
1



Changelpg
1 Oct 2024: ECN timeline – don’t have packet data modified going
through switch

2



throughput and window size

0 2 4 6 8 10 12 14 16 18 20 22 240

5

10

send window sizeth
ro

ug
hp

ut
(fr

am
es

/t
im

e
un

it)

3



packet transit time

sender
loss when full

queue
capacity 20

receiver10 data frames/time unit
1 time unit delay

data

1 time unit (sender to receiver)

receiver
loss when full

queue
capacity 20

sender 100 ACK frames/time unit
1 time unit delay

a
c
k

+ 1 time unit (receiver to sender)

takes 1 + 1 time units to send message + receive ack
goal: keep sending stuff while waiting

4



packet transit time

sender
loss when full

queue
capacity 20

receiver10 data frames/time unit
1 time unit delay

data

1 time unit (sender to receiver)

receiver
loss when full

queue
capacity 20

sender 100 ACK frames/time unit
1 time unit delay

a
c
k+ 1 time unit (receiver to sender)

takes 1 + 1 time units to send message + receive ack
goal: keep sending stuff while waiting

4



packet transit time

sender
loss when full

queue
capacity 20

receiver10 data frames/time unit
1 time unit delay

data

1 time unit (sender to receiver)

receiver
loss when full

queue
capacity 20

sender 100 ACK frames/time unit
1 time unit delay

a
c
k+ 1 time unit (receiver to sender)

takes 1 + 1 time units to send message + receive ack
goal: keep sending stuff while waiting

4



filling the pipe
round-trip time of 2 time units

from send data to receive ACK (assuming no queuing delay)

can send 10 data frames per time unit

= can send 20 data frames while waiting for ACK

“bandwidth-delay product”
10/time unit (banwidth) times 2 time unit (RTT = delay)

5



filling the pipe
round-trip time of 2 time units

from send data to receive ACK (assuming no queuing delay)

can send 10 data frames per time unit

= can send 20 data frames while waiting for ACK

“bandwidth-delay product”
10/time unit (banwidth) times 2 time unit (RTT = delay)

5



why optimal
in normal operation with window size W

receive ACK for x (now W − 1 in flight)
send packet x + W
receive ACK for x + 1
send packet x + W + 1
…

window size keeps W packets in flight

if links + queues can hold W packets — perfect!

6



number in flight on losses
window size W

let’s say we lose packet x [only], sender might
receive ACK for x − 1
send packet x + W − 1
receive ACK for x, x, x, …
resend packet x (guess it is lost)
receive ACK for x, x, x, …
receive ACK for packet x + W − 1
send packets x + W through x + W + W − 1

lots of time where we are not sending packets
means network is underutilized

7



number in flight on losses
window size W

let’s say we lose packet x [only], sender might
receive ACK for x − 1
send packet x + W − 1
receive ACK for x, x, x, …
resend packet x (guess it is lost)
receive ACK for x, x, x, …
receive ACK for packet x + W − 1
send packets x + W through x + W + W − 1

lots of time where we are not sending packets
means network is underutilized

7



window size tweaking
window size imperfect proxy for # packets in flight

we’ll ignore the difference for now

our goal for now: window size = number of packets to have in
flight

8



finding window size empirically (1)

capacity

lowest latency
(almost) no losses

highest latency
lots of losses

9



key insight
latency/loss rate increases when window size too big

latency/loss rate stable when window size not too big

for now, we’ll focus on loss rate
but you can do something similar with latency

10



try a bunch of things

window size

= low loss rate

= high loss rate

what is the network like when we do this?

11



try a bunch of things

window size

= low loss rate

= high loss rate

what is the network like when we do this?

11



try a bunch of things

window size

= low loss rate

= high loss rate

what is the network like when we do this?

11



try a bunch of things

window size

= low loss rate

= high loss rate

what is the network like when we do this?

11



try a bunch of things

window size

= low loss rate

= high loss rate

what is the network like when we do this?

11



try a bunch of things

window size

= low loss rate

= high loss rate

what is the network like when we do this? 11



revisiting congestion collapse

12



fixes from Jacobson’s 1987 paper

13



changing cross-traffic

10Mbit10Mbit 7Mbit

3Mbit

10Mbit 7Mbit 10Mbit

14



changing cross-traffic

10Mbit

10Mbit 7Mbit

3Mbit

10Mbit 7Mbit 10Mbit

14



changing cross-traffic

10Mbit

10Mbit 7Mbit

3Mbit

10Mbit 7Mbit 10Mbit

14



changing cross-traffic

10Mbit10Mbit 7Mbit

3Mbit

10Mbit 7Mbit 10Mbit

14



adapting to cross-traffic
available bandwidth will change

previous example: 3Mbit lost/added from other flow

need to adapt to lost bandwidth

need to detect new available bandwidth

15



other flow’s bandwidth?
for now, we’ll pretend other flows don’t react to us

later topic: what happens when both reacting?

16



fixes from Jacobson’s 1987 paper

17



handling steady state
most of the time we should be at approx. correct window size

want to focus on how we react to changes

still going to use “experimentation” idea

18



window size experimenting

packets dropped sometimes

packets not dropped

time

window
size

always try increasing window sizereact to drops
by decreasing window

19



window size experimenting

packets dropped sometimes

packets not dropped

time

window
size

always try increasing window size

react to drops
by decreasing window

19



window size experimenting

packets dropped sometimes

packets not dropped

time

window
size

always try increasing window size

react to drops
by decreasing window

19



increase/decrease strategy
default to increasing window size

react to packet drops by decreasing window size
assumption: few “non-congestion” packet losses

big topic: how fast to do each?

questions to help decide that:
what happens if we increase too fast? too slow?
what happens if we decrease too fast? too slow?

20



increase/decrease strategy
default to increasing window size

react to packet drops by decreasing window size
assumption: few “non-congestion” packet losses

big topic: how fast to do each?

questions to help decide that:
what happens if we increase too fast? too slow?
what happens if we decrease too fast? too slow?

20



increase/decrease strategy
default to increasing window size

react to packet drops by decreasing window size
assumption: few “non-congestion” packet losses

big topic: how fast to do each?

questions to help decide that:
what happens if we increase too fast? too slow?
what happens if we decrease too fast? too slow?

20



the overloaded switch
let’s say switch can handle 50 packets/second

but has:
100 packets/second from test flow sending as fast as it can
10 packets/second from other session

expected loss rate (% packets lost)?

expected % test flow packets lost?

expected other session packets lost?

21



modeling who gets dropped
it kinda does matter…
sending in big bursts or spread out (“pacing”)?

bursts can overload queues even though average rate is low

how switch’s queue works?
queue size (handling bursts), way to choose what to drop

random or fixed intervals between sending?

but we’ll simplify, assuming—
a flow’s arrivals are randomly spaced
drops hit packets at random
queue is “pretty big”

22



modeling who gets dropped
it kinda does matter…
sending in big bursts or spread out (“pacing”)?

bursts can overload queues even though average rate is low

how switch’s queue works?
queue size (handling bursts), way to choose what to drop

random or fixed intervals between sending?

but we’ll simplify, assuming—
a flow’s arrivals are randomly spaced
drops hit packets at random
queue is “pretty big”

22



the overloaded switch
let’s say switch can handle 50 packets/second
but has:

100 packets/second from test flow (checking window size)
20 packets/second from other session

expected loss rate (% packets lost)? 100 + 20 − 50
100 + 20

= 58%

expected % test flow packets lost? 58%

expected % other session packets lost? 58%

…but I missed something

23



the overloaded switch
let’s say switch can handle 50 packets/second
but has:

100 packets/second from test flow (checking window size)
20 packets/second from other session

expected loss rate (% packets lost)? 100 + 20 − 50
100 + 20

= 58%

expected % test flow packets lost? 58%

expected % other session packets lost? 58%

…but I missed something
23



a virtuous cycle
what is other session going to when 58% of its packets are lost?

probably resend them

what about when resent packets are lost?
probably resent again

if other session doesn’t slow down, then…

10 pkt/s → 10 + 58% · 10 + 58%2 · 10 . . . ≈ 48 pkt/s

24



the overloaded switch (revised)
let’s say switch can handle 50 packets/second
but has:

100 packets/second from test flow (checking window size)
20 packets/second from other session → 48 with resends

expected loss rate (% packets lost)? 100 + 48 − 50
100 + 48

= 66%

expected % test flow packets lost? 66%

expected % other session packets lost? 66%

means that 48 pkt/sec is slight underestimate
though realistically other session should slow down

25



the overloaded switch (revised)
let’s say switch can handle 50 packets/second
but has:

100 packets/second from test flow (checking window size)
20 packets/second from other session → 48 with resends

expected loss rate (% packets lost)? 100 + 48 − 50
100 + 48

= 66%

expected % test flow packets lost? 66%

expected % other session packets lost? 66%
means that 48 pkt/sec is slight underestimate
though realistically other session should slow down

25



aside: latency (1)
58% packet loss → average packet sent 2.4 times

need one round-trip time (RTT) to detect loss
probably from duplicate ACK
if detecting via timeout, probably longer

so need 1.4 RTTs (detecting loss 1.4 times) extra time

mean latency = 1.4RTTs
0.5RTTs times normal = 2.8 times normal

26



aside: high-percentile latency
58% packet loss

about 10% of time need more than 4 retransmissions

about 5% of the time need more than 5 retransmissions

about 1% of the time need more than 8 retransmissions

27



sliding windows and retransmissions
assuming that other session doesn’t slow down

sliding window approach slows down on losses

28



sliding window throughput collapse
let’s say doing sliding window with 100 packet window

if 1% of the time, we need to resend a packet 8 times, then

probably need around 8 RTTs to send all 100 packets in window

≈ 8 times slower with same window size

29



sliding window throughput collapse
let’s say doing sliding window with 100 packet window

if 1% of the time, we need to resend a packet 8 times, then

probably need around 8 RTTs to send all 100 packets in window

≈ 8 times slower with same window size

29



performance v load

30



slow increase
want to increase slowly to avoid overload

original TCP: +1 packet/round trip time

+1 certainly not optimal choice, but okay heuristic

important theoretically: approx. additive increase
helps ensure good behavior with multiple connections
(we’ll talk later about why)

31



slow increase
want to increase slowly to avoid overload

original TCP: +1 packet/round trip time

+1 certainly not optimal choice, but okay heuristic

important theoretically: approx. additive increase
helps ensure good behavior with multiple connections
(we’ll talk later about why)

31



exercise: convergence time (1)
suppose: 50 ms round trip time
initially sending at 600 packets/second

≈ 0.9Mbyte/sec with 1500 byte packets

optimal rate is 10000 packets/second
≈ 15Mbyte/sec with 1500 byte packets

‘standard’ TCP increase of 1 packet/RTT
how long to get there?

current: 30 packets/RTT (= window size 30)
need to get to: 500 packets/RTT
will take 500 − 30 = 470 round trips ≈ 23500 ms ≈ 24 s

32



exercise: convergence time (1)
suppose: 50 ms round trip time
initially sending at 600 packets/second

≈ 0.9Mbyte/sec with 1500 byte packets

optimal rate is 10000 packets/second
≈ 15Mbyte/sec with 1500 byte packets

‘standard’ TCP increase of 1 packet/RTT
how long to get there?
current: 30 packets/RTT (= window size 30)
need to get to: 500 packets/RTT
will take 500 − 30 = 470 round trips ≈ 23500 ms ≈ 24 s 32



fixing bad convergence time
TCP’s additive increase is very slow for “high bandwidth-delay”
networks

two things make this better:

not in additive increase mode at start of connection
“slow start” we’ll talk about later

more adaptive increase for modern TCP variants
e.g. FAST TCP, CUBIC TCP, …
heuristics to increase faster when appropriate

33



fast decrease
want to decrease quickly to get out of overload

original TCP heuristic: divide by two (minimum 1 packet)

exactly by two probably not important

important theoretically: approx. multiplicative decrease
will help show okay behavior with multiple flows

34



fast decrease
want to decrease quickly to get out of overload

original TCP heuristic: divide by two (minimum 1 packet)

exactly by two probably not important

important theoretically: approx. multiplicative decrease
will help show okay behavior with multiple flows

34



AIMD
additive increase + multiplicative decrease

basic of steady-state behavior

35



from Brakmo, O’Malley, and Peterson, “TCP Vegas: New techniques for congestion detection and avoidance”

top thick, light-grey line = congestion window; dotted = slow start threshold
36



CUBIC: default congestion control today
default in Linux (since 2006), OS X (since 2014), Windows (since
2019)

sysadmin has other options they can configure
can be changed on connection-by-connection basis

big idea: faster increase when further away from window size of
last loss

cubic function with saddle at that window size

intuition:
search faster if away from “steady state”
avoid excess losses from ‘probing’ if at “steady state”

37



from Ha, Rhee, and Xu, “CUBIC: A New TCP-Friendly High-Speed TCP Variant”

38



non-congestion losses
we were ignoring non-congestion losses
suppose 1% loss rate from transmission errors
if huge bandwidth, 50 ms RTT
with TCP heuristics (+1 packet/RTT, half on loss)…
normal window size? achieved bandwidth (pkts/sec)?

window size increases for about 100 packets, then halves
starting at window size 8:
8, 9 (17 total), 10 (27), 11 (38), 12 (50), 13 (63), 14 (77), 15 (92), 16
(>100)
→ window size fluctuates from around 8 to 16
12 pkts/50 ms = 240 pkts/sec

39



non-congestion losses
we were ignoring non-congestion losses
suppose 1% loss rate from transmission errors
if huge bandwidth, 50 ms RTT
with TCP heuristics (+1 packet/RTT, half on loss)…
normal window size? achieved bandwidth (pkts/sec)?

window size increases for about 100 packets, then halves
starting at window size 8:
8, 9 (17 total), 10 (27), 11 (38), 12 (50), 13 (63), 14 (77), 15 (92), 16
(>100)
→ window size fluctuates from around 8 to 16

12 pkts/50 ms = 240 pkts/sec

39



non-congestion losses
we were ignoring non-congestion losses
suppose 1% loss rate from transmission errors
if huge bandwidth, 50 ms RTT
with TCP heuristics (+1 packet/RTT, half on loss)…
normal window size? achieved bandwidth (pkts/sec)?

window size increases for about 100 packets, then halves
starting at window size 8:
8, 9 (17 total), 10 (27), 11 (38), 12 (50), 13 (63), 14 (77), 15 (92), 16
(>100)
→ window size fluctuates from around 8 to 16
12 pkts/50 ms = 240 pkts/sec

39



non-congestion losses and congestion control
significant non-congestion losses → very bad performance with
most congestion control

reason why wireless, etc. often does its own acknowledgements and
resending

40



congestion: sharing
want to consider multiple flows

key questions:
is it stable if both flows changing window sizes?
is there one winner/loser?
is the winner/loser who we want it to be?

41



exericse: what should happen?

two connections on shared link

intuition: each should get half of link bandwidth
question: will this happen if they don’t start equal?

42



exericse: what should happen?

two connections on shared link
intuition: each should get half of link bandwidth

question: will this happen if they don’t start equal?

42



exericse: what should happen?

two connections on shared link
intuition: each should get half of link bandwidth
question: will this happen if they don’t start equal?

42



showing AIMD
slides based on Chiu and Jain, “Analysis of the Increase and
Decrease Algorithms for Congestion Avoidance in Computer
Networks”’

1989 paper

you might notice 1989 is well after TCP was in use
(kinda deployed without all the theory being developed…
…and it’s still not really a solved problem)

43



picturing sharing

flow 1 bandwidth

flow 2
bandwidth

overloaded

underloaded

multiplicative decrease
moves bandwidths along line to origin
example: (90%, 40%) to (45%, 20%)additive decrease
moves bandwidths
at 45-degree angle
example: (45%, 20%) to (55%, 30%)

equ
al

ban
dw

idt
h

multiplicative decrease brings
closer to equal bandwidth line

additive increase keeps same
distance from line

44



picturing sharing

flow 1 bandwidth

flow 2
bandwidth

overloaded

underloaded

multiplicative decrease
moves bandwidths along line to origin
example: (90%, 40%) to (45%, 20%)

additive decrease
moves bandwidths
at 45-degree angle
example: (45%, 20%) to (55%, 30%)

equ
al

ban
dw

idt
h

multiplicative decrease brings
closer to equal bandwidth line

additive increase keeps same
distance from line

44



picturing sharing

flow 1 bandwidth

flow 2
bandwidth

overloaded

underloaded

multiplicative decrease
moves bandwidths along line to origin
example: (90%, 40%) to (45%, 20%)

additive decrease
moves bandwidths
at 45-degree angle
example: (45%, 20%) to (55%, 30%)

equ
al

ban
dw

idt
h

multiplicative decrease brings
closer to equal bandwidth line

additive increase keeps same
distance from line

44



picturing sharing

flow 1 bandwidth

flow 2
bandwidth

overloaded

underloaded

multiplicative decrease
moves bandwidths along line to origin
example: (90%, 40%) to (45%, 20%)additive decrease
moves bandwidths
at 45-degree angle
example: (45%, 20%) to (55%, 30%)

equ
al

ban
dw

idt
h

multiplicative decrease brings
closer to equal bandwidth line

additive increase keeps same
distance from line

44



picturing sharing

flow 1 bandwidth

flow 2
bandwidth

overloaded

underloaded

multiplicative decrease
moves bandwidths along line to origin
example: (90%, 40%) to (45%, 20%)additive decrease
moves bandwidths
at 45-degree angle
example: (45%, 20%) to (55%, 30%)

equ
al

ban
dw

idt
h

multiplicative decrease brings
closer to equal bandwidth line

additive increase keeps same
distance from line

44



picturing sharing

flow 1 bandwidth

flow 2
bandwidth

overloaded

underloaded

multiplicative decrease
moves bandwidths along line to origin
example: (90%, 40%) to (45%, 20%)additive decrease
moves bandwidths
at 45-degree angle
example: (45%, 20%) to (55%, 30%)

equ
al

ban
dw

idt
h

multiplicative decrease brings
closer to equal bandwidth line

additive increase keeps same
distance from line

44



some assumptions we made
…that may not always be true

both flows experience drops when network overloaded

same additive increase factor (for 45 degree angle)

45



a scenario

slow link

46



a scenario

slow link

46



slow link + mixed traffic

flow 1 bandwidth

flow 2
bandwidth

both flows get drops

flow 2
gets drops

limit of fast link’s bandwidth

limit of slow link’s bandwidth

if both flows see drops,
multiplicative decrease
(toward origin)

if only flow 2 see drops,
it decreases bandwidth and
flow 1 increase bandwidth

if both flows see no drops,
both increase additively
(45 degree angle)

result: flow 2 reaches
limit of slow link
flow 1 gets the rest
of the bandwidth

47



slow link + mixed traffic

flow 1 bandwidth

flow 2
bandwidth

both flows get drops

flow 2
gets drops

limit of fast link’s bandwidth

limit of slow link’s bandwidth

if both flows see drops,
multiplicative decrease
(toward origin)

if only flow 2 see drops,
it decreases bandwidth and
flow 1 increase bandwidth

if both flows see no drops,
both increase additively
(45 degree angle)

result: flow 2 reaches
limit of slow link
flow 1 gets the rest
of the bandwidth

47



slow link + mixed traffic

flow 1 bandwidth

flow 2
bandwidth

both flows get drops

flow 2
gets drops

limit of fast link’s bandwidth

limit of slow link’s bandwidth

if both flows see drops,
multiplicative decrease
(toward origin)

if only flow 2 see drops,
it decreases bandwidth and
flow 1 increase bandwidth

if both flows see no drops,
both increase additively
(45 degree angle)

result: flow 2 reaches
limit of slow link
flow 1 gets the rest
of the bandwidth

47



slow link + mixed traffic

flow 1 bandwidth

flow 2
bandwidth

both flows get drops

flow 2
gets drops

limit of fast link’s bandwidth

limit of slow link’s bandwidth

if both flows see drops,
multiplicative decrease
(toward origin)

if only flow 2 see drops,
it decreases bandwidth and
flow 1 increase bandwidth

if both flows see no drops,
both increase additively
(45 degree angle)

result: flow 2 reaches
limit of slow link
flow 1 gets the rest
of the bandwidth

47



slow link + mixed traffic

flow 1 bandwidth

flow 2
bandwidth

both flows get drops

flow 2
gets drops

limit of fast link’s bandwidth

limit of slow link’s bandwidth

if both flows see drops,
multiplicative decrease
(toward origin)

if only flow 2 see drops,
it decreases bandwidth and
flow 1 increase bandwidth

if both flows see no drops,
both increase additively
(45 degree angle)

result: flow 2 reaches
limit of slow link
flow 1 gets the rest
of the bandwidth

47



slow link + mixed traffic

flow 1 bandwidth

flow 2
bandwidth

both flows get drops

flow 2
gets drops

limit of fast link’s bandwidth

limit of slow link’s bandwidth

if both flows see drops,
multiplicative decrease
(toward origin)

if only flow 2 see drops,
it decreases bandwidth and
flow 1 increase bandwidth

if both flows see no drops,
both increase additively
(45 degree angle)

result: flow 2 reaches
limit of slow link
flow 1 gets the rest
of the bandwidth

47



fairness metrics
would like to say both allocations are ‘fair’

easy when ideal allocation is equal, but that’s not always the case

perhaps not equal, but most equal we can give on network

would like some way of formalizing this

48



fairness intuition
unfair allocation = someone gets much less than others

consequence: let’s look for “starved” flow

if we can add to one flow…
and only hurt flows that are slower than it…
then that’s “unfair”

idea called min-max fairness

49



exercise

slow link

let’s say slow link has 5 MByte/s capacity, other links 20MByte/s
why are these fair/unfair? (by min-max fairness)

solid = 10MByte, dotted = 2MByte/s, dashed = 3MByte/s
solid = 16MByte, dashed = 2MByte/s, dashed = 2MByte/s 50



exercise

slow link

let’s say slow link has 5 MByte/s capacity, other links 20MByte/s
why are these fair/unfair? (by min-max fairness)

solid = 10MByte, dotted = 2MByte/s, dashed = 3MByte/s
solid = 16MByte, dashed = 2MByte/s, dashed = 2MByte/s 50



Jain’s fairness index
more common metric, but for scenarios where equal allocation
makes sense

if xi is i’th flow’s share:

(∑
xi)2

n · ∑
x2

i

approaches 1 when allocations equal, 1
n

if one flow gets everything

51



long links

long link

52



long links

long link

52



exercise: window size?
flow 1: 500 packets/sec, 50 ms round trip

flow 2: 500 packets/sec, 100 ms round trip

exercise: what window size achieves this for each flow?

1: window size 25; 2: window size 50

53



exercise: window size?
flow 1: 500 packets/sec, 50 ms round trip

flow 2: 500 packets/sec, 100 ms round trip

exercise: what window size achieves this for each flow?
1: window size 25; 2: window size 50

53



revisiting additive increase
TCP: add +1 to window size each round trip time
flow 1: window 25+1 → 26 pkt/50 ms = 520 pkt/sec
flow 2: window 50+1 → 51 pkt/100 ms = 510 pkt/sec

flow 1 bandwidth

flow 2
bandwidth

flow 1 increases faster
than flow 2 increases
not 45-degree angle anymore

in equilibrium
flow 1 gets more bandwidth

54



revisiting additive increase
TCP: add +1 to window size each round trip time
flow 1: window 25+1 → 26 pkt/50 ms = 520 pkt/sec
flow 2: window 50+1 → 51 pkt/100 ms = 510 pkt/sec

flow 1 bandwidth

flow 2
bandwidth

flow 1 increases faster
than flow 2 increases
not 45-degree angle anymore

in equilibrium
flow 1 gets more bandwidth

54



other unfairness
lower round-trip gets more bandwidth

can also get more bandwidth by…

using more connections (‘independent’ windows)

adding more than + 1 packet to window size/RTT

55



alternate congestion control
lots of changes to congestion control

some used in modern TCP implementations

on Internet, need to be compatible with “normal” TCP

“TCP-friendly”
should not make TCP used alongside them behave poorly

56



examples: checking versus TCP

from Ha, et al, “CUBIC: A New TCP-Friendly High-Speed TCP Variant”
and Tan, et al, “A Compound TCP Approach for High-speed and Long Distance Networks” 57



a theoretical result
for RTT-unfairness, standard TCP with selective
acknowledgments:1

throughput ≈ constant × packet size
RTT

√
loss rate

1Mathis et al, “The Macroscopeic Behavior of the TCP Congestion Avoidance Algorithm”
(1997)

58



empirical results
some results from Philip (IMC’21)2

with same congestion control algorithm + RTT, Jain’s fairness
index > 0.99

CUBIC takes 70-80% of throughput when competing with equal
number of traditional TCP flows

recall: major change is cubic increase curve instead of additive (linear)
increase

2Philip, Ware, Athapathu, Sherry, Sekar, “Revisting TCP Congestion Control Throughput
Models & Fairness Properties At Scale” (IMC’21)

59



fixes from Jacobson’s 1987 paper

60



fast retransmit
if large window + data packet 2 is lost, then sender will see

ACK 0, ACK 1, ACK 1, ACK 1, ACK 1, ACK 1

duplicate ACKs indicate missing packet 2

shouldn’t wait for timeout

→ TCP heuristic: retransmit immediately after ∼3 duplicate ACKs
not 1 duplicate ACK to tolerate some reordering
also some other details (we’ll talk later)

61



fast retransmit
if large window + data packet 2 is lost, then sender will see

ACK 0, ACK 1, ACK 1, ACK 1, ACK 1, ACK 1

duplicate ACKs indicate missing packet 2

shouldn’t wait for timeout

→ TCP heuristic: retransmit immediately after ∼3 duplicate ACKs
not 1 duplicate ACK to tolerate some reordering
also some other details (we’ll talk later)

61



fast retransmission
TCP calls this idea of retransmission from duplicate ACKs
“fast retransmission”

was actually not done in early versions of TCP

but problem: what to do with congestion window

solution called ‘fast recovery’

62



self-clocking and dup-ACKs
without losses, sender sends one new packet per ACK

keeps number of packets in network constant

but duplicate ACKs are exception (say window size 6):
recv’d sent count of packets in flight
— data 0-5 6
ACK 0 5

data 6 6
ACK 1 5

data 7 6
ACK 1 5
ACK 1 4
ACK 1 3

data 2 4
ACK 1 3

63



alternate explanation
sender stopped sending while receiving duplicate ACKs

but we know most messages got there

means our usage of network doesn’t reflect out window size

64



TCP’s fast retransmission
on third duplicate ACK:

resend packet,

do multiplicative decrease, AND THEN

temporarily add packet to window for each dup ACK
send packets to replace received packet
(if allowed by multiplicative-decreased window)

reset window size back when ‘new’ ACK

65



self-clocking and fast retransmit
adjust window size to keep packets in flight constant:

recv’d sent count packets in flight send window size (range)
— data 0-5 6 6 (0-5)
ACK 0 5 6 (1-6)

data 6 6 6 (1-6)
ACK 1 5 6 (2-7)

data 7 6 6 (2-7)
ACK 1 5 6 (2-7)
ACK 1 4 6 (2-7)
ACK 1 3 6 (2-7)

data 2 4 8 (2-9)
data 8 5 8 (2-9)
data 9 6 8 (2-9)

ACK 1 5 9 (2-10)
1 data 10 5 9 (2-10)

66



fixes from Jacobson’s 1987 paper

67



“slow start”
not very well named

problem is that additive increase doesn’t find capacity quickly

exponential(ish) increase to find initial window size

68



“slow start” on connection begin
set window size = 1 packet

increase by one packet for each ACK

…until first packet loss

then revert to additive increase
actually slower at increasing

69



“slow start” later
keep track of window size after multiplicative decrease

called ssthresh
probably variable name in BSD code for this

use slow start when window size lower than ssthresh

but how can that happen?
need something other than multiplicative decrease

70



decrease versus reset
on duplicate ACK (most common case):

do multiplicative decrease

on timeout:
reset window size to 1 packet

after timeout, use “slow start”

…until ssthresh reached or congestion
intuition: don’t assume halving is enough
intuition: find correct lower window size faster

71



slow start effect
suppose we never leave slow start in connection between A and B
and:

A sends 4 packets to B

after receiving 4 packets, B sends 8 packets to A

after receiving those packets A sends 1 packet to B

how many round-trip times does this take?

72



from Brakmo, O’Malley, and Peterson, “TCP Vegas: New techniques for congestion detection and avoidance”

top thick, light-grey line = congestion window; dotted = slow start threshold
73



TCP ‘Tahoe’ w/ one loss
from Kevin Fall and Sally Floyd, “Simulation-based Comparisons of Tahoe, Reno, and SACK TCP”

TCP Tahoe = slow start, fast retransmit, no fast recovery

74



TCP ‘Reno’ w/ one loss
from Kevin Fall and Sally Floyd, “Simulation-based Comparisons of Tahoe, Reno, and SACK TCP”

TCP Reno = slow start, fast retransmit/recovery

75



the reverse path
so far: assuming congestion on sender to receiver path

but we can also have congestion in other direction
network becomes overloaded with ACKs

hopefully rare because ACKs are small, but…

but worth some special mitigations

76



delayed ACKs
RFC 1122 (Requirements for Internet Hosts — Communication Layers)

“A host that is receiving a stream of TCP data segments can increase
efficiency…by sending fewer than one ACK (acknowledgment) per data
segment received; this is known as a “delayed ACK”…”

usually enabled these days

adds some latency, so Linux lets you disable on per-connection basis

77



diversion: some queuing theory
queuing theory: applied probability

talks about how queues work

applies to networks and anything else with “waiting in line”

78



queue measurements
arrival rate

service time (amount of time after waiting in line)

utilization = arrival rate / service time

if single thing can be processed at a time, then max utilization =
100%

higher implies “infinitely” long queues

79



M/M/1/∞ queue
next slides: results for M/M/1/∞ queue

M (memoryless) — random arrival (exponential dist.)

M — random service time (exponential dist.)

1 — one “server” (thing that can process packets)

∞ — unlimited queue length

80



M/M/1/∞ queue length
mean queue length

arrival rate
service rate − arrival rate

0 0.2 0.4 0.6 0.8 1 1.20
2
4
6
8

10

arrival rate (portion of service rate)

qu
eu

e
len

gt
h

practical implication: need to run networks at much less than full
utilization

81



M/M/1/∞ queue length
mean queue length

arrival rate
service rate − arrival rate

0 0.2 0.4 0.6 0.8 1 1.20
2
4
6
8

10

arrival rate (portion of service rate)

qu
eu

e
len

gt
h

practical implication: need to run networks at much less than full
utilization

81



M/M/1/∞ queue length std. deviation
√√√√√ utilization

(1 − utilization)2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
2
4
6
8

10

arrival rate (portion of service rate)

qu
eu

e
len

gt
h

82



approx 95th pctile v mean queue length

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

2

4

6

8

10

arrival rate (portion of service rate)

qu
eu

e
len

gt
h

83



filling buffers

flow 1 bandwidth

flow 2
bandwidth

overloaded
buffers almost full

84



big buffers? (in 2011 or so)

Jim Gettys and Kathleen Nichols,

“Bufferbloat: Dark Buffers in the Internet” (CACM, Jan 2012) 85



problems with big buffers
high latency — bad for some applications

slower response to congestion
1 second round trip time = 1 second to detect congestion
more likely to have ‘congestion collapse’

86



avoiding big buffers
multiple fixes (that can be combined):

use smaller buffers?
simpliest solution

detect congestion without full buffer…
by choosing when/which packets to drop better?
by using something other than drops?

87



avoiding big buffers
multiple fixes (that can be combined):

use smaller buffers?
simpliest solution

detect congestion without full buffer…
by choosing when/which packets to drop better?
by using something other than drops?

87



avoiding big buffers
multiple fixes (that can be combined):

use smaller buffers?
simpliest solution

detect congestion without full buffer…
by choosing when/which packets to drop better?
by using something other than drops?

87



avoiding big buffers
multiple fixes (that can be combined):

use smaller buffers?
simpliest solution

detect congestion without full buffer…
by choosing when/which packets to drop better?
by using something other than drops?

87



fixes from Jacobson’s 1987 paper

88



timeout setting
goal in setting timeouts:

timeout triggering almost always means dropped packet

to do this want highest likely round trip time

original TCP heuristic: twice RTT estimate

89



RTT variation exercise (1)
let’s say 1 ms tranmission delay + 20 ms propogation delay

and queue depth ranges ‘randomly’ from 1 to 10

exercise: round-trip-time?

42 ms with no queue
+1 ms per queue depth
43 to 52 ms

90



RTT variation exercise (1)
let’s say 1 ms tranmission delay + 20 ms propogation delay

and queue depth ranges ‘randomly’ from 1 to 10

exercise: round-trip-time?
42 ms with no queue
+1 ms per queue depth
43 to 52 ms

90



RTT variation exercise (2)
let’s say 1 ms tranmission delay + 10 ms propogation delay

and queue depth ranges ‘randomly’ from 10 to 40

exercise: round-trip-time?

12 ms with no queue
+1 ms per queue depth
22 to 52 ms

91



RTT variation exercise (2)
let’s say 1 ms tranmission delay + 10 ms propogation delay

and queue depth ranges ‘randomly’ from 10 to 40

exercise: round-trip-time?
12 ms with no queue
+1 ms per queue depth
22 to 52 ms

91



how does original timeout do?
works well when queuing delay small relative to other delays

works poorly when queuing delay high

…because queuing delay won’t be consistent!

92



new timeout formula
estimate mean deviation of RTT (= difference from average)

similar exponentially weighted moving average

timeout = RTT estimate + 2 × RTT deviation estimate

93



fixes from Jacobson’s 1987 paper

94



normal backoff
problem: what if we have multiple timeouts

let’s say timeout is 1 time unit
transmit at 1 time unit, 2 time units, 3 time units, 4 time units,
etc.

problem: if the network is overloaded from retransmissions won’t
stop it

…but window size reduction should make number of packets
retransmitted per connection low
(so probably not so important with corrected window size
management?)

95



exponential backoff
instead of:

transmit at 1 time unit, 2 time units, 3 time units, 4 time units,
etc.

do something like:
transmit at 1 time unit, 3 time units, 7 time units, 15 time units,
etc.

96



exponential backoff theory
for binary exponential backoff

timeout for ith retransmission is 2i × base timeout

intuition: avoids overloading network by being a lot less aggressive

not aware of good theoretically results in TCP context
famous result that this type of backoff is good for things like deciding
when to retransmit on sahred wireless link
(Goodman et al, “On Stability of Ethernet”)

97



“traditional” TCP variant names
everything we’ve talked about as standard = NewReno

Tahoe — slow start + redo slow start on any loss + fast retransmit

Reno — Tahoe + halve window size on dup ACKs

NewReno — Reno + fast recovery (send extra during fast
retransmit)

SACK — NewReno + use selective acknowledgments

98



more recent TCP variants
BIC, CUBIC — loss-based schemes that vary increase/decrease
algorithm

Vegas, BBR, FAST, Compound, Westwood — schemes that use
latency/bandwidth to detect congestion

(later topic)

(and there are many, many more)

99



some connected questions
do we really need packet loss?

what does congestoin control due to latency?

100



other congestion signals
so far: detecting congestion via drops

need data to go missing
transmitting redundant data
filling up buffers causing high latency

some alternate ideas:

have switches/routers ‘mark’ packets

latency from longer queues

101



other congestion signals
so far: detecting congestion via drops

need data to go missing
transmitting redundant data
filling up buffers causing high latency

some alternate ideas:

have switches/routers ‘mark’ packets

latency from longer queues

101



other congestion signals
so far: detecting congestion via drops

need data to go missing
transmitting redundant data
filling up buffers causing high latency

some alternate ideas:

have switches/routers ‘mark’ packets

latency from longer queues

101



other congestion signals
so far: detecting congestion via drops

need data to go missing
transmitting redundant data
filling up buffers causing high latency

some alternate ideas:

have switches/routers ‘mark’ packets

latency from longer queues

102



ECN
explicit congestion notification

when buffer ‘close’ to full

switches set ‘congestion experienced’ (CE) signal in some packets

goal: congestion signal instead of packet drops
avoid all the retransmission, hopefully

still have fallback to dropping packets

103



ECN and TCP/IP
congestion experience (CE) signal in IP heaer

when ACKing, “return” CE signal with ACK
ECN echo (ECE) TCP flag on ACK packets

when sender sees ECE flag, confirm reciept by setting “congestion
window reduced” (CWR) flag until ECE flag stops being set

104



ECN opt-in
two bits in IP header

RFC 3168 says:

00 = not-ECN capable (default)

01, 10 = ECN-capable (set by TCP/etc. implementation)

11 = congestion experienced

105



ECN timeline

machine
A switch machine

B

[no ECN]0: “The ” [no ECN]0: “The ”

got up to 0

[no ECN]1: “meeting” [yes ECN]1: “meeting”

got up to 1 +ECN
[no ECN] 2: “ is at ”

got up to 2
[no ECN] 3: “12pm.”

got up to 3

data sent has place for ECN bit to be placed
switch modifies ECN bit if buffer close to full
ACK indicates if ECN bit was set

106



reacting to ECN marks
multiple options for using ECN marks

simplest idea:

adjust window as if packet was dropped

…but don’t need to resend data

107



ECN deployment
ECN proposed in 2001
13 years later: around 56% support on websites3

16 years later:
around 80% support on websites4

around 0.2% of servers disallow connection when ECN requested

20 years later:
around 86% support on websites5

around 4% of paths strip ECN signals, including notable ISPs/cloud
providers/etc.
around 7.5% of connections (from sampled Universities) enable ECN

3Trammel et al, “Enabling Internet-Wide Deployment of Explicit Congestion Notification”
4Kühlewind et al, “Tracing Internet Path Transparency”
5Lim et al, “A Fresh Look at ECN Traversal in the Wild” 108



example: DCTCP
DataCenter TCP (2010)
intended for datacenters

high bandwidth, low latency networks

based on explicit congestion notification
…but uses different multiplicative decrease strategy

measure portion of packets marked recently α

decrease by factor of 1 − α/2
respond gradually to congestion
start responding early (packets marked when queues far from full)

109



other congestion signals
so far: detecting congestion via drops

need data to go missing
transmitting redundant data
filling up buffers causing high latency

some alternate ideas:

have switches/routers ‘mark’ packets

latency from longer queues

110



some intuition (based on BBR)
(based on Google’s BBR presentation to the IETF)

in-flight data

ro
un

d
tri

p
tim

e

in-flight data

eff
.

ba
nd

wi
dt

h

111



very different congestion control
fuller queues → higher latency

fuller queues → throughput same as window increases

strategy: monitor throughput/latency to detect full queues
goal: fill link without making queue grow (much) in size

112



very different congestion control
fuller queues → higher latency

fuller queues → throughput same as window increases

strategy: monitor throughput/latency to detect full queues
goal: fill link without making queue grow (much) in size

112



‘Vegas’-style congestion control (1)
record “base” round-trip time

connection start or lowest observed

“ideal” throughput should be one window / base round trip time
(Vegas paper calls this “expected” throughput)
what would happen with no queuing delay

“actual” throughput ≈ one window / actual round trip time

113



‘Vegas’-style congestion control (2)
measured ideal+actual throughput (prev. slide)

mainly using idea of ‘base’ round trip time

goal: control what “ideal” - actual throughput is

if 0, queues are probably empty, can increase window

if large, queues are too big, decrease window

114



Compound TCP
combines Vegas and ‘normal’ TCP congestion control

track seperate ‘delay’ and ‘congestion’ window
congestion window uses standard TCP algorithm
delay window based on Vegas-like increase in RTT detection

effective window size based delay+congestion window

was default on Windows for many years

115



BBR-style congestion control
if queues are empty, larger window:

latency stays the same and throughput increases

if queues are filling, larger window:

throughput stays the same and latency increases

observe effect of sending more/fewer packets periodically

estimate ‘boundary’ based on observed latency/throughput

keep window size near boundary most of the time

116



BBR-style congestion control
if queues are empty, larger window:

latency stays the same and throughput increases

if queues are filling, larger window:

throughput stays the same and latency increases

observe effect of sending more/fewer packets periodically

estimate ‘boundary’ based on observed latency/throughput

keep window size near boundary most of the time

116



BBR-style congestion control
if queues are empty, larger window:

latency stays the same and throughput increases

if queues are filling, larger window:

throughput stays the same and latency increases

observe effect of sending more/fewer packets periodically

estimate ‘boundary’ based on observed latency/throughput

keep window size near boundary most of the time

116



BBR-style congestion control
if queues are empty, larger window:

latency stays the same and throughput increases

if queues are filling, larger window:

throughput stays the same and latency increases

observe effect of sending more/fewer packets periodically

estimate ‘boundary’ based on observed latency/throughput

keep window size near boundary most of the time
116



BBR
congestion control algoirithm out of Google published c. 2016

apparently deployed (at least at some point) on their servers

not great fairness results with traditional TCP
Philip (IMC’21)6 claims one BBR flow takes 40% of throughput when
competing with thousands of CUBIC or NewReno flows

6Philip, Ware, Athapathu, Sherry, Sekar, “Revisting TCP Congestion Control Throughput
Models & Fairness Properties AT Scale” (IMC’21)

117



backup slides

118


	recall: window size versus bandwidth
	why optimal / counting packets in flight
	searching for performance
	a little history
	changing cross-traffic
	part 1: window sizing
	focus on steady state
	up/down pattern (rough)
	performance collapse
	heuristic: slow increase
	exercise: convergence times

	heuristic: fast decrease
	some graphs
	CUBIC, briefly
	exercise: non-congestion losses

	what about sharing?
	intuition in simple case
	AIMD convergence
	when one host can't saturate link
	min/max fairness
	exercise

	Jain's fairness index
	RTT-unfairness
	other unfairness
	unfairness in practice


	`fast retransmit' and `fast recovery'
	recall: duplicate ACKs
	duplicate ACKs
	intuition: self-clocking

	`slow start'
	exercise
	some more graphs

	missing piece: reverse path
	aside: some queuing theory
	deep queues?
	missing Jacobson pieces
	variance estimation
	exponential backoff

	TCP variants
	congestion missing pieces
	other congestion signals
	explicit congestion notification
	watching latency, etc.

	backup slides

