
access control 2 / virtual machines

1

last time (1)
twophase assignment
protection (mechanism to control access) v security (policy about
what’s allowed)
access control matrix abstraction

protection domains (POSIX: user, group IDs) × objects (files, etc.)
permitted operations for each pair
actually storing: access control lists or (domain, object, operations)
tuples

access control list
list of user/group/…+ permitted operations stored with objects (e.g.
files)
POSIX basic permissions: one user + one group + everyone else

read/write/execute specified for each; chmod
POSIX full ACLs: list of arbitrarily many users, groups

2

last time (2)
enforcing permissions: check in system calls

superuser (POSIX user ID 0)
permissions check special case: always allow ID 0
can setuid to change current user ID — how ‘login’ works

set-user-ID programs

3

sudo
tj1a@somemachine$ sudo restart
Password: *********

sudo: run command with superuser permissions
started by non-superuser

recall: inherits non-superuser UID

can’t just call setuid(0)

4

set-user-ID sudo
extra metadata bit on executables: set-user-ID

if set: exec() syscall changes effective user ID to owner’s ID

sudo program: owned by root, marked set-user-ID

marking setuid: chmod u+s

5

set-user ID gates
set-user ID program: gate to higher privilege

controlled access to extra functionality

make authorization/authentication decisions outside the kernel

way to allow normal users to do one thing that needs privileges
write program that does that one thing — nothing else!
make it owned by user that can do it (e.g. root)
mark it set-user-ID

want to allow only some user to do the thing
make program check which user ran it

6

uses for setuid programs
mount USB stick

setuid program controls option to kernel mount syscall
make sure user can’t replace sensitive directories
make sure user can’t mess up filesystems on normal hard disks
make sure user can’t mount new setuid root files

control access to device — printer, monitor, etc.
setuid program talks to device + decides who can

write to secure log file
setuid program ensures that log is append-only for normal users

bind to a particular port number < 1024
setuid program creates socket, then becomes not root

7

set-user-ID program v syscalls
hardware decision: some things only for kernel

system calls: controlled access to things kernel can do

decision about how can do it: in the kernel

kernel decision: some things only for root (or other user)

set-user-ID programs: controlled access to things root/… can do

decision about how can do it: made by root/…

8

a broken setuid program: setup
suppose I have a directory all-grades on shared server

in it I have a folder for each assignment

and within that a text file for each user’s grade + other info

say I don’t have flexible ACLs and want to give each user access

one (bad?) idea: setuid program to read grade for assignment

./print_grade assignment

outputs grade from all-grades/assignment/USER.txt

9

a broken setuid program: setup
suppose I have a directory all-grades on shared server

in it I have a folder for each assignment

and within that a text file for each user’s grade + other info

say I don’t have flexible ACLs and want to give each user access

one (bad?) idea: setuid program to read grade for assignment

./print_grade assignment

outputs grade from all-grades/assignment/USER.txt

9

a very broken setuid program
print_grade.c:
int main(int argc, char **argv) {

char filename[500];
sprintf(filename, "all-grades/%s/%s.txt",

argv[1], getenv("USER"));
int fd = open(filename, O_RDWR);
char buffer[1024];
read(fd, buffer, 1024);
printf("%s: %s\n", argv[1], buffer);

}

HUGE amount of stuff can go wrong

examples?

10

set-user ID programs are very hard to write
what if stdin, stdout, stderr start closed?

what if the PATH env. var. set to directory of malicious programs?

what if argc == 0?

what if dynamic linker env. vars are set?

what if some bug allows memory corruption?

…

11

a delegation problem
consider printing program marked setuid to access printer

decision: no accessing printer directly
printing program enforces page limits, etc.

command line: file to print

can printing program just call open()?

12

a broken solution
if (original user can read file from argument) {

open(file from argument);
read contents of file;
write contents of file to printer
close(file from argument);

}

hope: this prevents users from printing files than can’t read

problem: race condition!

13

a broken solution / why
setuid program other user program

create normal file toprint.txt
check: can user access? (yes) —

unlink("toprint.txt")
link("/secret", "toprint.txt")

open("toprint.txt") —
read … —

link: create new directory entry for file
another option: rename, symlink (“symbolic link” — alias for
file/directory)
another possibility: run a program that creates secret file
(e.g. temporary file used by password-changing program)

time-to-check-to-time-of-use vulnerability
14

TOCTTOU solution
temporarily ‘become’ original user

then open

then turn back into set-uid user

this is why POSIX processes have multiple user IDs

can swap out effective user ID temporarily

15

practical TOCTTOU races?
can use symlinks maze to make check slower

symlink toprint.txt → a/b/c/d/e/f/g/normal.txt
symlink a/b → ../a
symlink a/c → ../a
…

lots of time spent following symbolic links when program opening
toprint.txt

gives more time to sneak in unlink/link or (more likely) rename

16

exercise
which (if any) of the following would fix for a TOCTTOU
vulnerability in our setuid printing application? (assume the
Unix-permissions without ACLs are in use)

[A] both before and after opening the path passed in for reading,
check that the path is accessible to the user who ran our application

[B] after opening the path passed in for reading, using fstat with
the file descriptor opened to check the permissions on the file

[C] before opening the path, verify that the user controls the file
referred to by the path and the directory containing it

17

some security tasks (1)
helping students collaborate in ad-hoc small groups on shared
server?

Q1: what to allow/prevent?

Q2: how to use POSIX mechanisms to do this?

18

some security tasks (2)
letting students assignment files to faculty on shared server?

Q1: what to allow/prevent?

Q2: how to use POSIX mechanisms to do this?

19

some security tasks (3)
running untrusted game program from Internet?

Q1: what to allow/prevent?

Q2: how to use POSIX mechanisms to do this?

20

ambient authority
POSIX permissions based on user/group IDs process has

correct user/group ID — can read file
correct user ID — can kill process

permission information “on the side”
separate from how to identify file/process

sometimes called ambient authority

“there’s authorization in the air…”

alternate approach: ability to address = permission to access

21

capabilities
token to identify = permission to access

(typically opaque token)

pro: “what object is this token” check = “can access” check:

simpler?

22

capabilities
token to identify = permission to access

(typically opaque token)

pro: “what object is this token” check = “can access” check:
simpler?

22

some capability list examples
file descriptors

list of open files process has access to

page table (sort of?)
list of physical pages process is allowed to access

list of what process can access stored with process

handle to access object = key in permitted object table
impossible to skip permission check!

23

some capability list examples
file descriptors

list of open files process has access to

page table (sort of?)
list of physical pages process is allowed to access

list of what process can access stored with process

handle to access object = key in permitted object table
impossible to skip permission check!

23

sharing capabilities
some ways of sharing capabilities:

inherited by spawned programs
file descriptors/page tables do this

send over local socket or pipe
Unix: usually supported for file descriptors!
(look up SCM_RIGHTS — slightly different for Linux v. OS X v.
FreeBSD v. …)

24

Capsicum: practical capabilities for UNIX (1)
Capsicum: research project from Cambridge

adds capabilities to FreeBSD by extending file descriptors

opt-in: can set process to require capabilities to access objects
instead of absolute path, process ID, etc.

capabilities = fds for each directory/file/process/etc.

more permissions on fds than read/write
execute
open files in (for fd representing directory)
kill (for fd reporesenting process)
…

25

Capsicum: practical capabilities for UNIX (2)
capabilities = no global names

no filenames, instead fds for directories
new syscall: openat(directory_fd, "path/in/directory")
new syscall: fexecv(file_fd, argv)

no pids, instead fds for processes
new syscall: pdfork()

26

recall: the virtual machine interface
application
operating system
hardware

virtual machine interface
physical machine interface

imitate physical interface
(of some real hardware)

system virtual machine
(VirtualBox, VMWare, Hyper-V, …)

chosen for convenience
(of applications)

process virtual machine
(typical operating systems)

27

recall: the virtual machine interface
application
operating system
hardware

virtual machine interface
physical machine interface

imitate physical interface
(of some real hardware)

system virtual machine
(VirtualBox, VMWare, Hyper-V, …)

chosen for convenience
(of applications)

process virtual machine
(typical operating systems)

27

system virtual machine
goal: imitate hardware interface

what hardware?
usually — whatever’s easiest to emulate

28

system virtual machine terms
hypervisor or virtual machine monitor

something that runs system virtual machines

guest OS
operating system that runs as application on hypervisor

host OS
operating system that runs hypervisor
sometimes, hypervisor is the OS (doesn’t run normal programs)
I’ll often talk as if hypervisor is OS to keep things simpler

if hypervisor not OS: host OS will provide new system calls/etc.

29

imitate: how close?
full virtualization

guest OS runs unmodified, as if on real hardware

paravirtualization
small modifications to guest OS to support virtual machine
might change, e.g., how page table entries are set
application should still be unmodified

fuzzy line — custom device drivers sometimes not called
paravirtualization

30

multiple techniques
today: talk about one way of implementing VMs

there are some variations I won’t mention

…or might not have time to mention

one variation: extra HW support for VMs (if time)

one variation: compile guest OS machine code to new machine
code

not as slow as you’d think, sometimes

31

VM layering (intro)

guest OS program

‘guest’ OS

hypervisor

hardware

conceptual layering

user
mode ≈ hypervisor’s process

kernel
mode

pretend
user
mode
pretend
kernel
mode
real
kernel
mode

32

VM layering (intro)

guest OS program

‘guest’ OS

hypervisor

hardware

conceptual layering

user
mode ≈ hypervisor’s process

kernel
mode

pretend
user
mode
pretend
kernel
mode
real
kernel
mode

32

VM layering (intro)

guest OS program

‘guest’ OS

hypervisor

hardware

conceptual layering

user
mode ≈ hypervisor’s process

kernel
mode

pretend
user
mode
pretend
kernel
mode
real
kernel
mode

32

VM layering

guest OS program

‘guest’ OS

hypervisor

hardware

conceptual layering

user
mode

kernel
mode

guest OS registers
page table: physical to machine addresses
I/O devices guest OS can access
…

hypervisor tracks…

same as for normal process so far…

pretend
user
mode
pretend
kernel
mode
real
kernel
mode

whether in user/kernel mode
guest OS page table ptr
guest OS exception table ptr
…

extra state to impl. pretend kernel mode
paging, protection, exceptions/interrupts

real (“shadow”) page table …
virtual machine state

extra data structures to
translate pretend kernel mode info
to form real CPU understands

33

VM layering

guest OS program

‘guest’ OS

hypervisor

hardware

conceptual layering

user
mode

kernel
mode

guest OS registers
page table: physical to machine addresses
I/O devices guest OS can access
…

hypervisor tracks…

same as for normal process so far…

pretend
user
mode
pretend
kernel
mode
real
kernel
mode

whether in user/kernel mode
guest OS page table ptr
guest OS exception table ptr
…

extra state to impl. pretend kernel mode
paging, protection, exceptions/interrupts

real (“shadow”) page table …
virtual machine state

extra data structures to
translate pretend kernel mode info
to form real CPU understands

33

VM layering

guest OS program

‘guest’ OS

hypervisor

hardware

conceptual layering

user
mode

kernel
mode

guest OS registers
page table: physical to machine addresses
I/O devices guest OS can access
…

hypervisor tracks…

same as for normal process so far…

pretend
user
mode
pretend
kernel
mode
real
kernel
mode

whether in user/kernel mode
guest OS page table ptr
guest OS exception table ptr
…

extra state to impl. pretend kernel mode
paging, protection, exceptions/interrupts

real (“shadow”) page table …
virtual machine state

extra data structures to
translate pretend kernel mode info
to form real CPU understands

33

VM layering

guest OS program

‘guest’ OS

hypervisor

hardware

conceptual layering

user
mode

kernel
mode

guest OS registers
page table: physical to machine addresses
I/O devices guest OS can access
…

hypervisor tracks…

same as for normal process so far…

pretend
user
mode
pretend
kernel
mode
real
kernel
mode

whether in user/kernel mode
guest OS page table ptr
guest OS exception table ptr
…

extra state to impl. pretend kernel mode
paging, protection, exceptions/interrupts

real (“shadow”) page table …
virtual machine state

extra data structures to
translate pretend kernel mode info
to form real CPU understands

33

VM layering

guest OS program

‘guest’ OS

hypervisor

hardware

conceptual layering

user
mode

kernel
mode

guest OS registers
page table: physical to machine addresses
I/O devices guest OS can access
…

hypervisor tracks…

same as for normal process so far…

pretend
user
mode
pretend
kernel
mode
real
kernel
mode

whether in user/kernel mode
guest OS page table ptr
guest OS exception table ptr
…

extra state to impl. pretend kernel mode
paging, protection, exceptions/interrupts

real (“shadow”) page table …
virtual machine state

extra data structures to
translate pretend kernel mode info
to form real CPU understands

33

process control block for guest OS
guest OS runs like a process, but…

have extra things for hypervisor to track:

if guest OS thinks interrupts are disabled

what guest OS thinks is it’s interrupt handler table

what guest OS thinks is it’s page table base register

if guest OS thinks it is running in kernel mode

…

34

hypervisor basic flow
guest OS operations trigger exceptions

e.g. try to talk to device: page or protection fault
e.g. try to disable interrupts: protection fault
e.g. try to make system call: system call exception

hypervisor exception handler tries to do what processor would
“normally” do

talk to device on guest OS’s behalf
change “interrupt disabled” flag for hypervisor to check later
invoke the guest OS’s system call exception handler

35

virtual machine execution pieces
making IO and kernel-mode-related instructions work

solution: trap-and-emulate
force instruction to cause fault
make fault handler do what instruction would do
might require reading machine code to emulate instruction

making exceptions/interrupts work
‘reflect’ exceptions/interrupts into guest OS
same setup processor would do …
but do setup on guest OS registers + memory

making page tables work
it’s own topic

36

trap-and-emulate (1)
normally: privileged/special instructions trigger fault

e.g. accessing device memory directly (page fault)
e.g. changing the exception table (protection fault)

normal OS: crash the program

hypervisor: pretend it did the right thing
pretend kernel mode: the actual privileged operation
pretend user mode: invoke guest’s exception handler

37

trap-and-emulate (1)
normally: privileged/special instructions trigger fault

e.g. accessing device memory directly (page fault)
e.g. changing the exception table (protection fault)

normal OS: crash the program

hypervisor: pretend it did the right thing
pretend kernel mode: the actual privileged operation
pretend user mode: invoke guest’s exception handler

38

privileged I/O flow

program

‘guest’ OS

hypervisor

hardware

conceptual layering
pretend
user
mode
pretend
kernel
mode
real
kernel
mode

try to
access device

protection
fault

actually talk to device

update guest OS state
then switch back

…

39

privileged I/O flow

program

‘guest’ OS

hypervisor

hardware

conceptual layering

pretend
user
mode
pretend
kernel
mode
real
kernel
mode

try to
access device

protection
fault

actually talk to device

update guest OS state
then switch back

…

39

privileged I/O flow

program

‘guest’ OS

hypervisor

hardware

conceptual layering

pretend
user
mode
pretend
kernel
mode
real
kernel
mode

try to
access device

protection
fault

actually talk to device

update guest OS state
then switch back

…

39

privileged I/O flow

program

‘guest’ OS

hypervisor

hardware

conceptual layering

pretend
user
mode
pretend
kernel
mode
real
kernel
mode

try to
access device

protection
fault

actually talk to device

update guest OS state
then switch back

…

39

trap-and-emulate: psuedocode
trap(...) {
...
if (is_read_from_keyboard(tf−>pc)) {

do_read_system_call_based_on(tf);
}
...

}

idea: translate privileged instructions into system-call-like operations

usually: need to deal with reading arguments, etc.

40

recall: xv6 keyboard I/O
...
data = inb(KBDATAP);
/* compiles to:

mov $0x60, %edx
in %dx, %al <-- FAULT IN USER MODE

*/
...

in user mode: triggers a fault

in instruction — read from special ‘I/O address’

but same idea applies to mov from special memory address + page
fault

41

more complete pseudocode (1)
trap(...) { // tf = saved context (like xv6 trapframe)
...
else if (exception_type == PROTECTION_FAULT

&& guest OS in kernel mode) {
char *pc = tf−>pc;
if (is_in_instr(pc)) { // interpret machine code!

...
int src_address = get_instr_address(instrution);
switch (src_address) {

...
case KBDATAP:

char c = do_syscall_to_read_keyboard();
tf−>registers[get_instr_dest(pc)] = c;
tf−>pc += get_instr_length(pc);
break;
...

}
}

}
...

}
42

more complete pseudocode (1)
trap(...) { // tf = saved context (like xv6 trapframe)
...
else if (exception_type == PROTECTION_FAULT

&& guest OS in kernel mode) {
char *pc = tf−>pc;
if (is_in_instr(pc)) { // interpret machine code!

...
int src_address = get_instr_address(instrution);
switch (src_address) {

...
case KBDATAP:

char c = do_syscall_to_read_keyboard();
tf−>registers[get_instr_dest(pc)] = c;
tf−>pc += get_instr_length(pc);
break;
...

}
}

}
...

}
42

more complete pseudocode (1)
trap(...) { // tf = saved context (like xv6 trapframe)
...
else if (exception_type == PROTECTION_FAULT

&& guest OS in kernel mode) {
char *pc = tf−>pc;
if (is_in_instr(pc)) { // interpret machine code!

...
int src_address = get_instr_address(instrution);
switch (src_address) {

...
case KBDATAP:

char c = do_syscall_to_read_keyboard();
tf−>registers[get_instr_dest(pc)] = c;
tf−>pc += get_instr_length(pc);
break;
...

}
}

}
...

}
42

trap-and-emulate (1)
normally: privileged/special instructions trigger fault

e.g. accessing device memory directly (page fault)
e.g. changing the exception table (protection fault)

normal OS: crash the program

hypervisor: pretend it did the right thing
pretend kernel mode: the actual privileged operation
pretend user mode: invoke guest’s exception handler

43

trap and emulate (2)
guest OS should still handle exceptions for its programs

most exceptions — just “reflect” them in the guest OS

look up exception handler, kernel stack pointer, etc.
saved by previous privilege instruction trap

44

reflecting exceptions
trap(...) {

...
else if (exception_type == /* most exception types */

&& guest OS in user mode) {
...
tf−>in_kernel_mode = TRUE;
tf−>stack_pointer = /* guest OS kernel stack */;
tf−>pc = /* guest OS trap handler */;

}

45

trap-and-emulate: system calls
system calls special case of privileged instruction:

system call exception:
pretend user mode: execute guest OS’s system call handler
pretend kernel mode: execute guest OS’s system call handler

returning from system call? priviliged operation to emulate

46

system call/exception flow (part 1)
program

‘guest’ OS

hypervisor

hardware

system call
(exception)

exception handler
page table update

return from exec.

“real” syscall handler

hardware invokes hypervisor’s system call handler
software marks guest as as in “fake kernel mode”
change guest PC to addr. from guest exception tabledifferent guest OS pages accessible

in user v. kernel mode
(this case: could defer updates till page fault)

setup guest OS to run its exception handler
switch to user mode to run it

47

system call/exception flow (part 1)
program

‘guest’ OS

hypervisor

hardware

system call
(exception)

exception handler
page table update

return from exec.

“real” syscall handler

hardware invokes hypervisor’s system call handler
software marks guest as as in “fake kernel mode”
change guest PC to addr. from guest exception tabledifferent guest OS pages accessible

in user v. kernel mode
(this case: could defer updates till page fault)

setup guest OS to run its exception handler
switch to user mode to run it

47

system call/exception flow (part 1)
program

‘guest’ OS

hypervisor

hardware

system call
(exception)

exception handler
page table update

return from exec.

“real” syscall handler
hardware invokes hypervisor’s system call handler
software marks guest as as in “fake kernel mode”
change guest PC to addr. from guest exception table

different guest OS pages accessible
in user v. kernel mode
(this case: could defer updates till page fault)

setup guest OS to run its exception handler
switch to user mode to run it

47

system call/exception flow (part 1)
program

‘guest’ OS

hypervisor

hardware

system call
(exception)

exception handler
page table update

return from exec.

“real” syscall handler

hardware invokes hypervisor’s system call handler
software marks guest as as in “fake kernel mode”
change guest PC to addr. from guest exception table

different guest OS pages accessible
in user v. kernel mode
(this case: could defer updates till page fault)

setup guest OS to run its exception handler
switch to user mode to run it

47

system call/exception flow (part 1)
program

‘guest’ OS

hypervisor

hardware

system call
(exception)

exception handler
page table update

return from exec.

“real” syscall handler

hardware invokes hypervisor’s system call handler
software marks guest as as in “fake kernel mode”
change guest PC to addr. from guest exception tabledifferent guest OS pages accessible

in user v. kernel mode
(this case: could defer updates till page fault)

setup guest OS to run its exception handler
switch to user mode to run it

47

system call/exception flow (part 1)
program

‘guest’ OS

hypervisor

hardware

system call
(exception)

exception handler
page table update

return from exec.

“real” syscall handler

hardware invokes hypervisor’s system call handler
software marks guest as as in “fake kernel mode”
change guest PC to addr. from guest exception tabledifferent guest OS pages accessible

in user v. kernel mode
(this case: could defer updates till page fault)

setup guest OS to run its exception handler
switch to user mode to run it

47

system call/exception flow (part 2)
program

‘guest’ OS

hypervisor

hardware

return from exception
(in “real” syscall handler)

in user mode,
can’t do that

exception handler
for protection fault

page table update
return from exec.

48

system call/exception flow (part 2)
program

‘guest’ OS

hypervisor

hardware

return from exception
(in “real” syscall handler)

in user mode,
can’t do that

exception handler
for protection fault

page table update
return from exec.

48

system call/exception flow (part 2)
program

‘guest’ OS

hypervisor

hardware

return from exception
(in “real” syscall handler)

in user mode,
can’t do that

exception handler
for protection fault

page table update
return from exec.

48

system call/exception flow (part 2)
program

‘guest’ OS

hypervisor

hardware

return from exception
(in “real” syscall handler)

in user mode,
can’t do that

exception handler
for protection fault

page table update
return from exec.

48

system call/exception flow (part 2)
program

‘guest’ OS

hypervisor

hardware

return from exception
(in “real” syscall handler)

in user mode,
can’t do that

exception handler
for protection fault

page table update
return from exec.

48

trap and emulate (3)
what about memory mapped I/O?

when guest OS tries to access “magic” device address, get page
fault

need to emulate any memory writing instruction!

(at least) two types of page faults for hypervisor
guest OS trying to access device memory — emulate it
guest OS trying to access memory not in its page table — run exception
handler in guest

(and some more types — next topic)

49

trap and emulate (3)
what about memory mapped I/O?

when guest OS tries to access “magic” device address, get page
fault

need to emulate any memory writing instruction!

(at least) two types of page faults for hypervisor
guest OS trying to access device memory — emulate it
guest OS trying to access memory not in its page table — run exception
handler in guest

(and some more types — next topic)
49

exercise
guest OS running user program

makes system call write system call to write 4 characters to screen

write system call implementation does write by writing character at
a time to memory mapped I/O address

how many exceptions occur on the real hardware?

50

trap and emulate not enough
trap and emulate assumption: can cause fault

priviliged instruction not in kernel

memory access not in hypervisor-set page table

…

until ISA extensions, on x86, not always possible

if time, (pretty hard-to-implement) workarounds later

51

terms for this lecture
virtual address — virtual address for guest OS

physical address — physical address for guest OS

machine address — physical address for hypervisor/host OS

52

three page tables

virtual
address

physical
address

machine
address

guest
page table

hypervisor
page table?

page table pointer guest
set with privileged instruction
(x86: mov …, %cr3)
hypervisor records on protection fault

need to allow OS to use any address
run multiple guests in same memory
dynamically allocate memory
normally: use page table for thisthe translation the processor needs

when running normal user code

must be in some actual page table

shadow
page table

hypervisor conversionhardware knows about
only this PT

guest OS knows about
only this PT

53

three page tables

virtual
address

physical
address

machine
address

guest
page table

hypervisor
page table?

page table pointer guest
set with privileged instruction
(x86: mov …, %cr3)
hypervisor records on protection fault

need to allow OS to use any address
run multiple guests in same memory
dynamically allocate memory
normally: use page table for thisthe translation the processor needs

when running normal user code

must be in some actual page table

shadow
page table

hypervisor conversionhardware knows about
only this PT

guest OS knows about
only this PT

53

three page tables

virtual
address

physical
address

machine
address

guest
page table

hypervisor
page table?

page table pointer guest
set with privileged instruction
(x86: mov …, %cr3)
hypervisor records on protection fault

need to allow OS to use any address
run multiple guests in same memory
dynamically allocate memory
normally: use page table for this

the translation the processor needs
when running normal user code

must be in some actual page table

shadow
page table

hypervisor conversionhardware knows about
only this PT

guest OS knows about
only this PT

53

three page tables

virtual
address

physical
address

machine
address

guest
page table

hypervisor
page table?

page table pointer guest
set with privileged instruction
(x86: mov …, %cr3)
hypervisor records on protection fault

need to allow OS to use any address
run multiple guests in same memory
dynamically allocate memory
normally: use page table for this

the translation the processor needs
when running normal user code

must be in some actual page table

shadow
page table

hypervisor conversionhardware knows about
only this PT

guest OS knows about
only this PT

53

three page tables

virtual
address

physical
address

machine
address

guest
page table

hypervisor
page table?

page table pointer guest
set with privileged instruction
(x86: mov …, %cr3)
hypervisor records on protection fault

need to allow OS to use any address
run multiple guests in same memory
dynamically allocate memory
normally: use page table for thisthe translation the processor needs

when running normal user code

must be in some actual page table

shadow
page table

hypervisor conversionhardware knows about
only this PT

guest OS knows about
only this PT

53

three page tables

virtual
address

physical
address

machine
address

guest
page table

hypervisor
page table?

page table pointer guest
set with privileged instruction
(x86: mov …, %cr3)
hypervisor records on protection fault

need to allow OS to use any address
run multiple guests in same memory
dynamically allocate memory
normally: use page table for thisthe translation the processor needs

when running normal user code

must be in some actual page table

shadow
page table

hypervisor conversion

hardware knows about
only this PT

guest OS knows about
only this PT

53

three page tables

virtual
address

physical
address

machine
address

guest
page table

hypervisor
page table?

page table pointer guest
set with privileged instruction
(x86: mov …, %cr3)
hypervisor records on protection fault

need to allow OS to use any address
run multiple guests in same memory
dynamically allocate memory
normally: use page table for thisthe translation the processor needs

when running normal user code

must be in some actual page table

shadow
page table

hypervisor conversionhardware knows about
only this PT

guest OS knows about
only this PT

53

page table synthesis question
creating new page table = two PT lookups

lookup in guest OS page table
lookup in hypervisor page table (or equivalent)

synthesize new page table from combined info

Q: when does the hypervisor update the shadow page table?

54

page table synthesis question
creating new page table = two PT lookups

lookup in guest OS page table
lookup in hypervisor page table (or equivalent)

synthesize new page table from combined info

Q: when does the hypervisor update the shadow page table?

54

interlude: the TLB
Translation Lookaside Buffer — cache for page table entries

what the processor actually uses to do address translation with
normal page tables

has the same problem

contents synthesized from the ‘normal’ page table

processor needs to decide when to update it

preview: hypervisor can use same solution

55

Interlude: TLB (no virtualization)

virtual
address

physical
addresspage table

TLB

fetch entries
on demand

addr in VPN 0x234?
VPN PTE
0x127 PPN=0x1280, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

0x234
missing

VPN PTE
0x127 PPN=0x1280, …
0x234 PPN=0x4298, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

VPN PTE
0x1 (invalid)
0x2 PPN=0x329C, …
… …
0x234 PPN=0x4298, …
0x235 PPN=0x1278, …
… …

imitating this to fill
shadow page table
(instead of TLB)
in hypervisor
(instead of CPU)

fetch on page fault

OS sets page table entry

TLB not automatically sync’d

OS explicitly
invalidates

56

Interlude: TLB (no virtualization)

virtual
address

physical
addresspage table

TLB

fetch entries
on demand

addr in VPN 0x234?
VPN PTE
0x127 PPN=0x1280, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

0x234
missing

VPN PTE
0x127 PPN=0x1280, …
0x234 PPN=0x4298, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

VPN PTE
0x1 (invalid)
0x2 PPN=0x329C, …
… …
0x234 PPN=0x4298, …
0x235 PPN=0x1278, …
… …

imitating this to fill
shadow page table
(instead of TLB)
in hypervisor
(instead of CPU)

fetch on page fault

OS sets page table entry

TLB not automatically sync’d

OS explicitly
invalidates

56

Interlude: TLB (no virtualization)

virtual
address

physical
addresspage table

TLB

fetch entries
on demand

addr in VPN 0x234?
VPN PTE
0x127 PPN=0x1280, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

0x234
missing

VPN PTE
0x127 PPN=0x1280, …
0x234 PPN=0x4298, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

VPN PTE
0x1 (invalid)
0x2 PPN=0x329C, …
… …
0x234 PPN=0x4298, …
0x235 PPN=0x1278, …
… …

imitating this to fill
shadow page table
(instead of TLB)
in hypervisor
(instead of CPU)

fetch on page fault

OS sets page table entry

TLB not automatically sync’d

OS explicitly
invalidates

56

Interlude: TLB (no virtualization)

virtual
address

physical
addresspage table

TLB

fetch entries
on demand

addr in VPN 0x234?

VPN PTE
0x127 PPN=0x1280, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

0x234
missing

VPN PTE
0x127 PPN=0x1280, …
0x234 PPN=0x4298, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

VPN PTE
0x1 (invalid)
0x2 PPN=0x329C, …
… …
0x234 PPN=0x4298, …
0x235 PPN=0x1278, …
… …

imitating this to fill
shadow page table
(instead of TLB)
in hypervisor
(instead of CPU)

fetch on page fault

OS sets page table entry

TLB not automatically sync’d

OS explicitly
invalidates

56

Interlude: TLB (no virtualization)

virtual
address

physical
addresspage table

TLB

fetch entries
on demand

addr in VPN 0x234?

VPN PTE
0x127 PPN=0x1280, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

0x234
missing

VPN PTE
0x127 PPN=0x1280, …
0x234 PPN=0x4298, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

VPN PTE
0x1 (invalid)
0x2 PPN=0x329C, …
… …
0x234 PPN=0x4298, …
0x235 PPN=0x1278, …
… …

imitating this to fill
shadow page table
(instead of TLB)
in hypervisor
(instead of CPU)

fetch on page fault

OS sets page table entry

TLB not automatically sync’d

OS explicitly
invalidates

56

Interlude: TLB (no virtualization)

virtual
address

physical
addresspage table

TLB

fetch entries
on demand

addr in VPN 0x234?

VPN PTE
0x127 PPN=0x1280, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

0x234
missing

VPN PTE
0x127 PPN=0x1280, …
0x234 PPN=0x4298, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

VPN PTE
0x1 (invalid)
0x2 PPN=0x329C, …
… …
0x234 PPN=0xFFFF, …
0x235 PPN=0x1278, …
… …

imitating this to fill
shadow page table
(instead of TLB)
in hypervisor
(instead of CPU)

fetch on page fault

OS sets page table entry

TLB not automatically sync’d

OS explicitly
invalidates

56

Interlude: TLB (no virtualization)

virtual
address

physical
addresspage table

TLB

fetch entries
on demand

addr in VPN 0x234?

VPN PTE
0x127 PPN=0x1280, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

0x234
missing

VPN PTE
0x127 PPN=0x1280, …
0x234 PPN=0x4298, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

VPN PTE
0x1 (invalid)
0x2 PPN=0x329C, …
… …
0x234 PPN=0xFFFF, …
0x235 PPN=0x1278, …
… …

imitating this to fill
shadow page table
(instead of TLB)
in hypervisor
(instead of CPU)

fetch on page fault

OS sets page table entry

TLB not automatically sync’d

OS explicitly
invalidates

56

three page tables (revisited)

virtual
address

physical
address

machine
address

guest
page table

hypervisor
page table?

hypervisor conversion

shadow
page table

when guest OS edits this
runs privileged instruction
to fix up TLB

hypervisor clears (part of) this
whenever guest OS runs
TLB-fixing instruction

57

three page tables (revisited)

virtual
address

physical
address

machine
address

guest
page table

hypervisor
page table?

hypervisor conversion

shadow
page table

when guest OS edits this
runs privileged instruction
to fix up TLB

hypervisor clears (part of) this
whenever guest OS runs
TLB-fixing instruction

57

three page tables (revisited)

virtual
address

physical
address

machine
address

guest
page table

hypervisor
page table?

hypervisor conversion

shadow
page table

when guest OS edits this
runs privileged instruction
to fix up TLB

hypervisor clears (part of) this
whenever guest OS runs
TLB-fixing instruction

57

alternate view of shadow page table
shadow page table is like a virtual TLB

caches commonly used page table entries in guest

entries need to be in shadow page table for instructions to run

needs to be explicitly cleared by guest OS

implicitly filled by hypervisor

58

on TLB invalidation
two major ways to invalidate TLB:

when setting a new page table base pointer
e.g. x86: mov ..., %cr3

when running an explicit invalidation instruction
e.g. x86: invlpg

hopefully, both privileged instructions

59

nit: memory-mapped I/O
recall: devices which act as ‘magic memory’

hypervisor needs to emulation

keep corresponding pages invalid for trap+emulate
page fault triggers instruction emulation instead

60

page tables and kernel mode?
guest OS can have kernel-only pages

guest OS in pretend kernel mode
shadow PTE: marked as user-mode accessible

guest OS in pretend user mode
shadow PTE: marked inaccessible

61

four page tables? (1)

virtual
address

physical
address

machine
address

guest
page table

hypervisor
page table?

shadow page table
(pretend kernel mode)

shadow page table
(pretend user mode)

62

four page tables? (2)
one solution: pretend kernel and pretend user shadow page table

alternative: clear page table on kernel/user switch

neither seems great for overhead

63

interlude: VM overhead
some things much more expensive in a VM:

I/O via priviliged instructions/memory mapping
typical strategy: instruction emulation

64

exercise: overhead?
guest program makes read() system call

guest OS switches to another program

guest OS gets interrupt from keyboard

guest OS switches back to original program, returns from syscall

how many guest page table switches?

how many (real/shadow) page table switches (or clearing)?

65

backup slides

66

	last time
	protection/security
	sudo/set-user-ID
	set-user-ID programs are hard to write
	aside: TOCTTOU
	exercise
	exercises on POSIX model

	capabilities
	ambient authority v. capability idea
	capability concept

	virtual machine: concept
	layering

	VM execution pieces
	trap-and-emulate
	introduction
	privileged I/O
	exceptions
	system calls
	trap-and-emulate: page faults
	exercise: switch counting
	trap-and-emulate incomplete

	managing page tables
	three page tables
	supporting user/kernel mode

	on VM overhead
	backup slides

