
1

last time
inode-based filesystem

inode: all info about files except name
directory entires specify index in inode array

direct and indirect and double-indirect…pointers to data blocks
small files: only direct pointers in inode array
indirect pointers to blocks for b

extents
store (4, 5) instead of 4, 5, 6, 7, 8, 9
problem: need to allocate contiguous sets of blocks

2

redo logging: file creation

B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactionslater, start applying results to actual diskwhen everything is written, can overwrite log

3

redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 =

C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operations

write commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactionslater, start applying results to actual diskwhen everything is written, can overwrite log

3

redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operations

write commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactionslater, start applying results to actual diskwhen everything is written, can overwrite log

3

redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactionslater, start applying results to actual diskwhen everything is written, can overwrite log

3

redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactions

later, start applying results to actual diskwhen everything is written, can overwrite log

3

redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactions

later, start applying results to actual disk

when everything is written, can overwrite log

3

redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactionslater, start applying results to actual disk

when everything is written, can overwrite log

3

redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactionslater, start applying results to actual disk

when everything is written, can overwrite log

3

redo logging: file creation

write to log transaction steps:
data blocks to create
direcotry entry, inode to write
directory inode (size, time)
update

normal operation

write to log “commit transaction”
in any order:

update file data blocks
update directory entry
update file inode
update directory inode

reclaim space in log
“garbage collection”

crash before commit?
file not created
no partial operation to real data

crash after commit?
file created
promise: will perform logged updates
(after system reboots/recovers)

read log and…

ignore any operation with no
“commit”

redo any operation with
“commit”

already done? — okay, setting
inode twice

reclaim space in log

recovery

4

redo logging: file creation

write to log transaction steps:
data blocks to create
direcotry entry, inode to write
directory inode (size, time)
update

normal operation

write to log “commit transaction”
in any order:

update file data blocks
update directory entry
update file inode
update directory inode

reclaim space in log
“garbage collection”

crash before commit?
file not created
no partial operation to real data

crash after commit?
file created
promise: will perform logged updates
(after system reboots/recovers)

read log and…

ignore any operation with no
“commit”

redo any operation with
“commit”

already done? — okay, setting
inode twice

reclaim space in log

recovery

4

redo logging: file creation

write to log transaction steps:
data blocks to create
direcotry entry, inode to write
directory inode (size, time)
update

normal operation

write to log “commit transaction”
in any order:

update file data blocks
update directory entry
update file inode
update directory inode

reclaim space in log
“garbage collection”

crash before commit?
file not created
no partial operation to real data

crash after commit?
file created
promise: will perform logged updates
(after system reboots/recovers)

read log and…

ignore any operation with no
“commit”

redo any operation with
“commit”

already done? — okay, setting
inode twice

reclaim space in log

recovery

4

redo logging: file creation

write to log transaction steps:
data blocks to create
direcotry entry, inode to write
directory inode (size, time)
update

normal operation

write to log “commit transaction”
in any order:

update file data blocks
update directory entry
update file inode
update directory inode

reclaim space in log
“garbage collection”

crash before commit?
file not created
no partial operation to real data

crash after commit?
file created
promise: will perform logged updates
(after system reboots/recovers)

read log and…

ignore any operation with no
“commit”

redo any operation with
“commit”

already done? — okay, setting
inode twice

reclaim space in log

recovery

4

redo logging: file creation

write to log transaction steps:
data blocks to create
direcotry entry, inode to write
directory inode (size, time)
update

normal operation

write to log “commit transaction”
in any order:

update file data blocks
update directory entry
update file inode
update directory inode

reclaim space in log
“garbage collection”

crash before commit?
file not created
no partial operation to real data

crash after commit?
file created
promise: will perform logged updates
(after system reboots/recovers)

read log and…

ignore any operation with no
“commit”

redo any operation with
“commit”

already done? — okay, setting
inode twice

reclaim space in log

recovery

4

idempotency
logged operations should be okay to do twice = idempotent

good example: set inode link count to 4

bad example: increment inode link count

good example: overwrite inode number X with new value
as long as last committed inode value in log is right…

bad example: allocate new inode with particular contents

good example: overwrite data block with new value

bad example: append data to last used block of file

5

redo logging summary
write intended operation to the log

before ever touching ‘real’ data
in format that’s safe to do twice

write marker to commit to the log
if exists, the operation will be done eventually

actually update the real data

6

redo logging and filesystems
filesystems that do redo logging are called journalling filesystems

7

exercise (1)
suppose OS performing operation of appending 100KB to a 100KB
file X in directory Y and uses redo logging, ext2-like filesystem with
1KB blocks, 4B block pointers

part 1: what’s modified?
[A] free block map
[B] data blocks for file
[C] indirect blocks for file
[D] data blocks for directory
[E] inode for file
[F] inode for directory
[G] the log

8

exercise (2)
suppose OS performing operation of appending 100KB to a 100KB
file X in directory Y and uses redo logging

part 2: crash happens after writing:
log entries for entire operation
free block map changes
indirect blocks for file

…what is written after restart as part of this operation?
[A] free block map
[B] data blocks for file
[C] indirect blocks for file
[D] data blocks for directory
[E] inode for file
[F] inode for directory
[G] the log 9

degrees of consistency
not all journalling filesystem use redo logging for everything

some use it only for metadata operations

some use it for both metadata and user data

only metadata: avoids lots of duplicate writing

metadata+user data: integrity of user data guaranteed

10

distributed systems
multiple machines working together to perform a single task

called a distributed system

11

some distibuted systems models

client/server

server

client
1

client
2

client
N-1

client
N

…

node
1

node
2 node

3node
4

node
5

node
6

node
7

peer-to-peer

12

client/server model

serverclient

GET /index.html

index.html’s contents are …

client(s): “sometimes on”

sends requests to server(s)

needs to know
how to contact server

server(s): “always on”

responds to client requests
never initiaties contact
with a client

13

client/server model

serverclient

GET /index.html

index.html’s contents are …

client(s): “sometimes on”

sends requests to server(s)

needs to know
how to contact server

server(s): “always on”

responds to client requests
never initiaties contact
with a client

13

client/server model

serverclient

GET /index.html

index.html’s contents are …

client(s): “sometimes on”

sends requests to server(s)

needs to know
how to contact server

server(s): “always on”

responds to client requests
never initiaties contact
with a client

13

layers of servers?
ad

server

database
server

application
server

web
server

web
client

web server is also application server’s client

14

example: Wikipedia architecture

image by Timo Tijhof, via https://commons.wikimedia.org/wiki/File:Wikipedia_webrequest_flow_2015-10.png 15

https://commons.wikimedia.org/wiki/File:Wikipedia_webrequest_flow_2015-10.png

example: Wikipedia architecture (zoom)

image by Timo Tijhof, via https://commons.wikimedia.org/wiki/File:Wikipedia_webrequest_flow_2015-10.png 16

https://commons.wikimedia.org/wiki/File:Wikipedia_webrequest_flow_2015-10.png

peer-to-peer
no always-on server everyone knows about

hopefully, no one bottleneck — “scalability”

any machine can contact any other machine
every machine plays an approx. equal role?

set of machines may change over time

17

why distributed?
multiple machine owners collaborating

delegation of responsiblity to other entity
put (part of) service “in the cloud”

combine many cheap machines to replace expensive machine

easier to add incrementally

redundancy — one machine can fail and system still works?

18

mailbox model
mailbox abstraction: send/receive messages

machine
A the network machine

B
B: “Hello”

Send(B, “Hello”)
B: “Hello”

Recv() = “Hello”

network knows how to get message to Bqueue of messages
from sending program
waiting to be sent

queue of messages
not yet received by
receiving program

19

mailbox model
mailbox abstraction: send/receive messages

machine
A the network machine

B
B: “Hello”

Send(B, “Hello”)
B: “Hello”

Recv() = “Hello”

network knows how to get message to B

queue of messages
from sending program
waiting to be sent

queue of messages
not yet received by
receiving program

19

mailbox model
mailbox abstraction: send/receive messages

machine
A the network machine

B
B: “Hello”

Send(B, “Hello”)
B: “Hello”

Recv() = “Hello”

network knows how to get message to B

queue of messages
from sending program
waiting to be sent

queue of messages
not yet received by
receiving program

19

mailbox model
mailbox abstraction: send/receive messages

machine
A the network machine

B
B: “Hello”

Send(B, “Hello”)
B: “Hello”

Recv() = “Hello”

network knows how to get message to Bqueue of messages
from sending program
waiting to be sent

queue of messages
not yet received by
receiving program

19

what about servers?
client/server model: server wants to reply to clients

might want to send/receive multiple messages

can build this with mailbox idea
send a ‘return address’
need to track related messages

common abstraction that does this: the connection

20

what about servers?
client/server model: server wants to reply to clients

might want to send/receive multiple messages

can build this with mailbox idea
send a ‘return address’
need to track related messages

common abstraction that does this: the connection

20

extension: conections
connections: two-way channel for messages
extra operations: connect, accept

machine
A

machine
B

B: open connection to A?

Conn = Connect(B)

A: connection to B OK!

Conn = Accept()

B: (A, “2 + 2 = ?”)

Send(Conn, “2 + 2 = ?”)

“2 + 2 = ?” = Recv(Conn)

A: (B, “4”)

Send(Conn, “4”)

“4” = Recv(Conn) 21

connections versus pipes
connections look kinda like two-direction pipes

in fact, in POSIX will have the same API:

each end gets file descriptor representing connection

can use read() and write()

22

connections over mailboxes
real Internet: mailbox-style communication

send packets to particular mailboxes
no gaurentee on order, when received
no relationship between

connections implemented on top of this

full details: take networking (CS/ECE 4457)

23

connection missing pieces?
how to specify the machine?

multiple programs on one machine? who gets the message?

25

names and addresses
name address
logical identifier location/how to locate
hostname www.virginia.edu IPv4 address 128.143.22.36
hostname mail.google.com IPv4 address 216.58.217.69
hostname mail.google.com IPv6 address 2607:f8b0:4004:80b::2005

filename /home/cr4bd/NOTES.txt inode# 120800873
and device 0x2eh/0x46d

variable counter memory address 0x7FFF9430

service name https port number 443

26

connection missing pieces?
how to specify the machine?

multiple programs on one machine? who gets the message?

27

IPv4 addresses
32-bit numbers

typically written like 128.143.67.11
four 8-bit decimal values separated by dots
first part is most significant
same as 128 · 2563 + 143 · 2562 + 67 · 256 + 11 = 2 156 782 459

organizations get blocks of IPs
e.g. UVa has 128.143.0.0–128.143.255.255
e.g. Google has 216.58.192.0–216.58.223.255 and
74.125.0.0–74.125.255.255 and 35.192.0.0–35.207.255.255

some IPs reserved for non-Internet use (127.*, 10.*, 192.168.*)

28

IPv6 addresses
IPv6 like IPv4, but with 128-bit numbers

written in hex, 16-bit parts, seperated by colons (:)

strings of 0s represented by double-colons (::)

typically given to users in blocks of 280 or 264 addresses
no need for address translation?

2607:f8b0:400d:c00::6a =
2607:f8b0:400d:0c00:0000:0000:0000:006a

2607f8b0400d0c0000000000000006aSIXTEEN

29

selected special IPv6 addresses
::1 = localhost

anything starting with fe80 = link-local addresses
never forwarded by routers

30

names and addresses
name address
logical identifier location/how to locate
hostname www.virginia.edu IPv4 address 128.143.22.36
hostname mail.google.com IPv4 address 216.58.217.69
hostname mail.google.com IPv6 address 2607:f8b0:4004:80b::2005

filename /home/cr4bd/NOTES.txt inode# 120800873
and device 0x2eh/0x46d

variable counter memory address 0x7FFF9430

service name https port number 443

32

IPv4 addresses and routing tables

router
network 1 network 2

network 3

if I receive data for… send it to…
128.143.0.0—128.143.255.255 network 1
192.107.102.0–192.107.102.255 network 1
… …
4.0.0.0–7.255.255.255 network 2
64.8.0.0–64.15.255.255 network 2
… …
anything else network 3

33

connection missing pieces?
how to specify the machine?

multiple programs on one machine? who gets the message?

34

port numbers
we run multiple programs on a machine

IP addresses identifying machine — not enough

so, add 16-bit port numbers

think: multiple PO boxes at address

0–49151: typically assigned for particular services
80 = http, 443 = https, 22 = ssh, …

49152–65535: allocated on demand
default “return address” for client connecting to server

35

port numbers
we run multiple programs on a machine

IP addresses identifying machine — not enough

so, add 16-bit port numbers
think: multiple PO boxes at address

0–49151: typically assigned for particular services
80 = http, 443 = https, 22 = ssh, …

49152–65535: allocated on demand
default “return address” for client connecting to server

35

port numbers
we run multiple programs on a machine

IP addresses identifying machine — not enough

so, add 16-bit port numbers
think: multiple PO boxes at address

0–49151: typically assigned for particular services
80 = http, 443 = https, 22 = ssh, …

49152–65535: allocated on demand
default “return address” for client connecting to server

35

sockets
socket: POSIX abstraction of network I/O queue

any kind of network
can also be used between processes on same machine

a kind of file descriptor

36

connected sockets
sockets can represent a connection

act like bidirectional pipe
client server

(setup connection / get fds)
write(fd, buffer, size)

read(fd, buffer, size)

write(fd, buffer, size)

read(fd, buffer, size)

37

sockets and server sockets

socket

client

server
socket

socket

server

server:
ss_fd = socket(…)
…
bind(ss_fd, addr, …)
listen(ss_fd, …)

client:
fd = socket(…)

socket() function — create socket fdlisten() — turn socket into server socket
still has a file descriptor, but …
can only accept() — create normal socket

requ
est c

onne
ction

clien
t: c

onn
ect

(fd
, add

r,
…)

server:
fd = accept(ss_fd, …)

connection

38

sockets and server sockets

socket

client

server
socket

socket

server

server:
ss_fd = socket(…)
…
bind(ss_fd, addr, …)
listen(ss_fd, …)

client:
fd = socket(…)

socket() function — create socket fd

listen() — turn socket into server socket
still has a file descriptor, but …
can only accept() — create normal socket

requ
est c

onne
ction

clien
t: c

onn
ect

(fd
, add

r,
…)

server:
fd = accept(ss_fd, …)

connection

38

sockets and server sockets

socket

client

server
socket

socket

server

server:
ss_fd = socket(…)
…
bind(ss_fd, addr, …)
listen(ss_fd, …)

client:
fd = socket(…)

socket() function — create socket fd

listen() — turn socket into server socket
still has a file descriptor, but …
can only accept() — create normal socket

requ
est c

onne
ction

clien
t: c

onn
ect

(fd
, add

r,
…)

server:
fd = accept(ss_fd, …)

connection

38

sockets and server sockets

socket

client

server
socket

socket

server

server:
ss_fd = socket(…)
…
bind(ss_fd, addr, …)
listen(ss_fd, …)

client:
fd = socket(…)

socket() function — create socket fdlisten() — turn socket into server socket
still has a file descriptor, but …
can only accept() — create normal socket

requ
est c

onne
ction

clien
t: c

onn
ect

(fd
, add

r,
…)

server:
fd = accept(ss_fd, …)

connection

38

sockets and server sockets

socket

client

server
socket

socket

server

server:
ss_fd = socket(…)
…
bind(ss_fd, addr, …)
listen(ss_fd, …)

client:
fd = socket(…)

socket() function — create socket fdlisten() — turn socket into server socket
still has a file descriptor, but …
can only accept() — create normal socket

requ
est c

onne
ction

clien
t: c

onn
ect

(fd
, add

r,
…)

server:
fd = accept(ss_fd, …)

connection

38

connections in TCP/IP
on network: connection identified by 5-tuple

used by OS to lookup “where is the file descriptor?”

(protocol=TCP, local IP addr., local port, remote IP addr., remote port)

both ends always have an address+port

what is the IP address, port number? set with bind() function
typically always done for servers, not done for clients
system will choose default if you don’t

39

connections on my desktop
cr4bd@reiss−t3620
: /zf14/cr4bd ; netstat −−inet −−inet6 −−numeric
Active Internet connections (w/o servers)
Proto Recv−Q Send−Q Local Address Foreign Address State
tcp 0 0 128 . 143 . 67 . 91 : 49202 1 2 8 . 1 4 3 . 6 3 . 3 4 : 2 2 ESTABLISHED
tcp 0 0 1 2 8 . 1 4 3 . 6 7 . 9 1 : 8 0 3 128 . 143 . 67 . 236 : 2049 ESTABLISHED
tcp 0 0 128 . 143 . 67 . 91 : 50292 1 2 8 . 1 4 3 . 6 7 . 2 2 6 : 2 2 TIME_WAIT
tcp 0 0 128 . 143 . 67 . 91 : 54722 128 . 143 . 67 . 236 : 2049 TIME_WAIT
tcp 0 0 128 . 143 . 67 . 91 : 52002 1 2 8 . 1 4 3 . 6 7 . 2 3 6 : 1 1 1 TIME_WAIT
tcp 0 0 1 2 8 . 1 4 3 . 6 7 . 9 1 : 7 3 2 128 . 143 . 67 . 236 : 63439 TIME_WAIT
tcp 0 0 128 . 143 . 67 . 91 : 40664 128 . 143 . 67 . 236 : 2049 TIME_WAIT
tcp 0 0 128 . 143 . 67 . 91 : 54098 1 2 8 . 1 4 3 . 6 7 . 2 3 6 : 1 1 1 TIME_WAIT
tcp 0 0 128 . 143 . 67 . 91 : 49302 128 . 143 . 67 . 236 : 63439 TIME_WAIT
tcp 0 0 128 . 143 . 67 . 91 : 50236 1 2 8 . 1 4 3 . 6 7 . 2 3 6 : 1 1 1 TIME_WAIT
tcp 0 0 1 2 8 . 1 4 3 . 6 7 . 9 1 : 2 2 1 7 2 . 2 7 . 9 8 . 2 0 : 4 9 5 6 6 ESTABLISHED
tcp 0 0 128 . 143 . 67 . 91 : 51000 1 2 8 . 1 4 3 . 6 7 . 2 3 6 : 1 1 1 TIME_WAIT
tcp 0 0 1 2 7 . 0 . 0 . 1 : 5 0 4 3 8 1 2 7 . 0 . 0 . 1 : 6 3 1 ESTABLISHED
tcp 0 0 1 2 7 . 0 . 0 . 1 : 6 3 1 1 2 7 . 0 . 0 . 1 : 5 0 4 3 8 ESTABLISHED

40

exercise
if I have a server socket and I call accept() on it to create a
connection,
we would expect this to send a message to the client machine:

A. immediately after the call to accept()
B. sometime after the client machine calls connect()
C. A and B
D. neither A nor B

for the server to talk to the client that just connected, it should
write() to

A. the server socket that it passed to accept()
B. the file descriptor returned from accept()
C. A or B (either will work)
D. neither A nor B

41

remote procedure calls
goal: I write a bunch of functions

can call them from another machine

some tool + library handles all the details

called remote procedure calls (RPCs)

42

transparency
common hope of distributed systems is transparency

transparent = can “see through” system being distributed

for RPC: no difference between remote/local calls

(a nice goal, but…we’ll see)

43

stubs
typical RPC implementation: generates stubs

stubs = wrapper functions that stand in for other machine

calling remote procedure? call the stub
same prototype are remote procedure

implementing remote procedure? a stub function calls you

44

typical RPC data flow

Machine B (RPC server)
Machine A (RPC client)

client
program client stub RPC library

RPC libraryserver stub
server

program

function call

return value

return value

function call

network
(using sockets)

generated by compiler-like tool
contains wrapper function
convert arguments to bytes
(and bytes to return value)
generated by compiler-like tool
contains actual function call
converts bytes to arguments
(and return value to bytes)

idenitifier for function being called +
its arguments converted to bytes

return value (or failure indication)

45

typical RPC data flow

Machine B (RPC server)
Machine A (RPC client)

client
program client stub RPC library

RPC libraryserver stub
server

program

function call

return value

return value

function call

network
(using sockets)

generated by compiler-like tool
contains wrapper function
convert arguments to bytes
(and bytes to return value)

generated by compiler-like tool
contains actual function call
converts bytes to arguments
(and return value to bytes)

idenitifier for function being called +
its arguments converted to bytes

return value (or failure indication)

45

typical RPC data flow

Machine B (RPC server)
Machine A (RPC client)

client
program client stub RPC library

RPC libraryserver stub
server

program

function call

return value

return value

function call

network
(using sockets)

generated by compiler-like tool
contains wrapper function
convert arguments to bytes
(and bytes to return value)

generated by compiler-like tool
contains actual function call
converts bytes to arguments
(and return value to bytes)

idenitifier for function being called +
its arguments converted to bytes

return value (or failure indication)

45

typical RPC data flow

Machine B (RPC server)
Machine A (RPC client)

client
program client stub RPC library

RPC libraryserver stub
server

program

function call

return value

return value

function call

network
(using sockets)

generated by compiler-like tool
contains wrapper function
convert arguments to bytes
(and bytes to return value)
generated by compiler-like tool
contains actual function call
converts bytes to arguments
(and return value to bytes)

idenitifier for function being called +
its arguments converted to bytes

return value (or failure indication)

45

typical RPC data flow

Machine B (RPC server)
Machine A (RPC client)

client
program client stub RPC library

RPC libraryserver stub
server

program

function call

return value

return value

function call

network
(using sockets)

generated by compiler-like tool
contains wrapper function
convert arguments to bytes
(and bytes to return value)
generated by compiler-like tool
contains actual function call
converts bytes to arguments
(and return value to bytes)

idenitifier for function being called +
its arguments converted to bytes

return value (or failure indication)

45

exercise: errors that can occur in RPC?
exercise: ways remote procedure calls can fail that local procedure
calls probably can’t?

(name examples in the chat)

46

gRPC code preview
client:
stub = ...
try:
stub.MakeDirectory(MakeDirectoryArgs(path="/directory/name"))

except:
handle error

server:
class DirectoriesImpl(DirectoriesServicer):
...
def MakeDirectory(self, request, context):
try:

os.mkdir(request.path)
except OSError as e:

context.abort(grpc.StatusCode.UNKNOWN,
"OS returned error: {}".format(err))

return Empty()

stub and context to pass info about
where the function is actually located (on client)
and how it was called (on server)

gRPC requires exactly one arguments object
to simplify library/cross-language compatability
some other RPC systems are more flexible

generated code (“server stub”) defines base class
server subclass overrides methods to provide remote calls
so it’s easy for library to find them

client: calls “MakeDirectory” function on server
local-only code would have been:
MakeDirectory(path="/directory/name")

server: defines “MakeDirectory” function
local-only code would have been:
def MakeDirectory(path):

...

47

gRPC code preview
client:
stub = ...
try:
stub.MakeDirectory(MakeDirectoryArgs(path="/directory/name"))

except:
handle error

server:
class DirectoriesImpl(DirectoriesServicer):
...
def MakeDirectory(self, request, context):
try:

os.mkdir(request.path)
except OSError as e:

context.abort(grpc.StatusCode.UNKNOWN,
"OS returned error: {}".format(err))

return Empty()

stub and context to pass info about
where the function is actually located (on client)
and how it was called (on server)

gRPC requires exactly one arguments object
to simplify library/cross-language compatability
some other RPC systems are more flexible

generated code (“server stub”) defines base class
server subclass overrides methods to provide remote calls
so it’s easy for library to find them

client: calls “MakeDirectory” function on server
local-only code would have been:
MakeDirectory(path="/directory/name")

server: defines “MakeDirectory” function
local-only code would have been:
def MakeDirectory(path):

...

48

gRPC code preview
client:
stub = ...
try:
stub.MakeDirectory(MakeDirectoryArgs(path="/directory/name"))

except:
handle error

server:
class DirectoriesImpl(DirectoriesServicer):
...
def MakeDirectory(self, request, context):
try:

os.mkdir(request.path)
except OSError as e:

context.abort(grpc.StatusCode.UNKNOWN,
"OS returned error: {}".format(err))

return Empty()

stub and context to pass info about
where the function is actually located (on client)
and how it was called (on server)

gRPC requires exactly one arguments object
to simplify library/cross-language compatability
some other RPC systems are more flexible

generated code (“server stub”) defines base class
server subclass overrides methods to provide remote calls
so it’s easy for library to find them

client: calls “MakeDirectory” function on server
local-only code would have been:
MakeDirectory(path="/directory/name")

server: defines “MakeDirectory” function
local-only code would have been:
def MakeDirectory(path):

...

48

gRPC code preview
client:
stub = ...
try:
stub.MakeDirectory(MakeDirectoryArgs(path="/directory/name"))

except:
handle error

server:
class DirectoriesImpl(DirectoriesServicer):
...
def MakeDirectory(self, request, context):
try:

os.mkdir(request.path)
except OSError as e:

context.abort(grpc.StatusCode.UNKNOWN,
"OS returned error: {}".format(err))

return Empty()

stub and context to pass info about
where the function is actually located (on client)
and how it was called (on server)

gRPC requires exactly one arguments object
to simplify library/cross-language compatability
some other RPC systems are more flexible

generated code (“server stub”) defines base class
server subclass overrides methods to provide remote calls
so it’s easy for library to find them

client: calls “MakeDirectory” function on server
local-only code would have been:
MakeDirectory(path="/directory/name")

server: defines “MakeDirectory” function
local-only code would have been:
def MakeDirectory(path):

...

49

gRPC code preview
client:
stub = ...
try:
stub.MakeDirectory(MakeDirectoryArgs(path="/directory/name"))

except:
handle error

server:
class DirectoriesImpl(DirectoriesServicer):
...
def MakeDirectory(self, request, context):
try:

os.mkdir(request.path)
except OSError as e:

context.abort(grpc.StatusCode.UNKNOWN,
"OS returned error: {}".format(err))

return Empty()

stub and context to pass info about
where the function is actually located (on client)
and how it was called (on server)

gRPC requires exactly one arguments object
to simplify library/cross-language compatability
some other RPC systems are more flexible

generated code (“server stub”) defines base class
server subclass overrides methods to provide remote calls
so it’s easy for library to find them

client: calls “MakeDirectory” function on server
local-only code would have been:
MakeDirectory(path="/directory/name")

server: defines “MakeDirectory” function
local-only code would have been:
def MakeDirectory(path):

...

49

gRPC code preview
client:
stub = ...
try:
stub.MakeDirectory(MakeDirectoryArgs(path="/directory/name"))

except:
handle error

server:
class DirectoriesImpl(DirectoriesServicer):
...
def MakeDirectory(self, request, context):
try:

os.mkdir(request.path)
except OSError as e:

context.abort(grpc.StatusCode.UNKNOWN,
"OS returned error: {}".format(err))

return Empty()

stub and context to pass info about
where the function is actually located (on client)
and how it was called (on server)

gRPC requires exactly one arguments object
to simplify library/cross-language compatability
some other RPC systems are more flexible

generated code (“server stub”) defines base class
server subclass overrides methods to provide remote calls
so it’s easy for library to find them

client: calls “MakeDirectory” function on server
local-only code would have been:
MakeDirectory(path="/directory/name")

server: defines “MakeDirectory” function
local-only code would have been:
def MakeDirectory(path):

...

49

gRPC code preview
client:
stub = ...
try:
stub.MakeDirectory(MakeDirectoryArgs(path="/directory/name"))

except:
handle error

server:
class DirectoriesImpl(DirectoriesServicer):
...
def MakeDirectory(self, request, context):
try:

os.mkdir(request.path)
except OSError as e:

context.abort(grpc.StatusCode.UNKNOWN,
"OS returned error: {}".format(err))

return Empty()

stub and context to pass info about
where the function is actually located (on client)
and how it was called (on server)

gRPC requires exactly one arguments object
to simplify library/cross-language compatability
some other RPC systems are more flexible

generated code (“server stub”) defines base class
server subclass overrides methods to provide remote calls
so it’s easy for library to find them

client: calls “MakeDirectory” function on server
local-only code would have been:
MakeDirectory(path="/directory/name")

server: defines “MakeDirectory” function
local-only code would have been:
def MakeDirectory(path):

...

49

gRPC code preview
client:
stub = ...
try:
stub.MakeDirectory(MakeDirectoryArgs(path="/directory/name"))

except:
handle error

server:
class DirectoriesImpl(DirectoriesServicer):
...
def MakeDirectory(self, request, context):
try:

os.mkdir(request.path)
except OSError as e:

context.abort(grpc.StatusCode.UNKNOWN,
"OS returned error: {}".format(err))

return Empty()

stub and context to pass info about
where the function is actually located (on client)
and how it was called (on server)

gRPC requires exactly one arguments object
to simplify library/cross-language compatability
some other RPC systems are more flexible

generated code (“server stub”) defines base class
server subclass overrides methods to provide remote calls
so it’s easy for library to find them

client: calls “MakeDirectory” function on server
local-only code would have been:
MakeDirectory(path="/directory/name")

server: defines “MakeDirectory” function
local-only code would have been:
def MakeDirectory(path):

...

50

marshalling
RPC system needs to send arguments over the network

and also return values

called marshalling or serialization

can’t just copy the bytes from arguments
pointers (e.g. char*)
different architectures (32 versus 64-bit; endianness)

51

interface description langauge
tool/library needs to know:

what remote procedures exist
what types they take

typically specified by RPC server author in
interface description language

abbreviation: IDL

compiled into stubs and marshalling/unmarshalling code

52

why IDL?
could just use a source file, but…

missing info: how should a char be passed?
string? fixed length array? pointer to single char?
who allocates the memory?

want to be machine/programming language-neutral
choose set of types that work in both C, Python

versioning/compatiblity
what if older server interoperates with newer client?

53

gRPC IDL example + marshalling
message MakeDirArgs { string path = 1; }

service Directories {
rpc MakeDirectory(MakeDirArgs) returns (Empty) {}

}
example possible format (not what gRPC actually does):

MakeDirectory(MakeDirArgs(path=”/foo”))) becomes:

\x0dMakeDirectory\x01\x04/foo

0x0d = length of ‘MakeDirectory’
0x04 = length of ‘/foo’

54

GRPC examples
will show examples for gRPC

RPC system originally developed at Google

what we’ll use for upcoming assignment

defines interface description language, message format

uses a protocol on top of HTTP/2

note: gRPC makes some choices other RPC systems don’t

55

GRPC IDL example
syntax="proto3";
message MakeDirArgs { string path = 1; }
message ListDirArgs { string path = 1; }

message DirectoryEntry {
string name = 1;
bool is_directory = 2;

}

message DirectoryList {
repeated DirectoryEntry entries = 1;

}

message Empty {}

service Directories {
rpc MakeDirectory(MakeDirArgs) returns (Empty) {}
rpc ListDirectory(ListDirArgs) returns (DirectoryList) {}

}

messages: turn into C++/Python classes
with accessors + marshalling/demarshalling functions
part of protocol buffers (usable without RPC)

fields are numbered (can have more than 1 field)
numbers are used in byte-format of messages
allows changing field names, adding new fields, etc.

will become method of Python classrule: arguments/return value always a message

56

GRPC IDL example
syntax="proto3";
message MakeDirArgs { string path = 1; }
message ListDirArgs { string path = 1; }

message DirectoryEntry {
string name = 1;
bool is_directory = 2;

}

message DirectoryList {
repeated DirectoryEntry entries = 1;

}

message Empty {}

service Directories {
rpc MakeDirectory(MakeDirArgs) returns (Empty) {}
rpc ListDirectory(ListDirArgs) returns (DirectoryList) {}

}

messages: turn into C++/Python classes
with accessors + marshalling/demarshalling functions
part of protocol buffers (usable without RPC)

fields are numbered (can have more than 1 field)
numbers are used in byte-format of messages
allows changing field names, adding new fields, etc.

will become method of Python classrule: arguments/return value always a message

56

GRPC IDL example
syntax="proto3";
message MakeDirArgs { string path = 1; }
message ListDirArgs { string path = 1; }

message DirectoryEntry {
string name = 1;
bool is_directory = 2;

}

message DirectoryList {
repeated DirectoryEntry entries = 1;

}

message Empty {}

service Directories {
rpc MakeDirectory(MakeDirArgs) returns (Empty) {}
rpc ListDirectory(ListDirArgs) returns (DirectoryList) {}

}

messages: turn into C++/Python classes
with accessors + marshalling/demarshalling functions
part of protocol buffers (usable without RPC)

fields are numbered (can have more than 1 field)
numbers are used in byte-format of messages
allows changing field names, adding new fields, etc.

will become method of Python classrule: arguments/return value always a message

56

GRPC IDL example
syntax="proto3";
message MakeDirArgs { string path = 1; }
message ListDirArgs { string path = 1; }

message DirectoryEntry {
string name = 1;
bool is_directory = 2;

}

message DirectoryList {
repeated DirectoryEntry entries = 1;

}

message Empty {}

service Directories {
rpc MakeDirectory(MakeDirArgs) returns (Empty) {}
rpc ListDirectory(ListDirArgs) returns (DirectoryList) {}

}

messages: turn into C++/Python classes
with accessors + marshalling/demarshalling functions
part of protocol buffers (usable without RPC)

fields are numbered (can have more than 1 field)
numbers are used in byte-format of messages
allows changing field names, adding new fields, etc.

will become method of Python class

rule: arguments/return value always a message

56

GRPC IDL example
syntax="proto3";
message MakeDirArgs { string path = 1; }
message ListDirArgs { string path = 1; }

message DirectoryEntry {
string name = 1;
bool is_directory = 2;

}

message DirectoryList {
repeated DirectoryEntry entries = 1;

}

message Empty {}

service Directories {
rpc MakeDirectory(MakeDirArgs) returns (Empty) {}
rpc ListDirectory(ListDirArgs) returns (DirectoryList) {}

}

messages: turn into C++/Python classes
with accessors + marshalling/demarshalling functions
part of protocol buffers (usable without RPC)

fields are numbered (can have more than 1 field)
numbers are used in byte-format of messages
allows changing field names, adding new fields, etc.

will become method of Python class

rule: arguments/return value always a message

56

RPC server implementation (method 1)
import dirproto_pb2
import dirproto_pb2_grpc

class DirectoriesImpl(dirproto_pb2_grpc.DirectoriesServicer):
...
def MakeDirectory(self, request, context):
print("MakeDirectory called with path=", request.path)
try:

os.mkdir(request.path)
except OSError as e:

context.abort(grpc.StatusCode.UNKNOWN,
"OS returned error: {}".format(err))

return dirproto_pb2.Empty()

57

RPC server implementation (method 2)
import dirproto_pb2, dirproto_pb2_grpc
from dirproto_pb2 import DirectoryList, DirectoryEntry

class DirectoriesImpl(dirproto_pb2_grpc.DirectoriesServicer):
...
def ListDirectory(self, request, context):
try:

result = DirectoryList()
for file_name in os.listdir(request.path)

result.entries.append(DirectoryEntry(name=file_name, ...))
except OSError as err:

context.abort(grpc.StatusCode.UNKNOWN,
"OS returned error: {}".format(err))

return result

58

RPC server implementation (starting)
create server that uses thread pool with
three threads to run procedure calls
server = grpc.server(

futures.ThreadPoolExecutor(max_workers=3)
)
DirectoriesImpl() creates instance of implementaiton class
add_DirectoryServicer_to_server part of generated code
dirproto_pb2_grpc.add_DirectoryServicer_to_server(

DirectoriesImpl()
)
server.add_insecure_port('127.0.0.1:12345')
server.start() # runs server in separate thread

59

RPC client implementation (method 1)
from dirproto_pb2_grpc import DirectoriesStub
from dirproto_pb2 import MakeDirectoryArgs

channel = grpc.insecure_channel('127.0.0.1:43534')
stub = DirectoriesStub(channel)
args = MakeDirectoryArgs(path="/directory/name")
try:
stub.MakeDirectory(args)

except grpc.RpcError as error:
... # handle error

60

RPC client implementation (method 2)
from dirproto_pb2_grpc import DirectoriesStub
from dirproto_pb2 import ListDirectoryArgs

channel = grpc.insecure_channel('127.0.0.1:43534')
stub = DirectoriesStub(channel)
args = ListDirectoryArgs(path="/directory/name")
try:
result = stub.ListDirectory(args)
for entry in result.entries:
print(entry.name)

except grpc.RpcError as error:
... # handle error

61

RPC non-transparency
setup is not transparent — what server/port/etc.

ideal: system just knows where to contact?

errors might happen
what if connection fails?

server and client versions out-of-sync
can’t upgrade at the same time — different machines

performance is very different from local

62

RPC locally
not uncommon to use RPC on one machine

more convenient alternative to pipes?

allows shared memory implementation
mmap one common file
use mutexes+condition variables+etc. inside that memory

63

backup slides

64

hostnames
typically use domain name system (DNS) to find machine names

maps logical names like www.virginia.edu
chosen for humans
hierarchy of names

…to addresses the network can use to move messages
numbers
ranges of numbers assigned to different parts of the network
network routers knows “send this range of numbers goes this way”

65

protocols
protocol = agreement on how to comunicate

syntax (format of messages, etc.)
e.g. mailbox model: where does address go?
e.g. connection: where does return address go?

semantics (meaning of messages — actions to take, etc.)
e.g. connection: when to consider connection created?

66

human protocol: telephone
caller: pick up phone
caller: check for service
caller: dial
caller: wait for ringing

callee: “Hello?”
caller: “Hi, it’s Casey…”

callee: “Hi, so how about …”
caller: “Sure, …”
… …

callee: “Bye!”
caller: “Bye!”
hang up hang up

67

layered protocols
IP: protocol for sending data by IP addresses

mailbox model
limited message size

UDP: send datagrams built on IP
still mailbox model, but with port numbers

TCP: reliable connections built on IP
adds port numbers
adds resending data if error occurs
splits big amounts of data into many messages

HTTP: protocol for sending files, etc. built on TCP

68

other notable protocols (transport layer)
TLS: Transport Layer Security — built on TCP

like TCP, but adds encryption + authentication

SSH: secure shell (remote login) — built on TCP

SCP/SFTP: secure copy/secure file transfer — built on SSH

HTTPS: HTTP, but over TLS instead of TCP

FTP: file transfer protocol

…

69

client/server flow (multiple connections)

spawn new process (fork)
or thread per connection

create client socket

connect socket to server hostname:port
(gets assigned local host:port)

write request

read response

close socket

create server socket

bind to host:port

start listening for connections

accept a new connection
(get connection socket)

read request from connection socket

write response to connection socket

close connection socket

70

DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

71

DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

71

DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

71

DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

71

DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

71

Unix-domain sockets: client example
struct sockaddr_un server_addr;
server_addr.sun_family = AF_UNIX;
strcpy(server_addr.sun_path, "/path/to/server.socket");
int fd = socket(AF_UNIX, SOCK_STREAM, 0);
if (connect(fd, &server_addr, sizeof(server_addr)) < 0)

handleError();
... // use 'fd' here

72

Unix-domain sockets: client example
struct sockaddr_un server_addr;
server_addr.sun_family = AF_UNIX;
strcpy(server_addr.sun_path, "/path/to/server.socket");
int fd = socket(AF_UNIX, SOCK_STREAM, 0);
if (connect(fd, &server_addr, sizeof(server_addr)) < 0)

handleError();
... // use 'fd' here

72

why IDL? (1)
why don’t most tools use the normal source code?

alternate model: just give it a header file

missing information (sometimes)
is char array nul-terminated or not?
where is the size of the array the int* points to stored?
is the List* argument being used to modify a list or just read it?
how should memory be allocated/deallocated?
how should argument/function name be sent over the network?

73

why IDL? (1)
why don’t most tools use the normal source code?

alternate model: just give it a header file

missing information (sometimes)
is char array nul-terminated or not?
where is the size of the array the int* points to stored?
is the List* argument being used to modify a list or just read it?
how should memory be allocated/deallocated?
how should argument/function name be sent over the network?

73

why IDL? (2)
why don’t most tools use the normal source code?

alternate model: just give it a header file

machine-neutrality and language-neutrality
common goal: call server from any language, any type of machine
how big should long be?
how to pass string from C to Python server?

versioning/compatibility
what should happen if server has newer/older prototypes than client?

74

why IDL? (2)
why don’t most tools use the normal source code?

alternate model: just give it a header file

machine-neutrality and language-neutrality
common goal: call server from any language, any type of machine
how big should long be?
how to pass string from C to Python server?

versioning/compatibility
what should happen if server has newer/older prototypes than client?

74

	last time
	redo logging
	exercise
	degrees of consistency

	distributed systems/networks intro
	introduction, models, goals

	communication models
	names and addresses
	IPv4 addresses
	IPv6 addresses

	distributed systems con't
	names and addresses
	routing
	port numbers

	sockets
	introduction / read-write flow
	connection setup outline
	exercise: socket behavior?

	remote procedure calls
	RPC concept and stubs
	RPC data flow
	RPC errors exercise
	preview: code using an RPC library
	marshalling
	why interface description languages?
	one idea for marshalling
	GRPC example
	introduction
	IDL
	Python server
	Python client

	non-transparency: errors and versioning and performance
	RPC locally

	backup slides
	hostnames
	protocols / TCP / UDP
	server flow (multiple connections)
	DNS
	local sockets: code example
	RPC: why IDL? (longer)

