15: year (minus 1980)

sometimes extra field for 100s(?) of a second

53



Fast File System
the Berkeley Fast File System (FFS) ‘solved’ some of these
problems

McKusick et al, “A Fast File System for UNIX” https:
//people.eecs.berkeley.edu/~brewer/cs262/FFS.pdf
avoids long seek times, wasting space for tiny files

Linux’s ext2 filesystem based on FFS

some other notable newer solutions (beyond what FFS/ext2 do)
better handling of very large files
avoiding linear directory searches

54

https://people.eecs.berkeley.edu/~brewer/cs262/FFS.pdf
https://people.eecs.berkeley.edu/~brewer/cs262/FFS.pdf


block groups
(AKA cluster groups)

blocks
for /bigfile.txt

more blocks
for /bigfile.txt

more blocks
for /bigfile.txt

split disk into block groups
each block group like a mini-filesystem

split block + inode numbers across the groups
inode in one block group can reference blocks in another
(but would rather not)

goal: most data for each directory within a block group
directory entries + inodes + file data close on disk
lower seek times!

large files might need to be split across block groups

disk
super
block

free
map

inode
array data for block group 1

block group 1

inodes
0–1023

blocks 1–8191for directories /, /a/b/c, /w/f

free
map

inode
array data for block group 2

block group 2

inodes
1024–2047

blocks 8192–16383for directories /a, /d, /q

free
map

inode
array data for block group 2

block group 2

inodes
1024–2047

blocks 8192–16383for directories /a, /d, /q

free
map

inode
array data for block group 3

block group 3

inodes
2048–3071

blocks 16384–24575for directories /b, /a/b, /w

free
map

inode
array data for block group 4

block group 4

inodes
3072–4095

blocks 16384–24575for directories /c, /d/g, /r

free
map

inode
array data for block group 4

block group 4

inodes
3072–4095

blocks 16384–24575for directories /c, /d/g, /r

free
map

inode
array data for block group 5

block group 5

inodes
4096–5119

blocks 24576–32767for directories /e, /a/b/d

55



block groups
(AKA cluster groups)

blocks
for /bigfile.txt

more blocks
for /bigfile.txt

more blocks
for /bigfile.txt

split disk into block groups
each block group like a mini-filesystem

split block + inode numbers across the groups
inode in one block group can reference blocks in another
(but would rather not)

goal: most data for each directory within a block group
directory entries + inodes + file data close on disk
lower seek times!

large files might need to be split across block groups

disk
super
block

free
map

inode
array data for block group 1

block group 1

inodes
0–1023

blocks 1–8191

for directories /, /a/b/c, /w/f

free
map

inode
array data for block group 2

block group 2

inodes
1024–2047

blocks 8192–16383

for directories /a, /d, /q

free
map

inode
array data for block group 2

block group 2

inodes
1024–2047

blocks 8192–16383

for directories /a, /d, /q

free
map

inode
array data for block group 3

block group 3

inodes
2048–3071

blocks 16384–24575

for directories /b, /a/b, /w

free
map

inode
array data for block group 4

block group 4

inodes
3072–4095

blocks 16384–24575

for directories /c, /d/g, /r

free
map

inode
array data for block group 4

block group 4

inodes
3072–4095

blocks 16384–24575

for directories /c, /d/g, /r

free
map

inode
array data for block group 5

block group 5

inodes
4096–5119

blocks 24576–32767

for directories /e, /a/b/d

55



block groups
(AKA cluster groups)

blocks
for /bigfile.txt

more blocks
for /bigfile.txt

more blocks
for /bigfile.txt

split disk into block groups
each block group like a mini-filesystem

split block + inode numbers across the groups
inode in one block group can reference blocks in another
(but would rather not)

goal: most data for each directory within a block group
directory entries + inodes + file data close on disk
lower seek times!

large files might need to be split across block groups

disk
super
block

free
map

inode
array data for block group 1

block group 1inodes
0–1023

blocks 1–8191

for directories /, /a/b/c, /w/f

free
map

inode
array data for block group 2

block group 2inodes
1024–2047

blocks 8192–16383

for directories /a, /d, /q

free
map

inode
array data for block group 2

block group 2inodes
1024–2047

blocks 8192–16383

for directories /a, /d, /q

free
map

inode
array data for block group 3

block group 3inodes
2048–3071

blocks 16384–24575

for directories /b, /a/b, /w

free
map

inode
array data for block group 4

block group 4inodes
3072–4095

blocks 16384–24575

for directories /c, /d/g, /r

free
map

inode
array data for block group 4

block group 4inodes
3072–4095

blocks 16384–24575

for directories /c, /d/g, /r

free
map

inode
array data for block group 5

block group 5inodes
4096–5119

blocks 24576–32767

for directories /e, /a/b/d

55



block groups
(AKA cluster groups)

blocks
for /bigfile.txt

more blocks
for /bigfile.txt

more blocks
for /bigfile.txt

split disk into block groups
each block group like a mini-filesystem

split block + inode numbers across the groups
inode in one block group can reference blocks in another
(but would rather not)

goal: most data for each directory within a block group
directory entries + inodes + file data close on disk
lower seek times!

large files might need to be split across block groups

disk
super
block

free
map

inode
array data for block group 1

block group 1inodes
0–1023

blocks 1–8191for directories /, /a/b/c, /w/f

free
map

inode
array data for block group 2

block group 2inodes
1024–2047

blocks 8192–16383for directories /a, /d, /q

free
map

inode
array data for block group 2

block group 2inodes
1024–2047

blocks 8192–16383for directories /a, /d, /q

free
map

inode
array data for block group 3

block group 3inodes
2048–3071

blocks 16384–24575for directories /b, /a/b, /w

free
map

inode
array data for block group 4

block group 4inodes
3072–4095

blocks 16384–24575for directories /c, /d/g, /r

free
map

inode
array data for block group 4

block group 4inodes
3072–4095

blocks 16384–24575for directories /c, /d/g, /r

free
map

inode
array data for block group 5

block group 5inodes
4096–5119

blocks 24576–32767for directories /e, /a/b/d

55



allocation within block groups
In-use block

Expected typical arrangement.

Start of
Block Group

Free block

Small files fill holes near start of block group.

Start of
Block Group

Write a two block file

Large files fill holes near start of block group and then write 
most data to sequential range blocks.

Write a large file
Start of

Block Group

Anderson and Dahlin, Operating Systems: Principles and Practice 2nd edition, Figure 13.14 56



FFS block groups
making a subdirectory: new block group

for inode + data (entries) in different

writing a file: same block group as directory, first free block
intuition: non-small files get contiguous groups at end of block
FFS keeps disk deliberately underutilized (e.g. 10% free) to ensure this

can wait until dirty file data flushed from cache to allocate blocks
makes it easier to allocate contiguous ranges of blocks

57



several bad options (2)
suppose we’re creating a new file

A: mark blocks as used in free block map
B: write inode for file
C: write directory entry for file

if we do A before B+C and crash happens after A:
have blocks we can’t use (not free), but which are unused

if we do B before A+C and crash happens after B:
have inode we can’t use (not free), but which is not really used

if we do C before A+B and crash happens after C:
have directory entry that points to junk — will behave weirdly

58



several bad options (2)
suppose we’re creating a new file

A: mark blocks as used in free block map
B: write inode for file
C: write directory entry for file

if we do A before B+C and crash happens after A:
have blocks we can’t use (not free), but which are unused

if we do B before A+C and crash happens after B:
have inode we can’t use (not free), but which is not really used

if we do C before A+B and crash happens after C:
have directory entry that points to junk — will behave weirdly

58



several bad options (2)
suppose we’re creating a new file

A: mark blocks as used in free block map
B: write inode for file
C: write directory entry for file

if we do A before B+C and crash happens after A:
have blocks we can’t use (not free), but which are unused

if we do B before A+C and crash happens after B:
have inode we can’t use (not free), but which is not really used

if we do C before A+B and crash happens after C:
have directory entry that points to junk — will behave weirdly

58



several bad options (2)
suppose we’re creating a new file

A: mark blocks as used in free block map
B: write inode for file
C: write directory entry for file

if we do A before B+C and crash happens after A:
have blocks we can’t use (not free), but which are unused

if we do B before A+C and crash happens after B:
have inode we can’t use (not free), but which is not really used

if we do C before A+B and crash happens after C:
have directory entry that points to junk — will behave weirdly

58



xv6 filesystem performance issues
inode, block map stored far away from file data

long seek times for reading files

unintelligent choice of file/directory data blocks
xv6 finds first free block/inode
result: files/directory entries scattered about

blocks are pretty small — needs lots of space for metadata
could change size? but waste space for small files
large files have giant lists of blocks

linear searches of directory entries to resolve paths

60



xv6 filesystem performance issues
inode, block map stored far away from file data

long seek times for reading files

unintelligent choice of file/directory data blocks
xv6 finds first free block/inode
result: files/directory entries scattered about

blocks are pretty small — needs lots of space for metadata
could change size? but waste space for small files
large files have giant lists of blocks

linear searches of directory entries to resolve paths

61



xv6 filesystem performance issues
inode, block map stored far away from file data

long seek times for reading files

unintelligent choice of file/directory data blocks
xv6 finds first free block/inode
result: files/directory entries scattered about

blocks are pretty small — needs lots of space for metadata
could change size? but waste space for small files
large files have giant lists of blocks

linear searches of directory entries to resolve paths

62



xv6 filesystem performance issues
inode, block map stored far away from file data

long seek times for reading files

unintelligent choice of file/directory data blocks
xv6 finds first free block/inode
result: files/directory entries scattered about

blocks are pretty small — needs lots of space for metadata
could change size? but waste space for small files
large files have giant lists of blocks

linear searches of directory entries to resolve paths

63



recall: FAT: file creation (1)
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
entry value index
… …
20 18
0 (free) 19
-1 (end mark) 20
0 (free) 22 21
0 (free) 24 22
-1 (end) 23
0 (free) -1 (end) 24
35 25
48 26
0 (free) 27
… …

file allocation table

64



recall: FAT: file creation (2)
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
entry value index
… …
20 18
0 (free) 19
-1 (end mark) 20
0 (free) 22 21
0 (free) 24 22
-1 (end) 23
0 (free) -1 (end) 24
35 25
48 26
0 (free) 27
… …

file allocation table

directory of new file

“foo.txt”, cluster 11, size …, created …
…
“quux.txt”, cluster 104, size …, created …

“new.txt”, cluster 21, size …, created …
unused entry
unused entry
unused entry
…

65



exercise: FAT file creation
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
1 FAT entries for directory + file
2
3 new directory cluster

4
5 new file clusters
6

6 clusters to write
on loss of power: only some completed

exercise: what happens if only 1, 2 complete?
everything but 3?

66



exercise: FAT file creation
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
1 FAT entries for directory + file
2
3 new directory cluster

4
5 new file clusters
6

6 clusters to write
on loss of power: only some completed
exercise: what happens if only 1, 2 complete?
everything but 3?

66



exercise: FAT ordering
(creating a file that needs new cluster of direntries)
1. FAT entry for extra directory cluster
2. FAT entry for new file clusters
3. file clusters
4. file’s directory entry (in new directory cluster)

what ordering is best if a crash happens in the middle?
A. 1, 2, 3, 4
B. 4, 3, 1, 2
C. 1, 3, 4, 2
D. 3, 4, 2, 1
E. 3, 1, 4, 2

67



exercise: xv6 FS ordering
(creating a file that neeeds new block of direntries)
1. free block map for new directory block
2. free block map for new file block
3. directory inode
4. new file inode
5. new directory entry for file (in new directory block)
6. file data blocks

what ordering is best if a crash happens in the middle?
A. 1, 2, 3, 4, 5, 6
B. 6, 5, 4, 3, 2, 1
C. 1, 2, 6, 5, 4, 3
D. 2, 6, 4, 1, 5, 3
E. 3, 4, 1, 2, 5, 6

ignoring journalling for now — we’ll talk about it later
68



inode-based FS: careful ordering
mark blocks as allocated before referring to them from directories

write data blocks before writing pointers to them from inodes

write inodes before directory entries pointing to it

remove inode from directory before marking inode as free
or decreasing link count, if there’s another hard link

idea: better to waste space than point to bad data

69



recovery with careful ordering
avoiding data loss → can ‘fix’ inconsistencies

programs like fsck (filesystem check), chkdsk (check disk)
run manually or periodically or after abnormal shutdown

70



inode-based FS: creating a file

allocate data block

write data block

update free block map

update file inode

update directory entry
filename+inode number

update direcotry inode
modification time

normal operation

general rule:
better to waste space
than point to bad data

mark blocks/inodes used before writing block/inode pointers

read all directory entries

scan all inodes

free unused inodes
unused = not in directory

free unused data blocks
unused = not in inode lists

scan directories for missing
update/access times

recovery (fsck)

71



inode-based FS: creating a file

allocate data block

write data block

update free block map

update file inode

update directory entry
filename+inode number

update direcotry inode
modification time

normal operation
general rule:
better to waste space
than point to bad data

mark blocks/inodes used before writing block/inode pointers

read all directory entries

scan all inodes

free unused inodes
unused = not in directory

free unused data blocks
unused = not in inode lists

scan directories for missing
update/access times

recovery (fsck)

71



inode-based FS: creating a file

allocate data block

write data block

update free block map

update file inode

update directory entry
filename+inode number

update direcotry inode
modification time

normal operation

general rule:
better to waste space
than point to bad data

mark blocks/inodes used before writing block/inode pointers

read all directory entries

scan all inodes

free unused inodes
unused = not in directory

free unused data blocks
unused = not in inode lists

scan directories for missing
update/access times

recovery (fsck)

71



inode-based FS: exercise: unlink
what order to remove a hard link (= directory entry) for file?

1. overwrite directroy entry for file
2. decrement link count in inode (but link count still > 1 so don’t remove)

assume not the last hard link

what does recovery operation do?

72



inode-based FS: exercise: unlink
what order to remove a hard link (= directory entry) for file?

1. overwrite directroy entry for file
2. decrement link count in inode (but link count still > 1 so don’t remove)

assume not the last hard link

what does recovery operation do?

72



inode-based FS: exercise: unlink last
what order to remove a hard link (= directory entry) for file?

1. overwrite last directroy entry for file
2. mark inode as free (link count = 0 now)
3. mark inode’s data blocks as free

assume is the last hard link

what does recovery operation do?

73



inode-based FS: exercise: unlink last
what order to remove a hard link (= directory entry) for file?

1. overwrite last directroy entry for file
2. mark inode as free (link count = 0 now)
3. mark inode’s data blocks as free

assume is the last hard link

what does recovery operation do?

73



fsck
Unix typically has an fsck utility

Windows equivalent: chkdsk

checks for filesystem consistency
is a data block marked as used that no inodes uses?
is a data block referred to by two different inodes?
is a inode marked as used that no directory references?
is the link count for each inode = number of directories referencing it?
…

assuming careful ordering, can fix errors after a crash without loss

maybe can fix other errors, too

74



fsck costs
my desktop’s filesystem:
2.4M used inodes; 379.9M of 472.4M used blocks

recall: check for data block marked as used that no inode uses:
read blocks containing all of the 2.4M used inodes
add each block pointer to a list of used blocks
if they have indirect block pointers, read those blocks, too
get list of all used blocks (via direct or indirect pointers)
compare list of used blocks to actual free block bitmap

pretty expensive and slow

75



running fsck automatically
common to have “clean” bit in superblock

last thing written (to set) on shutdown

first thing written (to clear) on startup

on boot: if clean bit clear, run fsck first

76



ordering and disk performance
recall: seek times

would like to order writes based on locations on disk
write many things in one pass of disk head
write many things in cylinder in one rotation

ordering constraints make this hard:

free block map for file (start), then file blocks (middle), then…

file inode (start), then directory (middle), …

77



ordering and disk performance
recall: seek times

would like to order writes based on locations on disk
write many things in one pass of disk head
write many things in cylinder in one rotation

ordering constraints make this hard:

free block map for file (start), then file blocks (middle), then…

file inode (start), then directory (middle), …

77



mirroring whole disks
alternate strategy: write everything to two disks

always write to both

read from either
(or different parts of both – faster!)

78



mirroring whole disks
alternate strategy: write everything to two disks

always write to both

read from either
(or different parts of both – faster!)

78



mirroring whole disks
alternate strategy: write everything to two disks

always write to both

read from either
(or different parts of both – faster!)

78



beyond mirroring
mirroring seems to waste a lot of space

10 disks of data? mirroring → 20 disks

10 disks of data? how good can we do with 15 disks?

best possible: lose 5 disks, still okay
can’t do better or it wasn’t really 10 disks of data

schemes that do this based on erasure codes
erasure code: encode data in way that handles parts missing (being
erased)

79



erasure code example
store 2 disks of data on 3 disks

recompute original 2 disks of data from any 2 of the 3 disks

extra disk of data: some formula based on the original disks
common choice: bitwise XOR

common set of schemes like this: RAID
Redundant Array of Independent Disks

80



exericse
filesystem has:

root directory with 2 subdirectories
each subdirectory contains 3 512B files, 2 4MB files
(1MB = 1024KB; 1KB = 1024B)
32B directory entries
4B block pointers
4KB blocks
inode: 12 direct pointers, 1 indirect pointer, 1 double-indirect, 1
triple-indirect

(a) how many inodes used?
(b) how many blocks (outside of inodes) with 1KB fragments?
[minimum w/partial blocks]
(c) how many blocks (outside of inodes) with block pointers
replaced by 8B extents (no fragments)? [compute minimum] 81



inodes used
per each of 2 subdirectories: 5 files + 1 inode for subdirectory = 6

plus 1 for root directory itself

= 12 + 1 = 13

83



blocks with fragments
each of 6 512B files uses a single 1KB fragment

wastes 512Bs of it

each of 2 subdirectory needs 32B · 5 � 1KB (1 fragment)
(5 directory entries; probably also additional entries for ..)

root directory needs 32B · 2 � 1KB (1 fragment)

9 1KB fragments → minimum 3 (4KB) blocks

each of 4 4MB file uses 1024 data blocks
1 indirect block for blocks 13-(1024+13) [last 12 pointers unused]

= 4096 blocks (4MB files data) + 4 (4MB file indirects) + 3 (for fragments)
= 4103 blocks

85



blocks with extents
each of 6 512B files uses a single 4KB block

extent specifying block

each of 2 subdirectory needs 32B · 5 � 4KB (1 block)

root directory needs 32B · 2 � 4KB (1 block)

each of 2 4MB file uses 2048 data blocks

no indirect blocks assuming 2048 data blocks are contiguous (one
extent in inode)

= 4096 blocks (4MB files data) + 6 (small files) + 3 (directory entries) =
4105 blocks

87



redo logging problems
doesn’t the log get infinitely big?

writing everything twice?

88



redo logging problems
doesn’t the log get infinitely big?

writing everything twice?

89



limiting log size
once transaction is written to real data, can discard

sometimes called “garbage collecting” the log

may sometimes need to block to free up log space
perform logged updates before adding more to log

hope: usually log cleanup happens “in the background”

90



redo logging problems
doesn’t the log get infinitely big?

writing everything twice?

91



lots of writing?
entire log can be written sequentially

ideal for hard disk performance
also pretty good for SSDs

no waiting for ‘real’ updates
application can proceed while updates are happening
files will be updated even if system crashes

often better for performance!

92



solid state disk architecture
controller

(includes CPU)

RAM

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

93



flash
no moving parts

no seek time, rotational latency

can read in sector-like sizes (“pages”) (e.g. 4KB or 16KB)

write once between erasures

erasure only in large erasure blocks (often 256KB to megabytes!)

can only rewrite blocks order tens of thousands of times
after that, flash starts failing

94



SSDs: flash as disk
SSDs: implement hard disk interface for NAND flash

read/write sectors at a time
sectors much smaller than erasure blocks
sectors sometimes smaller than flash ‘pages’
read/write with use sector numbers, not addresses
queue of read/writes

need to hide erasure blocks
trick: block remapping — move where sectors are in flash

need to hide limit on number of erases
trick: wear levening — spread writes out

95



block remapping

being written

Flash
Translation

Layer

logical physical
0 93
1 260
… …
31 74
32 75
… …

remapping table

OS sector numbers flash locations

pages 0–63

pages 64–127

pages 128–191

pages 192-255

pages 256-319

pages 320-383

pages 128–191

pages 192–255

pages 256–319
erased block

can only erase
whole “erasure block”

“garbage collection”
(free up new space)

copied from erased

active data
erased + ready-to-write

unused (rewritten elsewhere)

read sector 31write sector 32

96



block remapping

being written

Flash
Translation

Layer

logical physical
0 93
1 260
… …
31 74
32 75
… …

remapping table

OS sector numbers flash locations

pages 0–63

pages 64–127

pages 128–191

pages 192-255

pages 256-319

pages 320-383

pages 128–191

pages 192–255

pages 256–319
erased block

can only erase
whole “erasure block”

“garbage collection”
(free up new space)

copied from erased

active data
erased + ready-to-write

unused (rewritten elsewhere)

read sector 31write sector 32

96



block remapping

being written

Flash
Translation

Layer

logical physical
0 93
1 260
… …
31 74
32 75
… …

remapping table

OS sector numbers flash locations

pages 0–63

pages 64–127

pages 128–191

pages 192-255

pages 256-319

pages 320-383

pages 128–191

pages 192–255

pages 256–319
erased block

can only erase
whole “erasure block”

“garbage collection”
(free up new space)

copied from erased

active data
erased + ready-to-write

unused (rewritten elsewhere)

read sector 31

write sector 32

96



block remapping

being written

Flash
Translation

Layer

logical physical
0 93
1 260
… …
31 74
32 75 163
… …

remapping table

OS sector numbers flash locations

pages 0–63

pages 64–127

pages 128–191

pages 192-255

pages 256-319

pages 320-383

pages 128–191

pages 192–255

pages 256–319
erased block

can only erase
whole “erasure block”

“garbage collection”
(free up new space)

copied from erased

active data
erased + ready-to-write

unused (rewritten elsewhere)

read sector 31

write sector 32

96



block remapping

being written

Flash
Translation

Layer

logical physical
0 93
1 260 187
… …
31 74
32 75 163
… …

remapping table

OS sector numbers flash locations

pages 0–63

pages 64–127

pages 128–191

pages 192-255

pages 256-319

pages 320-383

pages 128–191

pages 192–255

pages 256–319
erased block

can only erase
whole “erasure block”

“garbage collection”
(free up new space)

copied from erased

active data
erased + ready-to-write

unused (rewritten elsewhere)

read sector 31write sector 32

96



block remapping
controller contains mapping: sector → location in flash

on write: write sector to new location

eventually do garbage collection of sectors
if erasure block contains some replaced sectors and some current sectors…
copy current blocks to new locationt to reclaim space from replaced
sectors

doing this efficiently is very complicated

SSDs sometimes have a ‘real’ processor for this purpose

97



exercise
Assuming a FAT-like filesystem on an SSD, which of the following
are likely to be stored in the same (or very small number of) erasure
block?

[a] the clusters of a set of log file all in one directory written continuously
over months by a server and assigned a contiguous range of cluster
numbers
[b] the data clusters of a set of images, copied all at once from a camera
and assigned a variety of cluster numbers
[c] all the entires of the FAT (assume the OS only rewrites a sector of
the FAT if it is changed)

98



SSD performance
reads/writes: sub-millisecond

contiguous blocks don’t really matter

can depend a lot on the controller
faster/slower ways to handle block remapping

writing can be slower, especially when almost full
controller may need to move data around to free up erasure blocks
erasing an erasure block is pretty slow (milliseconds?)

99



extra SSD operations
SSDs sometimes implement non-HDD operations

on operation: TRIM

way for OS to mark sectors as unused/erase them

SSD can remove sectors from block map
more efficient than zeroing blocks
frees up more space for writing new blocks

100



aside: future storage
emerging non-volatile memories…

slower than DRAM (“normal memory”)

faster than SSDs

read/write interface like DRAM but persistent

capacities similar to/larger than DRAM

101



backup slides

103


	last time
	xv6 filesystem
	v FAT
	inodes, direct, indirect blocks
	exercise 1


	empirical file sizes
	extents
	redundancy/reliability
	filesystem corruption

	write-ahead logging
	idea: beyond ordering
	redo logging

	backup slides
	the xv6 FS journal
	mounts
	xv6 space exercise
	fragments
	erasure coding (extremely briefly)
	snapshots and copy-on-write
	redundancy [if time]
	FAT date encoding
	FFS

	block groups
	filesystem corruption (alt)
	xv6 filesystem performance problems
	FAT update ordering and crashes
	xv6 FS update ordering and crashes
	ordering rules
	aside: ordering and disk performance
	mirroring disks
	erasure coding (extremely briefly)

	fragments+extent exercise
	redo logging overhead/GC
	redo logging: lots of writing?

	SSD operation and performance
	generally
	block remapping
	exercise
	performance
	TRIM

	misc. storage media
	backup slides

