
1

last time
distributed transaction idea

problems with naive solutions
values being changed — need something like locking
leave operation half-done on failure

two-phase commit
prepare: see if everyone can do it
commit: every does it
log intended actions before doing it

mapping protocol to state machine
“current state” recorded in log
redo action to enter state on restart
identify what to do for each message in each state

2

coordinator state machine (simplified?)
INIT

WAITING

ABORTED COMMITTED

send PREPARE to all

receive any AGREE-TO-ABORT
or no reply from worker

send ABORT

receive AGREE-TO-COMMIT from all
send COMMIT

accumulate votes

resend PREPARE
after timeout/failure

resend ABORT if needed

resend COMMIT if needed

3

coordinator state machine (simplified?)
INIT

WAITING

ABORTED COMMITTED

send PREPARE to all

receive any AGREE-TO-ABORT
or no reply from worker

send ABORT

receive AGREE-TO-COMMIT from all
send COMMIT

accumulate votes

resend PREPARE
after timeout/failure

resend ABORT if needed

resend COMMIT if needed

3

coordinator state machine (simplified?)
INIT

WAITING

ABORTED COMMITTED

send PREPARE to all

receive any AGREE-TO-ABORT
or no reply from worker

send ABORT

receive AGREE-TO-COMMIT from all
send COMMIT

accumulate votes

resend PREPARE
after timeout/failure

resend ABORT if needed

resend COMMIT if needed

3

coordinator state machine (simplified?)
INIT

WAITING

ABORTED COMMITTED

send PREPARE to all

receive any AGREE-TO-ABORT
or no reply from worker

send ABORT

receive AGREE-TO-COMMIT from all
send COMMIT

accumulate votes

resend PREPARE
after timeout/failure

resend ABORT if needed

resend COMMIT if needed

3

coordinator failure recovery
duplicate messages okay — unique transaction ID!

coordinator crashes? log indicating last state

worst case: log written, but message not sent

→ resend last message
or, if allowed, maybe send ABORT

worker doesn’t get COMMIT/ABORT?
in assignment: worker sends acknowledgment; arrange retry if no ack
other option: worker asks again after timeout

workers need to handle duplicate messages!
coordinators need to handle duplicate replies!haven’t sent commit? can abort instead (simpler?)

in assignment, errors detected only at coordinator
using gRPC — so have return value from “COMMIT” RPC

normal strategy: wait for timeout, then resend
assignment: you throw exception; we’ll restart (easier testing)

4

coordinator failure recovery
duplicate messages okay — unique transaction ID!

coordinator crashes? log indicating last state

worst case: log written, but message not sent

→ resend last message
or, if allowed, maybe send ABORT

worker doesn’t get COMMIT/ABORT?
in assignment: worker sends acknowledgment; arrange retry if no ack
other option: worker asks again after timeout

workers need to handle duplicate messages!
coordinators need to handle duplicate replies!haven’t sent commit? can abort instead (simpler?)

in assignment, errors detected only at coordinator
using gRPC — so have return value from “COMMIT” RPC

normal strategy: wait for timeout, then resend
assignment: you throw exception; we’ll restart (easier testing)

4

coordinator failure recovery
duplicate messages okay — unique transaction ID!

coordinator crashes? log indicating last state

worst case: log written, but message not sent

→ resend last message
or, if allowed, maybe send ABORT

worker doesn’t get COMMIT/ABORT?
in assignment: worker sends acknowledgment; arrange retry if no ack
other option: worker asks again after timeout

workers need to handle duplicate messages!
coordinators need to handle duplicate replies!

haven’t sent commit? can abort instead (simpler?)

in assignment, errors detected only at coordinator
using gRPC — so have return value from “COMMIT” RPC

normal strategy: wait for timeout, then resend
assignment: you throw exception; we’ll restart (easier testing)

4

coordinator failure recovery
duplicate messages okay — unique transaction ID!

coordinator crashes? log indicating last state

worst case: log written, but message not sent

→ resend last message
or, if allowed, maybe send ABORT

worker doesn’t get COMMIT/ABORT?
in assignment: worker sends acknowledgment; arrange retry if no ack
other option: worker asks again after timeout

workers need to handle duplicate messages!
coordinators need to handle duplicate replies!

haven’t sent commit? can abort instead (simpler?)

in assignment, errors detected only at coordinator
using gRPC — so have return value from “COMMIT” RPC

normal strategy: wait for timeout, then resend
assignment: you throw exception; we’ll restart (easier testing)

4

coordinator failure recovery
duplicate messages okay — unique transaction ID!

coordinator crashes? log indicating last state

worst case: log written, but message not sent

→ resend last message
or, if allowed, maybe send ABORT

worker doesn’t get COMMIT/ABORT?
in assignment: worker sends acknowledgment; arrange retry if no ack
other option: worker asks again after timeout

workers need to handle duplicate messages!
coordinators need to handle duplicate replies!haven’t sent commit? can abort instead (simpler?)

in assignment, errors detected only at coordinator
using gRPC — so have return value from “COMMIT” RPC

normal strategy: wait for timeout, then resend
assignment: you throw exception; we’ll restart (easier testing)

4

coordinator failure recovery
duplicate messages okay — unique transaction ID!

coordinator crashes? log indicating last state

worst case: log written, but message not sent

→ resend last message
or, if allowed, maybe send ABORT

worker doesn’t get COMMIT/ABORT?
in assignment: worker sends acknowledgment; arrange retry if no ack
other option: worker asks again after timeout

workers need to handle duplicate messages!
coordinators need to handle duplicate replies!haven’t sent commit? can abort instead (simpler?)

in assignment, errors detected only at coordinator
using gRPC — so have return value from “COMMIT” RPC

normal strategy: wait for timeout, then resend
assignment: you throw exception; we’ll restart (easier testing)

4

coordinator state machine (less simplified?)
INIT

WAITING

ABORTED COMMITTED

send PREPARE to all

receive any AGREE-TO-ABORT
(or timeout)

send ABORT

receive AGREE-TO-COMMIT from all
send COMMIT

failure/timeout:
resend PREPARE
(or send ABORT) vote:

store + tally

vote/failure/timeout:
resend ABORT

vote/failure/timeout:
resend COMMIT

5

coordinator state machine (less simplified?)
INIT

WAITING

ABORTED COMMITTED

send PREPARE to all

receive any AGREE-TO-ABORT
(or timeout)

send ABORT

receive AGREE-TO-COMMIT from all
send COMMIT

failure/timeout:
resend PREPARE
(or send ABORT) vote:

store + tally

vote/failure/timeout:
resend ABORT

vote/failure/timeout:
resend COMMIT

5

worker state machine (simplified)
INIT

AGREED-TO-COMMIT

COMMITTED

ABORTED

recv PREPARE
send AGREE-TO-COMMIT

recv PREPARE
send AGREE-TO-ABORT

recv ABORT

recv COMMIT

6

worker state machine (less simplified?)
INIT

AGREED-TO-COMMIT

COMMITTED

ABORTED

recv PREPARE
send AGREE-TO-COMMIT

recv PREPARE
send AGREE-TO-ABORT

recv ABORT

recv COMMIT
recv PREPARE
(re)send AGREE-TO-ABORT

recv PREPARE
resend AGREE-TO-COMMIT

7

worker state machine (less simplified?)
INIT

AGREED-TO-COMMIT

COMMITTED

ABORTED

recv PREPARE
send AGREE-TO-COMMIT

recv PREPARE
send AGREE-TO-ABORT

recv ABORT

recv COMMIT
recv PREPARE
(re)send AGREE-TO-ABORT

recv PREPARE
resend AGREE-TO-COMMIT

7

worker failure recovery
worker crashes? log indicating last state

log written before acting on that state

if INIT:
wait for PREPARE (resent)?

if AGREE-TO-COMMIT or ABORTED:
resend AGREE-TO-COMMIT/ABORT

if COMMITTED:
redo operation (just like redo logging)

8

state machine missing details
really want to specify result of/action for every message!

worker recv ABORT in ABORTED: do nothing
worker recv ABORT in INIT: go to ABORTED
worker recv PREPARE in COMMITTED: ignore?
…

everything specified: machine checkable?

want to discard finished transactions eventually

9

two-phase commit assignment
two phase commit assignment

store single value across workers

single coordinator sends messages to/from workers to change values
workers current value can be queried directly

goal: several replicas all have same value or unavailable

…even if failures

10

assignment: RPC
coordinator talks to worker by making RPC calls

workers only talk to coordinator by replying to RPC
example: make ”prepare” call, worker’s ”agree-to-X” is return value

RPC system detects worker being down, network errors, etc.
become Python exception in coordinator

coordinator verifies Commit/Abort received instead of worker asking
again

automatic: Commit/Abort message is RPC call with return value;
RPC call fails if problem getting return value

workers might never agree-to-abort (and that’s okay)
no conflicting operations: only crash or agree-to-commit

11

assignment: failure recovery
to simplify assignment: always return error if you detect failure

assume testing code/user will restart the coordinator+workers

coordinator sends messages to workers on reboot to recover
resend prepare or commit, abort, etc.

12

assignment: failure types
send RPC and

it gets lost
it gets sent, but acknowledgment/reply is lost
it gets sent, but delayed until after another RPC

13

assignment: failure types
send RPC and

it gets lost
it gets sent, but acknowledgment/reply is lost
it gets sent, but delayed until after another RPC

14

TPC: reordering
coordinator

worker 1

worker 2

PREPARE
id=0

PREPARE
id=0
(resent)

AGREE-TO-
COMMIT
id=0

COMMIT
id=0

AGREE-TO-
COMMIT
id=0

PREPARE
id=1

but maybe prepare wasn’t really lost…
problem: need to know this is an old message
one solution: unique/increasing ID numbers

first prepare message didn’t get to worker 2
solution: resent later (timeout or coordinator recovery)

15

TPC: reordering
coordinator

worker 1

worker 2

PREPARE
id=0

PREPARE
id=0
(resent)

AGREE-TO-
COMMIT
id=0

COMMIT
id=0

AGREE-TO-
COMMIT
id=0

PREPARE
id=1

but maybe prepare wasn’t really lost…
problem: need to know this is an old message
one solution: unique/increasing ID numbers

first prepare message didn’t get to worker 2
solution: resent later (timeout or coordinator recovery)

15

TPC: reordering
coordinator

worker 1

worker 2

PREPARE
id=0

PREPARE
id=0
(resent)

AGREE-TO-
COMMIT
id=0

COMMIT
id=0

AGREE-TO-
COMMIT
id=0

PREPARE
id=1

but maybe prepare wasn’t really lost…
problem: need to know this is an old message
one solution: unique/increasing ID numbers

first prepare message didn’t get to worker 2
solution: resent later (timeout or coordinator recovery)

15

message reordering and assignment
assignment: you need to worry about reordering

connections prevent reordering, but…
RPC system doesn’t prevent it: can use multiple connections

problem: old request seems to fail, but is actually slow

you repeat old request again

later on slow old request reaches machine → must be ignored!

solution: sequence numbers or transactions ID and/or timestamps
some way to tell “this is old”

16

worker failure during prepare
worker failure after prepare without sending vote?

option 1: coordinator retries prepare
option 2: coordinator gives up, sends abort
option 3: worker resends vote proactively

17

worker failure during prepare
worker failure after prepare without sending vote?

option 1: coordinator retries prepare
option 2: coordinator gives up, sends abort
option 3: worker resends vote proactively

18

TPC: worker fails after prepare (1a)

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

PREPARE

AGREE-TO-
COMMIT

COMMIT

coordinator timeout
assignment: coord crash+reboot

on reboot: didn’t record transaction
as if never received

after timeout – coordinator resends
(assignment: coordinator crashes, testing code reboots)
guess: message lost or worker broke

19

TPC: worker fails after prepare (1a)

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

PREPARE

AGREE-TO-
COMMIT

COMMIT

coordinator timeout
assignment: coord crash+reboot

on reboot: didn’t record transaction
as if never received

after timeout – coordinator resends
(assignment: coordinator crashes, testing code reboots)
guess: message lost or worker broke

19

TPC: worker fails after prepare (1a)

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

PREPARE

AGREE-TO-
COMMIT

COMMIT

coordinator timeout
assignment: coord crash+reboot

on reboot: didn’t record transaction
as if never received

after timeout – coordinator resends
(assignment: coordinator crashes, testing code reboots)
guess: message lost or worker broke

19

TPC: worker fails after prepare (1a)

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

PREPARE

AGREE-TO-
COMMIT

COMMIT

coordinator timeout
assignment: coord crash+reboot

on reboot: didn’t record transaction
as if never received

after timeout – coordinator resends
(assignment: coordinator crashes, testing code reboots)
guess: message lost or worker broke

19

TPC: worker fails after prepare (1b)

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

PREPARE

AGREE-TO-
COMMIT

COMMIT

coordinator timeout
assignment: coord crash+reboot

recorded in log: agree-to-commit

on reboot: read log
not sure whether decision received

after timeout – coordinator resends
(assignment: coordinator crashes, testing code reboots)
guess: message lost or worker broke

20

TPC: worker fails after prepare (1b)

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

PREPARE

AGREE-TO-
COMMIT

COMMIT

coordinator timeout
assignment: coord crash+reboot

recorded in log: agree-to-commit

on reboot: read log
not sure whether decision received

after timeout – coordinator resends
(assignment: coordinator crashes, testing code reboots)
guess: message lost or worker broke

20

TPC: worker fails after prepare (1b)

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

PREPARE

AGREE-TO-
COMMIT

COMMIT

coordinator timeout
assignment: coord crash+reboot

recorded in log: agree-to-commit

on reboot: read log
not sure whether decision received

after timeout – coordinator resends
(assignment: coordinator crashes, testing code reboots)
guess: message lost or worker broke

20

TPC: worker fails after prepare (1b)

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

PREPARE

AGREE-TO-
COMMIT

COMMIT

coordinator timeout
assignment: coord crash+reboot

recorded in log: agree-to-commit

on reboot: read log
not sure whether decision received

after timeout – coordinator resends
(assignment: coordinator crashes, testing code reboots)
guess: message lost or worker broke

20

worker failure during prepare
worker failure after prepare without sending vote?

option 1: coordinator retries prepare
option 2: coordinator gives up, sends abort
option 3: worker resends vote proactively

21

TPC: worker fails after prepare (2)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

ABORT

didn’t have time to log response?

coordinator gives up, votes to abort
doesn’t care about worker 2’s vote anymore

22

TPC: worker fails after prepare (2)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

ABORT

didn’t have time to log response?

coordinator gives up, votes to abort
doesn’t care about worker 2’s vote anymore

22

TPC: worker fails after prepare (2)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

ABORT

didn’t have time to log response?

coordinator gives up, votes to abort
doesn’t care about worker 2’s vote anymore

22

worker failure during prepare
worker failure after prepare without sending vote?

option 1: coordinator retries prepare
option 2: coordinator gives up, sends abort
option 3: worker resends vote proactively

23

TPC: worker fails after prepare (3)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

AGREE-TO-
COMMIT

COMMIT

record agree-to-commit

on reboot —
can proactively resend vote

24

TPC: worker fails after prepare (3)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

AGREE-TO-
COMMIT

COMMIT

record agree-to-commit

on reboot —
can proactively resend vote

24

network failure after during voting?
network failure during voting ≈ node failure

same options:
coordinator resends PREPARE
coordinator gives up
worker resends vote

25

TPC: network failure (1)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

ABORT

26

worker failure during commit
worker failure during commit?

option 1: coordinator resends outcome somehow?
requires acknowledgements from worker
required for assignment

option 2: worker resends vote (coordinator resends outcome)

NB: coordinator cannot give up

27

worker failure during commit
worker failure during commit?

option 1: coordinator resends outcome somehow?
requires acknowledgements from worker
required for assignment

option 2: worker resends vote (coordinator resends outcome)

NB: coordinator cannot give up

28

coordinator resend automatically
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

COMMIT

could detect missing ACK and resend
but how many times to retry? how long to wait?
would complicate testing

COMMIT

29

coordinator resend automatically
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

COMMIT
could detect missing ACK and resend
but how many times to retry? how long to wait?
would complicate testing

COMMIT

29

twophase assignment recovery
on failure: we’ll restart everything that failed

“crash-oriented computing”: simplifies implementation
you need to handle everything crashing anyways…
so just make that the only way you handle errors

30

protection/security
protection: mechanisms for controlling access to resources

page tables, preemptive scheduling, encryption, …

security: using protection to prevent misuse
misuse represented by policy
e.g. “don’t expose sensitive info to bad people”

this class: about mechanisms more than policies

goal: provide enough flexibility for many policies

31

adversaries
security is about adversaries

do the worst possible thing

challenge: adversary can be clever…

32

authorization v authentication
authentication — who is who

authorization — who can do what
probably need authentication first…

33

authorization v authentication
authentication — who is who

authorization — who can do what
probably need authentication first…

33

authentication
password

hardware token

…

this class: mostly won’t deal with how

just tracking afterwards

34

authentication
password

hardware token

…

this class: mostly won’t deal with how

just tracking afterwards

34

access control matrix: who does what?

file 1 file 2 process 1
domain 1 read/write
domain 2 read write wakeup
domain 3 read write kill

each process belongs
to 1+ protection domains:

“user cr4bd”
“group csfaculty”

…

objects (whatever type) with restrictions

35

access control matrix: who does what?

file 1 file 2 process 1
domain 1 read/write
domain 2 read write wakeup
domain 3 read write kill
each process belongs

to 1+ protection domains:
“user cr4bd”

“group csfaculty”
…

objects (whatever type) with restrictions

35

access control matrix: who does what?

file 1 file 2 process 1
domain 1 read/write
domain 2 read write wakeup
domain 3 read write kill
each process belongs

to 1+ protection domains:
“user cr4bd”

“group csfaculty”
…

objects (whatever type) with restrictions

35

access control matrix: who does what?

file 1 file 2 process 1
domain 1 read/write
domain 2 read write wakeup
domain 3 read write kill
each process belongs

to 1+ protection domains:
“user cr4bd”

“group csfaculty”
…

objects (whatever type) with restrictions

35

access control matrix: who does what?

file 1 file 2 process 1
domain 1 read/write
domain 2 read write wakeup
domain 3 read write kill
each process belongs

to 1+ protection domains:
“user cr4bd”

“group csfaculty”
…

objects (whatever type) with restrictions

36

user IDs
most common way OSes identify what domain process belongs to:

(unspecified for now) procedure sets user IDs

every process has a user ID

user ID used to decide what process is authorized to do

37

POSIX user IDs
uid_t geteuid(); // get current process's "effective" user ID

process’s user identified with unique number

kernel typically only knows about number

effective user ID is used for all permission checks

also some other user IDs — we’ll talk later

standard programs/library maintain number to name mapping

/etc/passwd on typical single-user systems
network database on department machines

38

POSIX user IDs
uid_t geteuid(); // get current process's "effective" user ID

process’s user identified with unique number

kernel typically only knows about number

effective user ID is used for all permission checks

also some other user IDs — we’ll talk later

standard programs/library maintain number to name mapping
/etc/passwd on typical single-user systems
network database on department machines

38

POSIX groups
gid_t getegid(void);

// process's"effective" group ID

int getgroups(int size, gid_t list[]);
// process's extra group IDs

POSIX also has group IDs

like user IDs: kernel only knows numbers
standard library+databases for mapping to names

also process has some other group IDs — we’ll talk later

39

id
cr4bd@power4
: /net/zf14/cr4bd ; id
uid=858182(cr4bd) gid=21(csfaculty)

groups=21(csfaculty),325(instructors),90027(cs4414)

id command displays uid, gid, group list

names looked up in database
kernel doesn’t know about this database
code in the C standard library

40

groups that don’t correspond to users
example: video group for access to monitor

put process in video group when logged in directly

don’t do it when SSH’d in

…but: user can keep program running with video group
in the background after logout?

41

groups that don’t correspond to users
example: video group for access to monitor

put process in video group when logged in directly

don’t do it when SSH’d in

…but: user can keep program running with video group
in the background after logout?

41

access control matrix: who does what?

file 1 file 2 process 1
domain 1 read/write
domain 2 read write wakeup
domain 3 read write kill
each process belongs

to 1+ protection domains:
“user cr4bd”

“group csfaculty”
…

objects (whatever type) with restrictions

42

representing access control matrix
with objects (files, etc.): access control list

list of protection domains (users, groups, processes, etc.) allowed to use
each item

list of (domain, object, permissions) stored “on the side”
example: AppArmor on Linux
configuration file with list of program + what it is allowed to access
prevent, e.g., print server from writing files it shouldn’t

43

POSIX file permissions
POSIX files have a very restricted access control list

one user ID + read/write/execute bits for user
“owner” — also can change permissions

one group ID + read/write/execute bits for group

default setting — read/write/execute

(see docs for chmod command)

44

POSIX/NTFS ACLs
more flexible access control lists

list of (user or group, read or write or execute or …)

supported by NTFS (Windows)

a version standardized by POSIX, but usually not supported

45

POSIX ACL syntax
group students have read+execute permissions
group:students:r−x
group faculty has read/write/execute permissions
group:faculty:rwx
user mst3k has read/write/execute permissions
user:mst3k:rwx
user tj1a has no permissions
user:tj1a:−−−

POSIX acl rule:
user take precedence over group entries

46

authorization checking on Unix
checked on system call entry

no relying on libraries, etc. to do checks

files (open, rename, …) — file/directory permissions

processes (kill, …) — process UID = user UID

…

47

keeping permissions?
which of the following would still be secure?

A. setting up a read-only page table entry that allows a process to
directly access its user ID from its process control block in user
mode

B. performing authorization checks in the standard library in
addition to system call handlers

C. performing authorization checks in the standard library instead of
system call handlers

D. making the user ID a system call argument rather than storing it
in the process control block

48

superuser
user ID 0 is special

superuser or root

some system calls: only work for uid 0
shutdown, mount new file systems, etc.

automatically passes all (or almost all) permission checks

49

how does login work?
somemachine login: j o
password: ********

jo@somemachine$ l s
...

this is a program which…

checks if the password is correct, and

changes user IDs, and

runs a shell

50

how does login work?
somemachine login: j o
password: ********

jo@somemachine$ l s
...

this is a program which…

checks if the password is correct, and

changes user IDs, and

runs a shell

51

Unix password storage
typical single-user system: /etc/shadow

only readable by root/superuser

department machines: network service
Kerberos / Active Directory:
server takes (encrypted) passwords
server gives tokens: “yes, really this user”
can cryptographically verify tokens come from server

52

aside: beyond passwords
/bin/login entirely user-space code

only thing special about it: when it’s run

could use any criteria to decide, not just passwords
physical tokens
biometrics
…

53

how does login work?
somemachine login: j o
password: ********

jo@somemachine$ l s
...

this is a program which…

checks if the password is correct, and

changes user IDs, and

runs a shell

54

changing user IDs
int setuid(uid_t uid);

if superuser: sets effective user ID to arbitrary value
and a “real user ID” and a “saved set-user-ID” (we’ll talk later)

system starts in/login programs run as superuser
voluntarily restrict own access before running shell, etc.

55

sudo
tj1a@somemachine$ sudo restart
Password: *********

sudo: run command with superuser permissions
started by non-superuser

recall: inherits non-superuser UID

can’t just call setuid(0)

56

set-user-ID sudo
extra metadata bit on executables: set-user-ID

if set: exec() syscall changes effective user ID to owner’s ID

sudo program: owned by root, marked set-user-ID

marking setuid: chmod u+s

57

set-user ID gates
set-user ID program: gate to higher privilege

controlled access to extra functionality

make authorization/authentication decisions outside the kernel

way to allow normal users to do one thing that needs privileges
write program that does that one thing — nothing else!
make it owned by user that can do it (e.g. root)
mark it set-user-ID

want to allow only some user to do the thing
make program check which user ran it

58

uses for setuid programs
mount USB stick

setuid program controls option to kernel mount syscall
make sure user can’t replace sensitive directories
make sure user can’t mess up filesystems on normal hard disks
make sure user can’t mount new setuid root files

control access to device — printer, monitor, etc.
setuid program talks to device + decides who can

write to secure log file
setuid program ensures that log is append-only for normal users

bind to a particular port number < 1024
setuid program creates socket, then becomes not root

59

set-user-ID program v syscalls
hardware decision: some things only for kernel

system calls: controlled access to things kernel can do

decision about how can do it: in the kernel

kernel decision: some things only for root (or other user)

set-user-ID programs: controlled access to things root/… can do

decision about how can do it: made by root/…

60

backup slides

61

extending voting
two-phase commit: unanimous vote to commit

assumption: data split across nodes, every must cooperate

other model: every node has a copy of data

goal: work (including updates!) despite a few failing nodes

just require “enough” nodes to be working

for now — assume fail-stop
nodes don’t respond or tell you if broken

62

extending voting
two-phase commit: unanimous vote to commit

assumption: data split across nodes, every must cooperate

other model: every node has a copy of data

goal: work (including updates!) despite a few failing nodes

just require “enough” nodes to be working

for now — assume fail-stop
nodes don’t respond or tell you if broken

62

assignment: failure types
send RPC and

it gets lost
it gets sent, but acknowledgment/reply is lost
it gets sent, but delayed until after another RPC

63

assignment: fails during prepare
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

ABORT

coordinator crashes from failing to get repsonse
crash happens because RPC call to worker fails
recovers after crash

64

assignment: fails during prepare
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

ABORT
coordinator crashes from failing to get repsonse
crash happens because RPC call to worker fails
recovers after crash

64

assignment: failuring during commit
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

COMMIT COMMIT

COMMIT not sent successfully → crash
RPC call to get ack of commit fails, coordinator crashes
fix the problem when coordinator restarted

65

assignment: failuring during commit
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

COMMIT COMMIT
COMMIT not sent successfully → crash
RPC call to get ack of commit fails, coordinator crashes
fix the problem when coordinator restarted

65

aside: worker ACKs
coordinator

worker 1

worker 2

PREPARE AGREE-TO-
COMMIT

COMMIT

ack-commit

assignment: worker sends response from COMMIT
(no extra work: Commit is RPC call with return value)
if not received, coordinator knows something wrong

66

aside: worker ACKs
coordinator

worker 1

worker 2

PREPARE AGREE-TO-
COMMIT

COMMIT

ack-commit

assignment: worker sends response from COMMIT
(no extra work: Commit is RPC call with return value)
if not received, coordinator knows something wrong

66

TPC: worker revoting
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

AGREE-TO-
COMMIT

COMMIT COMMIT

record agree-to-commit

on reboot —
resend vote
coordinator resends decision

67

TPC: worker revoting
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

AGREE-TO-
COMMIT

COMMIT COMMIT

record agree-to-commit

on reboot —
resend vote
coordinator resends decision 67

quorums (1)
A B C D E

perform read/write with vote of any quorum of nodes

any quorum enough — okay if some nodes fail

if A, C, D agree: that’s enough

B, E will figure out what happened when they come back up

68

quorums (1)
A B C D E

perform read/write with vote of any quorum of nodes

any quorum enough — okay if some nodes fail

if A, C, D agree: that’s enough

B, E will figure out what happened when they come back up

68

quorums (2)
A B C D E

requirement: quorums overlap

overlap = someone in quorum knows about every update
e.g. every operation requires majority of nodes

part of voting — provide other voting nodes with ‘missing’ updates
make sure updates survive later on

cannot get a quorum to agree on anything conflicting with past
updates

69

quorums (2)
A B C D E

requirement: quorums overlap

overlap = someone in quorum knows about every update
e.g. every operation requires majority of nodes

part of voting — provide other voting nodes with ‘missing’ updates
make sure updates survive later on

cannot get a quorum to agree on anything conflicting with past
updates

69

quorums (2)
A B C D E

requirement: quorums overlap

overlap = someone in quorum knows about every update
e.g. every operation requires majority of nodes

part of voting — provide other voting nodes with ‘missing’ updates
make sure updates survive later on

cannot get a quorum to agree on anything conflicting with past
updates

69

	last time
	two-phase commit state machine
	two-phase commit assignment
	assignment: reordering

	example: worker failure during prepare
	example: network failure losing vote
	setup: worker failure during commit
	example: worker failure during commit (with ACKs)

	protection v security
	security: authentication v authorization
	access matrix/control list
	protection domains?
	POSIX user IDs
	POSIX groups

	access control lists
	file permissions

	authorizaton on Unix
	where checking happens
	exercise: why not check
	superuser
	/bin/login
	sudo/set-user-ID

	backup slides
	briefly: distributed consensus
	assignment: ACKs
	aside: worker ACKs
	example: worker failure during commit (without ACKs)
	quorums

