
two-phase commit

1



changelog
21 April 2022: rephrase naive distributed transaction exercises to
avoid
using the confusing phrasing ‘agree’/‘do not agree’

2



last time
gRPC design choices

expose local object to represent functions on server
call method of local object → causes method call on server
programming-language-neutral IDL
arguments/return value always struct-like message

a model for network failure
messages lost and reordered
handle with acknowledgments, sequence numbers
still can’t be sure if message lost or ack lost
e.g. RPC fails? may/may not have been done on server!

machine failure models
fail-stop: machine stops responding (or we ignore it)
Byzantine: machine can do anything
reality: somewhere in between

3



failure models
how do networks ‘fail’?…

how do machines ‘fail’?…

well, lots of ways

4



failure models
how do networks ‘fail’?…

how do machines ‘fail’?…

well, lots of ways

5



two models of machine failure
fail-stop

failing machines stop responding/don’t get messages
or one always detects they’re broken and can ignore them

Byzantine failures

failing machines do the worst possible thing

6



dealing with machine failure
recover when machine comes back up

does not work for Byzantine failures

rely on a quorum of machines working
minimum 1 extra machine for fail-stop
minimum 3F + 1 to handle F failures with Byzantine failures

can replace failed machine(s) if they never come back

7



dealing with machine failure
recover when machine comes back up

does not work for Byzantine failures

rely on a quorum of machines working
minimum 1 extra machine for fail-stop
minimum 3F + 1 to handle F failures with Byzantine failures

can replace failed machine(s) if they never come back

7



distributed transaction problem
distributed transaction

two machines both agree to do something or not do something

even if a machine fails

primary goal: consistent state

secondary goal: do it if nothing breaks

8



distributed transaction example
course database across many machines

machine A and B: student records

machine C: course records

want to make sure machines agree to add students to course

no confusion about student is in course even if failures
“consistency”

okay to say “no” — if possible, can retry later

9



naive distributed transaction? (1)
machine A and B: student records; machine C: course records

any machine can be queried directly for info (e.g. by SIS web interface)

proposed add student to course procedure:

execute code on A or B where student is stored

tell C: add student to course

wait for response from C (if course full, return error)

locally: add student to course

10



exericse (1)
seperate student (local) + course (remote) records

tell remote: add student to course

then locally: add student to course

if no failures, which are possible to observe from third machine
(that asks student/course machines for current records)?

A student record: in course; course record: not in course; but if double
checking: both agree

B same as A, but if double-checking both do not agree
C student record: not in course; course record: in course; but if double

checking: both agree
D same as C, but if double-checking both do not agree

11



exericse (2)
seperate student (local) + course (remote) records

tell remote: add student to course

then locally: add student to course

if machine power loss + restart, which are possible to observe from
third machine (that asks student/course machines for current
records)?

A student record: in course; course record: not in course; but if double
checking: both agree

B same as A, but if double-checking both do not agree
C student record: not in course; course record: in course; but if double

checking: both agree
D same as C, but if double-checking both do not agree

12



decentralized solution properties
each machine handles only its own data

no sending everything through one machine (easy solution)

machines involved in transaction if and only if have relevant data
change only to courses? don’t tell student machines
change to course + student A? don’t tell machine with student B

make progress as long as relevant machines don’t fail
losing one of K student machines? still runs for 1 of K students

hope: scales to tens/hundreds of machines
typical transaction: 1 to 3 machines?

13



decentralized solution properties
each machine handles only its own data

no sending everything through one machine (easy solution)

machines involved in transaction if and only if have relevant data
change only to courses? don’t tell student machines
change to course + student A? don’t tell machine with student B

make progress as long as relevant machines don’t fail
losing one of K student machines? still runs for 1 of K students

hope: scales to tens/hundreds of machines
typical transaction: 1 to 3 machines?

13



two-phase commit
will look at solution that satisfies these propties

known as two-phase commit

name from two steps: figure out what to do, then do it

hint: similar idea to redo logging
record intended actions, then do them

14



persisting past failures
will still use presistent log on each machine

idea: machine remembers what it was doing on failure

doesn’t store data of other machines

…just some identifier/contact info for the transaction

15



two-phase commit: roles
one machine = coordinator

other machines are workers
common implementation: one physical machine runs coordinator+one
worker

key rule: abort (don’t change anything) if anyone decides to abort

coordinator collects workers’ vote: will they abort?

coordinator makes final decision using votes

16



two-phase commit: roles
one machine = coordinator

other machines are workers
common implementation: one physical machine runs coordinator+one
worker

key rule: abort (don’t change anything) if anyone decides to abort

coordinator collects workers’ vote: will they abort?

coordinator makes final decision using votes

16



two-phase commit: roles
one machine = coordinator

other machines are workers
common implementation: one physical machine runs coordinator+one
worker

key rule: abort (don’t change anything) if anyone decides to abort

coordinator collects workers’ vote: will they abort?

coordinator makes final decision using votes

16



two-phase commit: voting

worker worker worker … coordinator
chooses:

commit commit commit … → commit

commit abort commit … → abort

commit commit unknown? … → abort or wait for
missing vote

if nothing wrong,
make progress
no inconsistency
if aborting instead

must abort
if any node can’t do itsafe to abort

if in doubt

17



two-phase commit: voting

worker worker worker … coordinator
chooses:

commit commit commit … → commit

commit abort commit … → abort

commit commit unknown? … → abort or wait for
missing vote

if nothing wrong,
make progress

no inconsistency
if aborting instead

must abort
if any node can’t do itsafe to abort

if in doubt

17



two-phase commit: voting

worker worker worker … coordinator
chooses:

commit commit commit … → commit

commit abort commit … → abort

commit commit unknown? … → abort or wait for
missing vote

if nothing wrong,
make progress

no inconsistency
if aborting instead

must abort
if any node can’t do itsafe to abort

if in doubt

17



two-phase commit: voting

worker worker worker … coordinator
chooses:

commit commit commit … → commit

commit abort commit … → abort

commit commit unknown? … → abort or wait for
missing vote

if nothing wrong,
make progress
no inconsistency
if aborting instead

must abort
if any node can’t do it

safe to abort
if in doubt

17



two-phase commit: voting

worker worker worker … coordinator
chooses:

commit commit commit … → commit

commit abort commit … → abort

commit commit unknown? … → abort or wait for
missing vote

if nothing wrong,
make progress
no inconsistency
if aborting instead

must abort
if any node can’t do it

safe to abort
if in doubt

17



aside: why abort? (1)
why might worker want to abort?

simpliest example: operation not possible

course full

course doesn’t exist on worker

worker out of disk space

…

18



aside: why abort? (2)
why might worker want to abort?

sublte issue: conflict with other tranaction; example:

transaction 1: worker agreed to add student X to course A

…but still waiting to confirm that this will happen

tranasction 2: worker asked to add student Y to course A

if course would be full after transaction 1, worker can’t say ‘yes’

option one: worker aborts, says “not now”

option two: worker delays response for transaction 2 until ready

19



aside: why abort? (2)
why might worker want to abort?

sublte issue: conflict with other tranaction; example:

transaction 1: worker agreed to add student X to course A
…but still waiting to confirm that this will happen

tranasction 2: worker asked to add student Y to course A
if course would be full after transaction 1, worker can’t say ‘yes’

option one: worker aborts, says “not now”

option two: worker delays response for transaction 2 until ready

19



aside: why abort? (2)
why might worker want to abort?

sublte issue: conflict with other tranaction; example:

transaction 1: worker agreed to add student X to course A
…but still waiting to confirm that this will happen

tranasction 2: worker asked to add student Y to course A
if course would be full after transaction 1, worker can’t say ‘yes’

option one: worker aborts, says “not now”

option two: worker delays response for transaction 2 until ready
19



aside: consistency and reads
don’t want to allow reads of values that “in flux”

typical solution: reads need transaction, too
even though they don’t change anything

assignment: workers have “unavailable” flag

20



two-phase commit: no take-backs
once worker agrees not to abort, it cannot change its mind

once coordinator makes decision, it cannot change its mind

both cases: need to remember decision after power loss, crash, etc.

solution: write decision down in log before acting on it

21



two-phase commit: no take-backs
once worker agrees not to abort, it cannot change its mind

once coordinator makes decision, it cannot change its mind

both cases: need to remember decision after power loss, crash, etc.

solution: write decision down in log before acting on it

21



two-phase commit: phases
phase 1: preparing

workers tell coordinator their votes: agree to commit/abort

phase 2: finishing

coordinator gathers votes, decides and tells everyone the outcome

22



preparing
agree to commit

promise: “I will accept this transaction”
promise recorded in the machine log in case it crashes

agree to abort
promise: “I will not accept this transaction”
promise recorded in the machine log in case it crashes

never ever take back agreement!

to keep promise: can’t allow interfering operations
e.g. agree to add student to class → reserve seat in class
(even though student might not be added b/c of other machines)

23



preparing
agree to commit

promise: “I will accept this transaction”
promise recorded in the machine log in case it crashes

agree to abort
promise: “I will not accept this transaction”
promise recorded in the machine log in case it crashes

never ever take back agreement!to keep promise: can’t allow interfering operations
e.g. agree to add student to class → reserve seat in class
(even though student might not be added b/c of other machines)

23



coordinator decision
coordinator can’t take back global decision

must record in presistent log to ensure not forgotten

coordinator fails without logged decision? collect votes again

24



coordinator decision
coordinator can’t take back global decision

must record in presistent log to ensure not forgotten

coordinator fails without logged decision? collect votes again

24



finishing
coordinator says commit → commit transaction

worker applies transcation (e.g. record student is in class)

coordinator (or anyone) says abort → abort transaction
worker never ever applies transaction
still want to do operation? make a new transaction

unsure which? option 1: ask coordinator
e.g. worker policy: keep asking if no outcome

unsure which? option 2: make sure coordinator resends outcome
e.g. coordinator keeps sending outcome until it gets “yes, I got it” reply

25



finishing
coordinator says commit → commit transaction

worker applies transcation (e.g. record student is in class)

coordinator (or anyone) says abort → abort transaction
worker never ever applies transaction
still want to do operation? make a new transaction

unsure which? option 1: ask coordinator
e.g. worker policy: keep asking if no outcome

unsure which? option 2: make sure coordinator resends outcome
e.g. coordinator keeps sending outcome until it gets “yes, I got it” reply

25



two-phase commit: roles
typical two-phase commit implementation

several workers

one coordinator
might be same machine as a worker

26



two-phase-commit messages
coordiantor → worker: PREPARE

“will you agree to do this action?”
on failure: can ask multiple times!

worker → coordinator:
AGREE-TO-COMMIT or AGREE-TO-ABORT

worker records decision in log (before sending)

coordinator → worker: COMMIT or ABORT
I counted the votes and the result is commit/abort
only commit if all votes were commit

27



TPC: normal operation

coordinator

worker 1

worker 2

PREPARE AGREE-TO-
COMMIT

COMMIT

log: state=WAIT

log: state=AGREED-TO-COMMIT

log: state=COMMIT

28



TPC: normal operation

coordinator

worker 1

worker 2

PREPARE AGREE-TO-
COMMIT

COMMIT

log: state=WAIT

log: state=AGREED-TO-COMMIT

log: state=COMMIT

28



TPC: normal operation — conflict

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
ABORT

AGREE-TO-
COMMIT

ABORT

class is full!
log: state=ABORT

log: state=WAIT

log: state=AGREED-TO-COMMIT

log: state=ABORT

29



TPC: normal operation — conflict

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
ABORT

AGREE-TO-
COMMIT

ABORT

class is full!
log: state=ABORT

log: state=WAIT

log: state=AGREED-TO-COMMIT

log: state=ABORT

29



exercise (1)
under what circumstances may a worker send vote to abort?

[A] in repsonse to a duplicate PREPARE message after replying to the
first with a vote to commit
[B] after rebooting after a crash, if its log indicates it previously decided
to vote to abort, but did not receive any decisions from the coordinator
[C] after rebooting after a crash, if its log indicates it previously decided
to vote to commit, but did not receive any decisions from the coordinator
[D] after sending a vote to commit, but detecting that the coordinator
crashed and has been down for a very long time

30



exercise (2)
under what circumstances may a coordinator send a decision to
abort?

[A] when rebooting after a crash, after having last sent a request to vote
to all but one worker and receiving votes to commit from all workers
contacted
[B] when rebooting after a crash, when the log indicates that the last
thing the coordinator did was deciding to commit but the log doesn’t
indicate that any workers were contacted
[C] after successfully sending a request for a vote to a worker, but not
receiving the reply due to a network problem

31



two-phase commit: blocking
agree to commit “add student to class”?

can’t allow conflicting actions…

adding student to conflicting class?
removing student from the class?
not leaving seat in class?

…until know transaction globally committed/aborted

32



two-phase commit: blocking
agree to commit “add student to class”?

can’t allow conflicting actions…
adding student to conflicting class?
removing student from the class?
not leaving seat in class?

…until know transaction globally committed/aborted

32



waiting forever?
if machine goes away at wrong time, might never decide what
happens

solution in practice: manual intervention

33



reasoning about protocols: state machines
very hard to reason about dist. protocol correctness

typical tool: state machine

each machine is in some state

know what every message does in this state

avoids common problem: don’t know what message does

34



reasoning about protocols: state machines
very hard to reason about dist. protocol correctness

typical tool: state machine

each machine is in some state

know what every message does in this state

avoids common problem: don’t know what message does

34



coordinator state machine (simplified?)
INIT

WAITING

ABORTED COMMITTED

send PREPARE to all

receive any AGREE-TO-ABORT
or no reply from worker

send ABORT

receive AGREE-TO-COMMIT from all
send COMMIT

accumulate votes

resend PREPARE
after timeout/failure

resend ABORT if needed

resend COMMIT if needed

35



coordinator state machine (simplified?)
INIT

WAITING

ABORTED COMMITTED

send PREPARE to all

receive any AGREE-TO-ABORT
or no reply from worker

send ABORT

receive AGREE-TO-COMMIT from all
send COMMIT

accumulate votes

resend PREPARE
after timeout/failure

resend ABORT if needed

resend COMMIT if needed

35



coordinator state machine (simplified?)
INIT

WAITING

ABORTED COMMITTED

send PREPARE to all

receive any AGREE-TO-ABORT
or no reply from worker

send ABORT

receive AGREE-TO-COMMIT from all
send COMMIT

accumulate votes

resend PREPARE
after timeout/failure

resend ABORT if needed

resend COMMIT if needed

35



coordinator state machine (simplified?)
INIT

WAITING

ABORTED COMMITTED

send PREPARE to all

receive any AGREE-TO-ABORT
or no reply from worker

send ABORT

receive AGREE-TO-COMMIT from all
send COMMIT

accumulate votes

resend PREPARE
after timeout/failure

resend ABORT if needed

resend COMMIT if needed

35



coordinator failure recovery
duplicate messages okay — unique transaction ID!

coordinator crashes? log indicating last state

worst case: log written, but message not sent

→ resend last message
or, if allowed, maybe send ABORT

worker doesn’t get COMMIT/ABORT?
in assignment: worker sends acknowledgment; arrange retry if no ack
other option: worker asks again after timeout

workers need to handle duplicate messages!
coordinators need to handle duplicate replies!haven’t sent commit? can abort instead (simpler?)

in assignment, errors detected only at coordinator
using gRPC — so have return value from “COMMIT” RPC

normal strategy: wait for timeout, then resend
assignment: you throw exception; we’ll restart (easier testing)

36



coordinator failure recovery
duplicate messages okay — unique transaction ID!

coordinator crashes? log indicating last state

worst case: log written, but message not sent

→ resend last message
or, if allowed, maybe send ABORT

worker doesn’t get COMMIT/ABORT?
in assignment: worker sends acknowledgment; arrange retry if no ack
other option: worker asks again after timeout

workers need to handle duplicate messages!
coordinators need to handle duplicate replies!haven’t sent commit? can abort instead (simpler?)

in assignment, errors detected only at coordinator
using gRPC — so have return value from “COMMIT” RPC

normal strategy: wait for timeout, then resend
assignment: you throw exception; we’ll restart (easier testing)

36



coordinator failure recovery
duplicate messages okay — unique transaction ID!

coordinator crashes? log indicating last state

worst case: log written, but message not sent

→ resend last message
or, if allowed, maybe send ABORT

worker doesn’t get COMMIT/ABORT?
in assignment: worker sends acknowledgment; arrange retry if no ack
other option: worker asks again after timeout

workers need to handle duplicate messages!
coordinators need to handle duplicate replies!

haven’t sent commit? can abort instead (simpler?)

in assignment, errors detected only at coordinator
using gRPC — so have return value from “COMMIT” RPC

normal strategy: wait for timeout, then resend
assignment: you throw exception; we’ll restart (easier testing)

36



coordinator failure recovery
duplicate messages okay — unique transaction ID!

coordinator crashes? log indicating last state

worst case: log written, but message not sent

→ resend last message
or, if allowed, maybe send ABORT

worker doesn’t get COMMIT/ABORT?
in assignment: worker sends acknowledgment; arrange retry if no ack
other option: worker asks again after timeout

workers need to handle duplicate messages!
coordinators need to handle duplicate replies!

haven’t sent commit? can abort instead (simpler?)

in assignment, errors detected only at coordinator
using gRPC — so have return value from “COMMIT” RPC

normal strategy: wait for timeout, then resend
assignment: you throw exception; we’ll restart (easier testing)

36



coordinator failure recovery
duplicate messages okay — unique transaction ID!

coordinator crashes? log indicating last state

worst case: log written, but message not sent

→ resend last message
or, if allowed, maybe send ABORT

worker doesn’t get COMMIT/ABORT?
in assignment: worker sends acknowledgment; arrange retry if no ack
other option: worker asks again after timeout

workers need to handle duplicate messages!
coordinators need to handle duplicate replies!haven’t sent commit? can abort instead (simpler?)

in assignment, errors detected only at coordinator
using gRPC — so have return value from “COMMIT” RPC

normal strategy: wait for timeout, then resend
assignment: you throw exception; we’ll restart (easier testing)

36



coordinator failure recovery
duplicate messages okay — unique transaction ID!

coordinator crashes? log indicating last state

worst case: log written, but message not sent

→ resend last message
or, if allowed, maybe send ABORT

worker doesn’t get COMMIT/ABORT?
in assignment: worker sends acknowledgment; arrange retry if no ack
other option: worker asks again after timeout

workers need to handle duplicate messages!
coordinators need to handle duplicate replies!haven’t sent commit? can abort instead (simpler?)

in assignment, errors detected only at coordinator
using gRPC — so have return value from “COMMIT” RPC

normal strategy: wait for timeout, then resend
assignment: you throw exception; we’ll restart (easier testing)

36



coordinator state machine (less simplified?)
INIT

WAITING

ABORTED COMMITTED

send PREPARE to all

receive any AGREE-TO-ABORT
(or timeout)

send ABORT

receive AGREE-TO-COMMIT from all
send COMMIT

failure/timeout:
resend PREPARE
(or send ABORT) vote:

store + tally

vote/failure/timeout:
resend ABORT

vote/failure/timeout:
resend COMMIT

37



coordinator state machine (less simplified?)
INIT

WAITING

ABORTED COMMITTED

send PREPARE to all

receive any AGREE-TO-ABORT
(or timeout)

send ABORT

receive AGREE-TO-COMMIT from all
send COMMIT

failure/timeout:
resend PREPARE
(or send ABORT) vote:

store + tally

vote/failure/timeout:
resend ABORT

vote/failure/timeout:
resend COMMIT

37



worker state machine (simplified)
INIT

AGREED-TO-COMMIT

COMMITTED

ABORTED

recv PREPARE
send AGREE-TO-COMMIT

recv PREPARE
send AGREE-TO-ABORT

recv ABORT

recv COMMIT

38



worker state machine (less simplified?)
INIT

AGREED-TO-COMMIT

COMMITTED

ABORTED

recv PREPARE
send AGREE-TO-COMMIT

recv PREPARE
send AGREE-TO-ABORT

recv ABORT

recv COMMIT
recv PREPARE
(re)send AGREE-TO-ABORT

recv PREPARE
resend AGREE-TO-COMMIT

39



worker state machine (less simplified?)
INIT

AGREED-TO-COMMIT

COMMITTED

ABORTED

recv PREPARE
send AGREE-TO-COMMIT

recv PREPARE
send AGREE-TO-ABORT

recv ABORT

recv COMMIT
recv PREPARE
(re)send AGREE-TO-ABORT

recv PREPARE
resend AGREE-TO-COMMIT

39



worker failure recovery
worker crashes? log indicating last state

log written before acting on that state

if INIT:
wait for PREPARE (resent)?

if AGREE-TO-COMMIT or ABORTED:
resend AGREE-TO-COMMIT/ABORT

if COMMITTED:
redo operation (just like redo logging)

40



state machine missing details
really want to specify result of/action for every message!

worker recv ABORT in ABORTED: do nothing
worker recv ABORT in INIT: go to ABORTED
worker recv PREPARE in COMMITTED: ignore?
…

everything specified: machine checkable?

want to discard finished transactions eventually

41



slides we didn’t get to (will cover next Tues)

42



two-phase commit assignment
two phase commit assignment

store single value across workers

single coordinator sends messages to/from workers to change values
workers current value can be queried directly

goal: several replicas all have same value or unavailable

…even if failures

43



assignment: RPC
coordinator talks to worker by making RPC calls

workers only talk to coordinator by replying to RPC
example: make ”prepare” call, worker’s ”agree-to-X” is return value

RPC system detects worker being down, network errors, etc.
become Python exception in coordinator

coordinator verifies Commit/Abort received instead of worker asking
again

automatic: Commit/Abort message is RPC call with return value;
RPC call fails if problem getting return value

workers might never agree-to-abort (and that’s okay)
no conflicting operations: only crash or agree-to-commit

44



assignment: failure recovery
to simplify assignment: always return error if you detect failure

assume testing code/user will restart the coordinator+workers

coordinator sends messages to workers on reboot to recover
resend prepare or commit, abort, etc.

45



assignment: failure types
send RPC and

it gets lost
it gets sent, but acknowledgment/reply is lost
it gets sent, but delayed until after another RPC

46



assignment: failure types
send RPC and

it gets lost
it gets sent, but acknowledgment/reply is lost
it gets sent, but delayed until after another RPC

47



TPC: reordering
coordinator

worker 1

worker 2

PREPARE
id=0

PREPARE
id=0
(resent)

AGREE-TO-
COMMIT
id=0

COMMIT
id=0

AGREE-TO-
COMMIT
id=0

PREPARE
id=1

but maybe prepare wasn’t really lost…
problem: need to know this is an old message
one solution: unique/increasing ID numbers

first prepare message didn’t get to worker 2
solution: resent later (timeout or coordinator recovery)

48



TPC: reordering
coordinator

worker 1

worker 2

PREPARE
id=0

PREPARE
id=0
(resent)

AGREE-TO-
COMMIT
id=0

COMMIT
id=0

AGREE-TO-
COMMIT
id=0

PREPARE
id=1

but maybe prepare wasn’t really lost…
problem: need to know this is an old message
one solution: unique/increasing ID numbers

first prepare message didn’t get to worker 2
solution: resent later (timeout or coordinator recovery)

48



TPC: reordering
coordinator

worker 1

worker 2

PREPARE
id=0

PREPARE
id=0
(resent)

AGREE-TO-
COMMIT
id=0

COMMIT
id=0

AGREE-TO-
COMMIT
id=0

PREPARE
id=1

but maybe prepare wasn’t really lost…
problem: need to know this is an old message
one solution: unique/increasing ID numbers

first prepare message didn’t get to worker 2
solution: resent later (timeout or coordinator recovery)

48



message reordering and assignment
assignment: you need to worry about reordering

connections prevent reordering, but…
RPC system doesn’t prevent it: can use multiple connections

problem: old request seems to fail, but is actually slow

you repeat old request again

later on slow old request reaches machine → must be ignored!

solution: sequence numbers or transactions ID and/or timestamps
some way to tell “this is old”

49



worker failure during prepare
worker failure after prepare without sending vote?

option 1: coordinator retries prepare
option 2: coordinator gives up, sends abort
option 3: worker resends vote proactively

50



worker failure during prepare
worker failure after prepare without sending vote?

option 1: coordinator retries prepare
option 2: coordinator gives up, sends abort
option 3: worker resends vote proactively

51



TPC: worker fails after prepare (1a)

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

PREPARE

AGREE-TO-
COMMIT

COMMIT

coordinator timeout
assignment: coord crash+reboot

on reboot: didn’t record transaction
as if never received

after timeout – coordinator resends
(assignment: coordinator crashes, testing code reboots)
guess: message lost or worker broke

52



TPC: worker fails after prepare (1a)

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

PREPARE

AGREE-TO-
COMMIT

COMMIT

coordinator timeout
assignment: coord crash+reboot

on reboot: didn’t record transaction
as if never received

after timeout – coordinator resends
(assignment: coordinator crashes, testing code reboots)
guess: message lost or worker broke

52



TPC: worker fails after prepare (1a)

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

PREPARE

AGREE-TO-
COMMIT

COMMIT

coordinator timeout
assignment: coord crash+reboot

on reboot: didn’t record transaction
as if never received

after timeout – coordinator resends
(assignment: coordinator crashes, testing code reboots)
guess: message lost or worker broke

52



TPC: worker fails after prepare (1a)

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

PREPARE

AGREE-TO-
COMMIT

COMMIT

coordinator timeout
assignment: coord crash+reboot

on reboot: didn’t record transaction
as if never received

after timeout – coordinator resends
(assignment: coordinator crashes, testing code reboots)
guess: message lost or worker broke

52



TPC: worker fails after prepare (1b)

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

PREPARE

AGREE-TO-
COMMIT

COMMIT

coordinator timeout
assignment: coord crash+reboot

recorded in log: agree-to-commit

on reboot: read log
not sure whether decision received

after timeout – coordinator resends
(assignment: coordinator crashes, testing code reboots)
guess: message lost or worker broke

53



TPC: worker fails after prepare (1b)

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

PREPARE

AGREE-TO-
COMMIT

COMMIT

coordinator timeout
assignment: coord crash+reboot

recorded in log: agree-to-commit

on reboot: read log
not sure whether decision received

after timeout – coordinator resends
(assignment: coordinator crashes, testing code reboots)
guess: message lost or worker broke

53



TPC: worker fails after prepare (1b)

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

PREPARE

AGREE-TO-
COMMIT

COMMIT

coordinator timeout
assignment: coord crash+reboot

recorded in log: agree-to-commit

on reboot: read log
not sure whether decision received

after timeout – coordinator resends
(assignment: coordinator crashes, testing code reboots)
guess: message lost or worker broke

53



TPC: worker fails after prepare (1b)

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

PREPARE

AGREE-TO-
COMMIT

COMMIT

coordinator timeout
assignment: coord crash+reboot

recorded in log: agree-to-commit

on reboot: read log
not sure whether decision received

after timeout – coordinator resends
(assignment: coordinator crashes, testing code reboots)
guess: message lost or worker broke

53



worker failure during prepare
worker failure after prepare without sending vote?

option 1: coordinator retries prepare
option 2: coordinator gives up, sends abort
option 3: worker resends vote proactively

54



TPC: worker fails after prepare (2)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

ABORT

didn’t have time to log response?

coordinator gives up, votes to abort
doesn’t care about worker 2’s vote anymore

55



TPC: worker fails after prepare (2)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

ABORT

didn’t have time to log response?

coordinator gives up, votes to abort
doesn’t care about worker 2’s vote anymore

55



TPC: worker fails after prepare (2)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

ABORT

didn’t have time to log response?

coordinator gives up, votes to abort
doesn’t care about worker 2’s vote anymore

55



worker failure during prepare
worker failure after prepare without sending vote?

option 1: coordinator retries prepare
option 2: coordinator gives up, sends abort
option 3: worker resends vote proactively

56



TPC: worker fails after prepare (3)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

AGREE-TO-
COMMIT

COMMIT

record agree-to-commit

on reboot —
can proactively resend vote

57



TPC: worker fails after prepare (3)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

AGREE-TO-
COMMIT

COMMIT

record agree-to-commit

on reboot —
can proactively resend vote

57



network failure after during voting?
network failure during voting ≈ node failure

same options:
coordinator resends PREPARE
coordinator gives up
worker resends vote

58



TPC: network failure (1)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

ABORT

59



worker failure during commit
worker failure during commit?

option 1: coordinator resends outcome somehow?
requires acknowledgements from worker
required for assignment

option 2: worker resends vote (coordinator resends outcome)

NB: coordinator cannot give up

60



worker failure during commit
worker failure during commit?

option 1: coordinator resends outcome somehow?
requires acknowledgements from worker
required for assignment

option 2: worker resends vote (coordinator resends outcome)

NB: coordinator cannot give up

61



coordinator resend automatically
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

COMMIT

could detect missing ACK and resend
but how many times to retry? how long to wait?
would complicate testing

COMMIT

62



coordinator resend automatically
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

COMMIT
could detect missing ACK and resend
but how many times to retry? how long to wait?
would complicate testing

COMMIT

62



twophase assignment recovery
on failure: we’ll restart everything that failed

“crash-oriented computing”: simplifies implementation
you need to handle everything crashing anyways…
so just make that the only way you handle errors

63



backup slides

64



extending voting
two-phase commit: unanimous vote to commit

assumption: data split across nodes, every must cooperate

other model: every node has a copy of data

goal: work (including updates!) despite a few failing nodes

just require “enough” nodes to be working

for now — assume fail-stop
nodes don’t respond or tell you if broken

65



extending voting
two-phase commit: unanimous vote to commit

assumption: data split across nodes, every must cooperate

other model: every node has a copy of data

goal: work (including updates!) despite a few failing nodes

just require “enough” nodes to be working

for now — assume fail-stop
nodes don’t respond or tell you if broken

65



assignment: failure types
send RPC and

it gets lost
it gets sent, but acknowledgment/reply is lost
it gets sent, but delayed until after another RPC

66



assignment: fails during prepare
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

ABORT

coordinator crashes from failing to get repsonse
crash happens because RPC call to worker fails
recovers after crash

67



assignment: fails during prepare
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

ABORT
coordinator crashes from failing to get repsonse
crash happens because RPC call to worker fails
recovers after crash

67



assignment: failuring during commit
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

COMMIT COMMIT

COMMIT not sent successfully → crash
RPC call to get ack of commit fails, coordinator crashes
fix the problem when coordinator restarted

68



assignment: failuring during commit
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

COMMIT COMMIT
COMMIT not sent successfully → crash
RPC call to get ack of commit fails, coordinator crashes
fix the problem when coordinator restarted

68



aside: worker ACKs
coordinator

worker 1

worker 2

PREPARE AGREE-TO-
COMMIT

COMMIT

ack-commit

assignment: worker sends response from COMMIT
(no extra work: Commit is RPC call with return value)
if not received, coordinator knows something wrong

69



aside: worker ACKs
coordinator

worker 1

worker 2

PREPARE AGREE-TO-
COMMIT

COMMIT

ack-commit

assignment: worker sends response from COMMIT
(no extra work: Commit is RPC call with return value)
if not received, coordinator knows something wrong

69



TPC: worker revoting
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

AGREE-TO-
COMMIT

COMMIT COMMIT

record agree-to-commit

on reboot —
resend vote
coordinator resends decision

70



TPC: worker revoting
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

AGREE-TO-
COMMIT

COMMIT COMMIT

record agree-to-commit

on reboot —
resend vote
coordinator resends decision 70



quorums (1)
A B C D E

perform read/write with vote of any quorum of nodes

any quorum enough — okay if some nodes fail

if A, C, D agree: that’s enough

B, E will figure out what happened when they come back up

71



quorums (1)
A B C D E

perform read/write with vote of any quorum of nodes

any quorum enough — okay if some nodes fail

if A, C, D agree: that’s enough

B, E will figure out what happened when they come back up

71



quorums (2)
A B C D E

requirement: quorums overlap

overlap = someone in quorum knows about every update
e.g. every operation requires majority of nodes

part of voting — provide other voting nodes with ‘missing’ updates
make sure updates survive later on

cannot get a quorum to agree on anything conflicting with past
updates

72



quorums (2)
A B C D E

requirement: quorums overlap

overlap = someone in quorum knows about every update
e.g. every operation requires majority of nodes

part of voting — provide other voting nodes with ‘missing’ updates
make sure updates survive later on

cannot get a quorum to agree on anything conflicting with past
updates

72



quorums (2)
A B C D E

requirement: quorums overlap

overlap = someone in quorum knows about every update
e.g. every operation requires majority of nodes

part of voting — provide other voting nodes with ‘missing’ updates
make sure updates survive later on

cannot get a quorum to agree on anything conflicting with past
updates

72


	last time
	fail stop

	distributed transaction
	naive solution? [exercise]

	two-phase commit
	solution properties/sketch
	still using log
	roles
	voting idea
	aside: why abort
	no take backs
	phases: preparing + finishing
	two-phase commit: messages
	example: normal operation, no conflict
	example: normal operation, with conflict
	exercise
	blocking
	aside: state machines
	two-phase commit state machine

	slides we didn't get to
	two-phase commit assignment
	assignment: reordering

	example: worker failure during prepare
	example: network failure losing vote
	setup: worker failure during commit
	example: worker failure during commit (with ACKs)

	backup slides
	briefly: distributed consensus
	assignment: ACKs
	aside: worker ACKs
	example: worker failure during commit (without ACKs)
	quorums


