
1

changelog
19 April 2022: ‘exercise: RPC failure scenarios’: clarify that we give
up if waiting too long

21 April 2022: gRPC examples: make port numbers consistent

2

last time (1)
redo logging (finish)

log first, then commit, then do actual operations
promise: if committed, will do actual operations (redo if needed)
log operations need to be idempotent (safe to do extra times)

reasons for distribution — social, technical

client/server model
clients (sometimes on) contact servers (always on)
sometimes chains of client/server relationships

3

last time (2)
mailbox model and routing

names v addresses
IP address = machine; port number = program on machine

connections ≈ two-way pipes built atop mailbox model
POSIX representation: socket file descriptors

remote procedure calls

4

remote procedure calls
goal: I write a bunch of functions

can call them from another machine

some tool + library handles all the details

called remote procedure calls (RPCs)

5

transparency
common hope of distributed systems is transparency

transparent = can “see through” system being distributed

for RPC: no difference between remote/local calls

(a nice goal, but…we’ll see)

6

stubs
typical RPC implementation: generates stubs

stubs = wrapper functions that stand in for other machine

calling remote procedure? call the stub
same prototype are remote procedure

implementing remote procedure? a stub function calls you

7

typical RPC data flow

Machine B (RPC server)
Machine A (RPC client)

client
program client stub RPC library

RPC libraryserver stub
server

program

function call

return value

return value

function call

network
(using sockets)

generated by compiler-like tool
contains wrapper function
convert arguments to bytes
(and bytes to return value)
generated by compiler-like tool
contains actual function call
converts bytes to arguments
(and return value to bytes)

idenitifier for function being called +
its arguments converted to bytes

return value (or failure indication)

8

typical RPC data flow

Machine B (RPC server)
Machine A (RPC client)

client
program client stub RPC library

RPC libraryserver stub
server

program

function call

return value

return value

function call

network
(using sockets)

generated by compiler-like tool
contains wrapper function
convert arguments to bytes
(and bytes to return value)

generated by compiler-like tool
contains actual function call
converts bytes to arguments
(and return value to bytes)

idenitifier for function being called +
its arguments converted to bytes

return value (or failure indication)

8

typical RPC data flow

Machine B (RPC server)
Machine A (RPC client)

client
program client stub RPC library

RPC libraryserver stub
server

program

function call

return value

return value

function call

network
(using sockets)

generated by compiler-like tool
contains wrapper function
convert arguments to bytes
(and bytes to return value)

generated by compiler-like tool
contains actual function call
converts bytes to arguments
(and return value to bytes)

idenitifier for function being called +
its arguments converted to bytes

return value (or failure indication)

8

typical RPC data flow

Machine B (RPC server)
Machine A (RPC client)

client
program client stub RPC library

RPC libraryserver stub
server

program

function call

return value

return value

function call

network
(using sockets)

generated by compiler-like tool
contains wrapper function
convert arguments to bytes
(and bytes to return value)
generated by compiler-like tool
contains actual function call
converts bytes to arguments
(and return value to bytes)

idenitifier for function being called +
its arguments converted to bytes

return value (or failure indication)

8

typical RPC data flow

Machine B (RPC server)
Machine A (RPC client)

client
program client stub RPC library

RPC libraryserver stub
server

program

function call

return value

return value

function call

network
(using sockets)

generated by compiler-like tool
contains wrapper function
convert arguments to bytes
(and bytes to return value)
generated by compiler-like tool
contains actual function call
converts bytes to arguments
(and return value to bytes)

idenitifier for function being called +
its arguments converted to bytes

return value (or failure indication)

8

exercise: errors that can occur in RPC?
exercise: ways remote procedure calls can fail that local procedure
calls probably can’t?

9

marshalling
RPC system needs to send arguments over the network

and also return values

called marshalling or serialization

can’t just copy the bytes from arguments
pointers (e.g. char*)
different architectures (32 versus 64-bit; endianness)

10

interface description langauge
tool/library needs to know:

what remote procedures exist
what types they take

typically specified by RPC server author in
interface description language

abbreviation: IDL

compiled into stubs and marshalling/unmarshalling code

11

why IDL?
could just use a source file, but…

missing info: how should a char be passed?
string? fixed length array? pointer to single char?
who allocates the memory?

want to be machine/programming language-neutral
choose set of types that work in both C, Python

versioning/compatiblity
what if older server interoperates with newer client?

12

gRPC IDL example + marshalling
message MakeDirArgs { string path = 1; }

service Directories {
rpc MakeDirectory(MakeDirArgs) returns (Empty) {}

}
example possible format (not what gRPC actually does):

MakeDirectory(MakeDirArgs(path=”/foo”))) becomes:

\x0dMakeDirectory\x01\x04/foo

0x0d = length of ‘MakeDirectory’
0x04 = length of ‘/foo’

13

GRPC examples
will show examples for gRPC

RPC system originally developed at Google

what we’ll use for upcoming assignment

defines interface description language, message format

uses a protocol on top of HTTP/2

note: gRPC makes some choices other RPC systems don’t

14

gRPC code preview
client:
stub = ...
try:
stub.MakeDirectory(MakeDirectoryArgs(path="/directory/name"))

except:
handle error

server:
class DirectoriesImpl(DirectoriesServicer):
...
def MakeDirectory(self, request, context):
try:

os.mkdir(request.path)
except OSError as e:

context.abort(grpc.StatusCode.UNKNOWN,
"OS returned error: {}".format(err))

return Empty()

stub and context to pass info about
where the function is actually located (on client)
and how it was called (on server)

gRPC requires exactly one arguments object
to simplify library/cross-language compatability
some other RPC systems are more flexible

generated code (“server stub”) defines base class
server subclass overrides methods to provide remote calls
so it’s easy for library to find them

client: calls “MakeDirectory” function on server
local-only code would have been:
MakeDirectory(path="/directory/name")

server: defines “MakeDirectory” function
local-only code would have been:
def MakeDirectory(path):

...

15

gRPC code preview
client:
stub = ...
try:
stub.MakeDirectory(MakeDirectoryArgs(path="/directory/name"))

except:
handle error

server:
class DirectoriesImpl(DirectoriesServicer):
...
def MakeDirectory(self, request, context):
try:

os.mkdir(request.path)
except OSError as e:

context.abort(grpc.StatusCode.UNKNOWN,
"OS returned error: {}".format(err))

return Empty()

stub and context to pass info about
where the function is actually located (on client)
and how it was called (on server)

gRPC requires exactly one arguments object
to simplify library/cross-language compatability
some other RPC systems are more flexible

generated code (“server stub”) defines base class
server subclass overrides methods to provide remote calls
so it’s easy for library to find them

client: calls “MakeDirectory” function on server
local-only code would have been:
MakeDirectory(path="/directory/name")

server: defines “MakeDirectory” function
local-only code would have been:
def MakeDirectory(path):

...

16

gRPC code preview
client:
stub = ...
try:
stub.MakeDirectory(MakeDirectoryArgs(path="/directory/name"))

except:
handle error

server:
class DirectoriesImpl(DirectoriesServicer):
...
def MakeDirectory(self, request, context):
try:

os.mkdir(request.path)
except OSError as e:

context.abort(grpc.StatusCode.UNKNOWN,
"OS returned error: {}".format(err))

return Empty()

stub and context to pass info about
where the function is actually located (on client)
and how it was called (on server)

gRPC requires exactly one arguments object
to simplify library/cross-language compatability
some other RPC systems are more flexible

generated code (“server stub”) defines base class
server subclass overrides methods to provide remote calls
so it’s easy for library to find them

client: calls “MakeDirectory” function on server
local-only code would have been:
MakeDirectory(path="/directory/name")

server: defines “MakeDirectory” function
local-only code would have been:
def MakeDirectory(path):

...

16

gRPC code preview
client:
stub = ...
try:
stub.MakeDirectory(MakeDirectoryArgs(path="/directory/name"))

except:
handle error

server:
class DirectoriesImpl(DirectoriesServicer):
...
def MakeDirectory(self, request, context):
try:

os.mkdir(request.path)
except OSError as e:

context.abort(grpc.StatusCode.UNKNOWN,
"OS returned error: {}".format(err))

return Empty()

stub and context to pass info about
where the function is actually located (on client)
and how it was called (on server)

gRPC requires exactly one arguments object
to simplify library/cross-language compatability
some other RPC systems are more flexible

generated code (“server stub”) defines base class
server subclass overrides methods to provide remote calls
so it’s easy for library to find them

client: calls “MakeDirectory” function on server
local-only code would have been:
MakeDirectory(path="/directory/name")

server: defines “MakeDirectory” function
local-only code would have been:
def MakeDirectory(path):

...

17

gRPC code preview
client:
stub = ...
try:
stub.MakeDirectory(MakeDirectoryArgs(path="/directory/name"))

except:
handle error

server:
class DirectoriesImpl(DirectoriesServicer):
...
def MakeDirectory(self, request, context):
try:

os.mkdir(request.path)
except OSError as e:

context.abort(grpc.StatusCode.UNKNOWN,
"OS returned error: {}".format(err))

return Empty()

stub and context to pass info about
where the function is actually located (on client)
and how it was called (on server)

gRPC requires exactly one arguments object
to simplify library/cross-language compatability
some other RPC systems are more flexible

generated code (“server stub”) defines base class
server subclass overrides methods to provide remote calls
so it’s easy for library to find them

client: calls “MakeDirectory” function on server
local-only code would have been:
MakeDirectory(path="/directory/name")

server: defines “MakeDirectory” function
local-only code would have been:
def MakeDirectory(path):

...

17

gRPC code preview
client:
stub = ...
try:
stub.MakeDirectory(MakeDirectoryArgs(path="/directory/name"))

except:
handle error

server:
class DirectoriesImpl(DirectoriesServicer):
...
def MakeDirectory(self, request, context):
try:

os.mkdir(request.path)
except OSError as e:

context.abort(grpc.StatusCode.UNKNOWN,
"OS returned error: {}".format(err))

return Empty()

stub and context to pass info about
where the function is actually located (on client)
and how it was called (on server)

gRPC requires exactly one arguments object
to simplify library/cross-language compatability
some other RPC systems are more flexible

generated code (“server stub”) defines base class
server subclass overrides methods to provide remote calls
so it’s easy for library to find them

client: calls “MakeDirectory” function on server
local-only code would have been:
MakeDirectory(path="/directory/name")

server: defines “MakeDirectory” function
local-only code would have been:
def MakeDirectory(path):

...

17

gRPC code preview
client:
stub = ...
try:
stub.MakeDirectory(MakeDirectoryArgs(path="/directory/name"))

except:
handle error

server:
class DirectoriesImpl(DirectoriesServicer):
...
def MakeDirectory(self, request, context):
try:

os.mkdir(request.path)
except OSError as e:

context.abort(grpc.StatusCode.UNKNOWN,
"OS returned error: {}".format(err))

return Empty()

stub and context to pass info about
where the function is actually located (on client)
and how it was called (on server)

gRPC requires exactly one arguments object
to simplify library/cross-language compatability
some other RPC systems are more flexible

generated code (“server stub”) defines base class
server subclass overrides methods to provide remote calls
so it’s easy for library to find them

client: calls “MakeDirectory” function on server
local-only code would have been:
MakeDirectory(path="/directory/name")

server: defines “MakeDirectory” function
local-only code would have been:
def MakeDirectory(path):

...

17

gRPC code preview
client:
stub = ...
try:
stub.MakeDirectory(MakeDirectoryArgs(path="/directory/name"))

except:
handle error

server:
class DirectoriesImpl(DirectoriesServicer):
...
def MakeDirectory(self, request, context):
try:

os.mkdir(request.path)
except OSError as e:

context.abort(grpc.StatusCode.UNKNOWN,
"OS returned error: {}".format(err))

return Empty()

stub and context to pass info about
where the function is actually located (on client)
and how it was called (on server)

gRPC requires exactly one arguments object
to simplify library/cross-language compatability
some other RPC systems are more flexible

generated code (“server stub”) defines base class
server subclass overrides methods to provide remote calls
so it’s easy for library to find them

client: calls “MakeDirectory” function on server
local-only code would have been:
MakeDirectory(path="/directory/name")

server: defines “MakeDirectory” function
local-only code would have been:
def MakeDirectory(path):

...

18

GRPC IDL example
syntax="proto3";
message MakeDirArgs { string path = 1; }
message ListDirArgs { string path = 1; }

message DirectoryEntry {
string name = 1;
bool is_directory = 2;

}

message DirectoryList {
repeated DirectoryEntry entries = 1;

}

message Empty {}

service Directories {
rpc MakeDirectory(MakeDirArgs) returns (Empty) {}
rpc ListDirectory(ListDirArgs) returns (DirectoryList) {}

}

messages: turn into C++/Python classes
with accessors + marshalling/demarshalling functions
part of protocol buffers (usable without RPC)

fields are numbered (can have more than 1 field)
numbers are used in byte-format of messages
allows changing field names, adding new fields, etc.

will become method of Python classrule: arguments/return value always a message

19

GRPC IDL example
syntax="proto3";
message MakeDirArgs { string path = 1; }
message ListDirArgs { string path = 1; }

message DirectoryEntry {
string name = 1;
bool is_directory = 2;

}

message DirectoryList {
repeated DirectoryEntry entries = 1;

}

message Empty {}

service Directories {
rpc MakeDirectory(MakeDirArgs) returns (Empty) {}
rpc ListDirectory(ListDirArgs) returns (DirectoryList) {}

}

messages: turn into C++/Python classes
with accessors + marshalling/demarshalling functions
part of protocol buffers (usable without RPC)

fields are numbered (can have more than 1 field)
numbers are used in byte-format of messages
allows changing field names, adding new fields, etc.

will become method of Python classrule: arguments/return value always a message

19

GRPC IDL example
syntax="proto3";
message MakeDirArgs { string path = 1; }
message ListDirArgs { string path = 1; }

message DirectoryEntry {
string name = 1;
bool is_directory = 2;

}

message DirectoryList {
repeated DirectoryEntry entries = 1;

}

message Empty {}

service Directories {
rpc MakeDirectory(MakeDirArgs) returns (Empty) {}
rpc ListDirectory(ListDirArgs) returns (DirectoryList) {}

}

messages: turn into C++/Python classes
with accessors + marshalling/demarshalling functions
part of protocol buffers (usable without RPC)

fields are numbered (can have more than 1 field)
numbers are used in byte-format of messages
allows changing field names, adding new fields, etc.

will become method of Python classrule: arguments/return value always a message

19

GRPC IDL example
syntax="proto3";
message MakeDirArgs { string path = 1; }
message ListDirArgs { string path = 1; }

message DirectoryEntry {
string name = 1;
bool is_directory = 2;

}

message DirectoryList {
repeated DirectoryEntry entries = 1;

}

message Empty {}

service Directories {
rpc MakeDirectory(MakeDirArgs) returns (Empty) {}
rpc ListDirectory(ListDirArgs) returns (DirectoryList) {}

}

messages: turn into C++/Python classes
with accessors + marshalling/demarshalling functions
part of protocol buffers (usable without RPC)

fields are numbered (can have more than 1 field)
numbers are used in byte-format of messages
allows changing field names, adding new fields, etc.

will become method of Python class

rule: arguments/return value always a message

19

GRPC IDL example
syntax="proto3";
message MakeDirArgs { string path = 1; }
message ListDirArgs { string path = 1; }

message DirectoryEntry {
string name = 1;
bool is_directory = 2;

}

message DirectoryList {
repeated DirectoryEntry entries = 1;

}

message Empty {}

service Directories {
rpc MakeDirectory(MakeDirArgs) returns (Empty) {}
rpc ListDirectory(ListDirArgs) returns (DirectoryList) {}

}

messages: turn into C++/Python classes
with accessors + marshalling/demarshalling functions
part of protocol buffers (usable without RPC)

fields are numbered (can have more than 1 field)
numbers are used in byte-format of messages
allows changing field names, adding new fields, etc.

will become method of Python class

rule: arguments/return value always a message

19

RPC server implementation (method 1)
import dirproto_pb2
import dirproto_pb2_grpc

class DirectoriesImpl(dirproto_pb2_grpc.DirectoriesServicer):
...
def MakeDirectory(self, request, context):
print("MakeDirectory called with path=", request.path)
try:

os.mkdir(request.path)
except OSError as e:

context.abort(grpc.StatusCode.UNKNOWN,
"OS returned error: {}".format(err))

return dirproto_pb2.Empty()

20

RPC server implementation (method 2)
import dirproto_pb2, dirproto_pb2_grpc
from dirproto_pb2 import DirectoryList, DirectoryEntry

class DirectoriesImpl(dirproto_pb2_grpc.DirectoriesServicer):
...
def ListDirectory(self, request, context):
try:

result = DirectoryList()
for file_name in os.listdir(request.path)

result.entries.append(DirectoryEntry(name=file_name, ...))
except OSError as err:

context.abort(grpc.StatusCode.UNKNOWN,
"OS returned error: {}".format(err))

return result

21

RPC server implementation (starting)
create server that uses thread pool with
three threads to run procedure calls
server = grpc.server(

futures.ThreadPoolExecutor(max_workers=3)
)
DirectoriesImpl() creates instance of implementaiton class
add_DirectoryServicer_to_server part of generated code
dirproto_pb2_grpc.add_DirectoryServicer_to_server(

DirectoriesImpl()
)
server.add_insecure_port('127.0.0.1:12345')
server.start() # runs server in separate thread

22

RPC client implementation (method 1)
from dirproto_pb2_grpc import DirectoriesStub
from dirproto_pb2 import MakeDirectoryArgs

channel = grpc.insecure_channel('127.0.0.1:12345')
stub = DirectoriesStub(channel)
args = MakeDirectoryArgs(path="/directory/name")
try:
stub.MakeDirectory(args)

except grpc.RpcError as error:
... # handle error

23

RPC client implementation (method 2)
from dirproto_pb2_grpc import DirectoriesStub
from dirproto_pb2 import ListDirectoryArgs

channel = grpc.insecure_channel('127.0.0.1:12345')
stub = DirectoriesStub(channel)
args = ListDirectoryArgs(path="/directory/name")
try:
result = stub.ListDirectory(args)
for entry in result.entries:
print(entry.name)

except grpc.RpcError as error:
... # handle error

24

RPC non-transparency
setup is not transparent — what server/port/etc.

ideal: system just knows where to contact?

errors might happen
what if connection fails?

server and client versions out-of-sync
can’t upgrade at the same time — different machines

performance is very different from local

25

RPC locally
not uncommon to use RPC on one machine

more convenient alternative to pipes?

allows shared memory implementation
mmap one common file
use mutexes+condition variables+etc. inside that memory

26

failure models
how do networks ‘fail’?…

how do machines ‘fail’?…

well, lots of ways

27

network failures: two kinds
messages lost

messages delayed/reordered

28

network failures: message lost?
detect with acknowledgements (“yes I got it”)

can recover by retrying

can’t distinguish: original message lost or acknowledgment lost

can’t distinguish: machine crashed or network down/slow for a while

29

failure models
how do networks ‘fail’?…

how do machines ‘fail’?…

well, lots of ways

30

exercise: RPC failure scenarios
RPC with MakeDirectory(”foo”)
option A: client stub returns when sent to server
option B: client stub waits for server to return OK

gives up if waiting too long

for now, assume only network failures

I call MakeDirectory(”foo”) and it throws an exception:
with Option A: could directory have been created?
with Option B: could directory have been created?

I call MakeDirectory(”foo”) and it throws no exception:
with Option A: could directory have NOT been created?
with Option B: could directory have NOT been created?

31

throws an exception
Option A (returns when sent)

problem sending request
→ probably not created

Option B (waits for OK)
problem sending request?
request sent, but problem receiving reply?
→ could have been created

32

throws no exception
Option A (returns when sent)

successfully sent
did server recieve, process?
→ don’t know!

Option B (waits for OK)
successfully sent AND
successfully received reply
→ server created directory

33

dealing with network message lost

machine A machine B
append to file A

machine A machine B

append to file A

does A need to retry appending? can’t tell

34

handling failures: try 1

machine
A

machine
B

append to file A

yup, done!

machine
A

machine
B

append to file A

yup, done!

does A need to retry appending? still can’t tell

35

handling failures: try 1

machine
A

machine
B

append to file A

yup, done!

machine
A

machine
B

append to file A

yup, done!

does A need to retry appending? still can’t tell

35

handling failures: try 1

machine
A

machine
B

append to file A

yup, done!

machine
A

machine
B

append to file A

yup, done!

does A need to retry appending? still can’t tell

35

handling failures: try 2

machine
A

machine
B

append to file A

yup, done!append to file A (if you haven’t)

yup, done!

retry (in an idempotent way) until we get an acknowledgement
basically the best we can do, but when to give up?

36

network failures: message reordered?
can detect with sequence numbers

connection protocols do this

RPC abstraction — generally doesn’t
potentially receive ‘stale’ RPC call

can’t distinguish: message lost or just delayed and not received yet

37

handling reordering

machine
A

machine
B

part 1: “hello ”
part 2: “world!”

got part 1+2

38

failure models
how do networks ‘fail’?…

how do machines ‘fail’?…

well, lots of ways

39

two models of machine failure
fail-stop

failing machines stop responding/don’t get messages
or one always detects they’re broken and can ignore them

Byzantine failures

failing machines do the worst possible thing

40

dealing with machine failure
recover when machine comes back up

does not work for Byzantine failures

rely on a quorum of machines working
minimum 1 extra machine for fail-stop
minimum 3F + 1 to handle F failures with Byzantine failures

can replace failed machine(s) if they never come back

41

dealing with machine failure
recover when machine comes back up

does not work for Byzantine failures

rely on a quorum of machines working
minimum 1 extra machine for fail-stop
minimum 3F + 1 to handle F failures with Byzantine failures

can replace failed machine(s) if they never come back

41

distributed transaction problem
distributed transaction

two machines both agree to do something or not do something

even if a machine fails

primary goal: consistent state

secondary goal: do it if nothing breaks

42

distributed transaction example
course database across many machines

machine A and B: student records

machine C: course records

want to make sure machines agree to add students to course

no confusion about student is in course even if failures
“consistency”

okay to say “no” — if possible, can retry later

43

backup slides

44

extending voting
two-phase commit: unanimous vote to commit

assumption: data split across nodes, every must cooperate

other model: every node has a copy of data

goal: work (including updates!) despite a few failing nodes

just require “enough” nodes to be working

for now — assume fail-stop
nodes don’t respond or tell you if broken

45

extending voting
two-phase commit: unanimous vote to commit

assumption: data split across nodes, every must cooperate

other model: every node has a copy of data

goal: work (including updates!) despite a few failing nodes

just require “enough” nodes to be working

for now — assume fail-stop
nodes don’t respond or tell you if broken

45

assignment: fails during prepare
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

ABORT

coordinator crashes from failing to get repsonse
crash happens because RPC call to worker fails
recovers after crash

46

assignment: fails during prepare
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

ABORT
coordinator crashes from failing to get repsonse
crash happens because RPC call to worker fails
recovers after crash

46

assignment: failuring during commit
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

COMMIT COMMIT

COMMIT not sent successfully → crash
RPC call to get ack of commit fails, coordinator crashes
fix the problem when coordinator restarted

47

assignment: failuring during commit
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

COMMIT COMMIT
COMMIT not sent successfully → crash
RPC call to get ack of commit fails, coordinator crashes
fix the problem when coordinator restarted

47

aside: worker ACKs
coordinator

worker 1

worker 2

PREPARE AGREE-TO-
COMMIT

COMMIT

ack-commit

assignment: worker sends response from COMMIT
(no extra work: Commit is RPC call with return value)
if not received, coordinator knows something wrong

48

aside: worker ACKs
coordinator

worker 1

worker 2

PREPARE AGREE-TO-
COMMIT

COMMIT

ack-commit

assignment: worker sends response from COMMIT
(no extra work: Commit is RPC call with return value)
if not received, coordinator knows something wrong

48

TPC: worker revoting
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

AGREE-TO-
COMMIT

COMMIT COMMIT

record agree-to-commit

on reboot —
resend vote
coordinator resends decision

49

TPC: worker revoting
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

AGREE-TO-
COMMIT

COMMIT COMMIT

record agree-to-commit

on reboot —
resend vote
coordinator resends decision 49

quorums (1)
A B C D E

perform read/write with vote of any quorum of nodes

any quorum enough — okay if some nodes fail

if A, C, D agree: that’s enough

B, E will figure out what happened when they come back up

50

quorums (1)
A B C D E

perform read/write with vote of any quorum of nodes

any quorum enough — okay if some nodes fail

if A, C, D agree: that’s enough

B, E will figure out what happened when they come back up

50

quorums (2)
A B C D E

requirement: quorums overlap

overlap = someone in quorum knows about every update
e.g. every operation requires majority of nodes

part of voting — provide other voting nodes with ‘missing’ updates
make sure updates survive later on

cannot get a quorum to agree on anything conflicting with past
updates

51

quorums (2)
A B C D E

requirement: quorums overlap

overlap = someone in quorum knows about every update
e.g. every operation requires majority of nodes

part of voting — provide other voting nodes with ‘missing’ updates
make sure updates survive later on

cannot get a quorum to agree on anything conflicting with past
updates

51

quorums (2)
A B C D E

requirement: quorums overlap

overlap = someone in quorum knows about every update
e.g. every operation requires majority of nodes

part of voting — provide other voting nodes with ‘missing’ updates
make sure updates survive later on

cannot get a quorum to agree on anything conflicting with past
updates

51

	last time
	remote procedure calls
	RPC concept and stubs
	RPC data flow
	RPC errors exercise
	marshalling
	why interface description languages?
	one idea for marshalling
	GRPC example
	introduction
	starting code example
	IDL
	Python server
	Python client

	non-transparency: errors and versioning and performance
	RPC locally

	failure
	failure models
	introduction
	kinds of network failures
	aside: failure models and RPC
	network failure scenarios

	distributed failures
	fail stop

	distributed transaction
	backup slides
	briefly: distributed consensus
	assignment: ACKs
	aside: worker ACKs
	example: worker failure during commit (without ACKs)
	quorums

