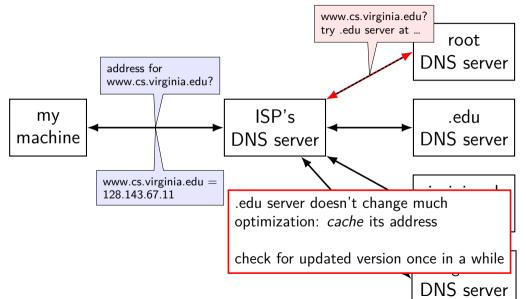
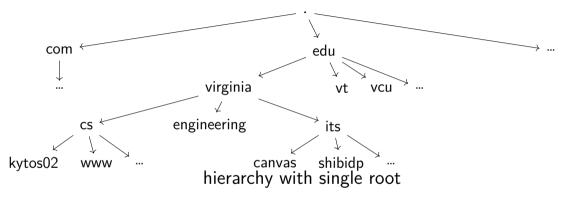
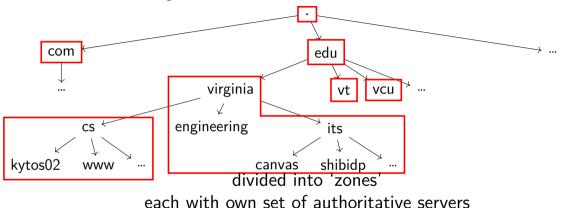

names and addresses


address
location/how to locate
IPv4 address 128.143.22.36
IPv4 address 216.58.217.69
IPv6 address 2607:f8b0:4004:80b::2005
IPv4 address 128.143.67.91





DNS hierarchy

DNS hierarchy

terms: authority, recursive

DNS server is *authoritative* for X.Y.Z? (claims to be) official source of information for X.Y.Z not giving a cached version obtained from elsewhere

DNS server is a *recursive resolver*?

will contact other DNS servers to get answer typically caches everything time-to-live allows type of DNS server one gets from DHCP, etc.

choice of whoever configures DNS server

usually (but not always) mutually exclusive

querying the root

\$ dig +trace +all www.cs.virginia.edu

• • •						
edu.	172800	IN	NS	b.edu-servers.net.		
edu.	172800	IN	NS	f.edu-servers.net.		
edu.	172800	IN	NS	i.edu-servers.net.		
edu.	172800	IN	NS	a.edu-servers.net.		
b.edu-servers.net.	172800	IN	A	191.33.14.30		
b.edu-servers.net.	172800	IN	AAAA	2001:503:231d::2:30		
f.edu-servers.net.	172800	IN	А	192.35.51.30		
f.edu-servers.net.	172800	IN	AAAA	2001:503:d414::30		
• • •						
;; Received 843 bytes from 198.97.190.53#53(h.root-servers.net) in 8 ms						

. . .

querying the edu

\$ dig +trace +all www.cs.virginia.edu

. . . virginia.edu. 172800 IΝ NS nom.virginia.edu. virginia.edu. 172800 NS uvaarpa.virginia.edu. ΤN virginia.edu. eip-01-aws.net.virginia.edu. 172800 ΤN NS nom.virginia.edu. 172800 ΤN Α 128,143,107,101 uvaarpa.virginia.edu. ΙN 128.143.107.117 172800 А eip-01-aws.net.virginia.edu. 172800 IN Α 44.234.207.10 ;; Received 165 bytes from 192.26.92.30#53(c.edu-servers.net) in 40 ms

•••

querying virginia.edu+cs.virginia.edu

\$ dig +trace +all www.cs.virginia.edu

. . .

cs.virginia.edu. 3600 IN NS coresrv01.cs.virginia.edu. coresrv01.cs.virginia.edu. 3600 IN A 128.143.67.11 ;; Received 116 bytes from 44.234.207.10#53(eip-01-aws.net.virginia.edu) in 72 ms

 www.cs.Virginia.EDU.
 172800
 IN
 A
 128.143.67.11

 cs.Virginia.EDU.
 172800
 IN
 NS
 coresrv01.cs.Virginia.EDU.

 coresrv01.cs.Virginia.EDU.
 172800
 IN
 A
 128.143.67.11

 ;; Received 151 bytes from 128.143.67.11#53(coresrv01.cs.virginia.edu) in 4 ms

querying typical ISP's resolver

. .

\$ dig www.cs.virginia.edu
...
;; ANSWER SECTION:
www.cs.Virginia.EDU. 7183 IN A 128.143.67.11

DNS presentation format

DNS uses compact binary format we'll talk about later

also has standardized 'presentation format' that dig uses (roughly) format is used for DNS server configuration files

DNS time-to-live

need some way to remove out-of-date DNS records

DNS solution: time-to-live

number of seconds record is valid for

typically set to fixed value by authoritative server configured by system administrator

decremented when returned from cache by recursive resolvers

DNS exercise (1)

"www.cs.virginia.edu is 128.148.67.11 for next 86400 seconds"

(given record above) if sysadmin changes IP address DNS server returns for www.cs.virginia.edu, then what will happen to machines accessing website?

A. they'll start using the new address after 86400 seconds, and use the old one before then.

B. different machines will use the new address at different times, but no longer than 86400 seconds from when it changes

C. machines will start using the new address almost immediately, but after some small delay after it is changed

D. machines may keep using the old address until they are rebooted

E. something else?

DNS exercise (2)

if sysadmin wants to change the IP address of www.cs.virginia.edu, how do they do this without downtime?

they can change the IP address the server returns and/or the time-to-live?

what should they change and when to smoothly transition to a new address?

DNS exercise (3)

suppose initially *.foo.com DNS server ('nameserver') = 10.2.3.4, valid 200 s www.foo.com = 10.1.2.3, valid 100 s

% if at time 0 seconds, changed to: *.foo.com DNS server = 10.3.4.5, valid 100 s www.foo.com DNS server = 10.3.5.1, valid 400 s

ex 0: when will new DNS server/www.foo.com start being used?

ex 1: when can we shut down old DNS server?

ex 2: when can we shut down old www.foo.com?

root servers (1)

(from IANA's website)

List of Root Servers

HOSTNAME	IP ADDRESSES	OPERATOR
a.root-servers.net	198.41.0.4, 2001:503:ba3e::2:30	Verisign, Inc.
b.root-servers.net	170.247.170.2, 2801:1b8:10::b	University of Southern California, Information Sciences Institute
c.root-servers.net	192.33.4.12, 2001:500:2::c	Cogent Communications
d.root-servers.net	199.7.91.13, 2001:500:2d::d	University of Maryland
e.root-servers.net	192.203.230.10, 2001:500:a8::e	NASA (Ames Research Center)
f.root-servers.net	192.5.5.241, 2001:500:2f::f	Internet Systems Consortium, Inc.
g.root-servers.net	192.112.36.4, 2001:500:12::d0d	US Department of Defense (NIC)
h.root-servers.net	198.97.190.53, 2001:500:1::53	US Army (Research Lab)
i.root-servers.net	192.36.148.17, 2001:7fe::53	Netnod
j.root-servers.net	192.58.128.30, 2001:503:c27::2:30	Verisign, Inc.
k.root-servers.net	193.0.14.129, 2001:7fd::1	RIPE NCC
l.root-servers.net	199.7.83.42, 2001:500:9f::42	ICANN
m.root-servers.net	202.12.27.33, 2001:dc3::35	WIDE Project

root servers (2)

(from root-servers.org)

As of 2024-10-18T21:11:19Z, the root server system consists of 1912 instances operated by the 12 independent root server operators.

anycast root servers

many root servers have multiple separate sites

```
...but one IPv4/IPv6 address
```

```
which one you get = which one routed to
```

multiple sites with BGP announcements for IP often with care taken to limit how far route goes

idea called 'anycast' get to 'any' of several servers

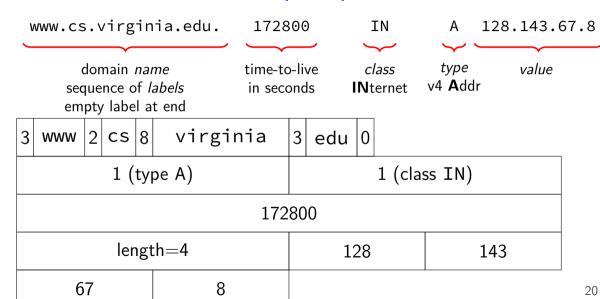
also used for some public recursive DNS servers 1.1.1.1 (CloudFlare), 8.8.8.8 (Google), 208.67.222.222 (Cisco), ...

DNS registries

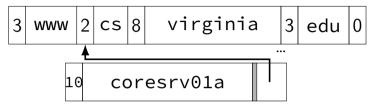
IANA and affiliates publish root zone file same organization as for IP address, AS numbers (but domain names are lot more politically active)

For usable top-level domains, there are *registries*: VeriSign (VA company) for COM, NET Educause (non-profit) for EDU Registry Services, LLC (under contract with the US Dept of Commerce) for US

...


many registries allow for many registrars who can sell new domains

DNS resource records


resource record (RR) = single DNS database 'entry'

has standard text and binary representation text used for server config files and display binary representation used for network protocol

DNS record example (text)

DNS name format

zero or more: length of K>0 followed by K character case-insensitive label

labels limited to 64 bytes

then either:

selected RR types

text	id	purpose	data format	
A	1	IPv4 address	32-bit integer (big-endian)	
AAAA	28	IPv6 address	128-bit integer (big-endian)	
NS	2	authoritative name server	domain name	
CNAME	5	'canonical name'	domain name	
ТХТ	16	text string	arbitrary string	
SRV	33	service location	priority, weight, domain	
			name, port	

CNAME

 $\mathsf{CNAME} = \mathsf{delegate} \ \mathsf{name} \ \mathsf{to} \ \mathsf{another} \ \mathsf{name}$

output of dig canvas.its.virginia.edu a: canvas.its.virginia.edu. 2711 IN CNAME universityofvirginia-vanity.instructure.com.

universityofvirginia.vanity.instructure.com =
canvas-pdx-prod-c354-1908777142.us-west-2.elb.amazonaws.com.
canvas-pdx-prod-c354-1908777142.us-west-2.elb.amazonaws.com. 2 IN A 34.208.211.157
canvas-pdx-prod-c354-1908777142.us-west-2.elb.amazonaws.com. 2 IN A 44.238.73.244
canvas-pdx-prod-c354-1908777142.us-west-2.elb.amazonaws.com. 2 IN A 52.26.9.245

virginia.edu. 3600 IN NS uvaarpa.virginia.edu. virginia.edu. 3600 IN NS nom.virginia.edu. virginia.edu. 3600 IN NS eip-01-aws.net.virginia

these three servers are authoritative for virginia.edu

(but need their A or AAAA records to actually contact them)

SRV

_ldap._tcp.virginia.edu. 600 IN SRV 0 100 389 vad _ldap._tcp.virginia.edu. 600 IN SRV 0 100 389 vad

virginia.edu's LDAP servers are vadcv4.virginia.edu port 389 and vadc5.virginia.edu port 389

(LDAP = Lightweight Directory Access Protocol) example: lookup email ID by name

SRV records were late...

SRV records seem like something we'd use all the time...

but only used with a few protocols

why?

SRV records added late (1996–2000)

sending email already had its own record type (MX)

poor support for querying them in standard networking libraries

hard to get access to add them in many organizations

dig virginia.edu txt

virginia.edu. 3548 IN TXT "google-site-verification=zEwuk4FIG8_vtv2BZJOD6IWzg9JbNiJPH9mOdPNC virginia.edu. 3548 IN TXT "cisco-ci-domain-verification=268b991de3589451b38fcfeaa99473f8e4fb virginia.edu. 3548 IN TXT "miro-verification=9f3238c881466b3ccb99c4347b99e5504eafc118" virginia.edu. 3548 IN TXT "MS=ms40126609" virginia.edu. 3548 IN TXT "onetrust-domain-verification=d901adf09116474c89790a9752e0046c" virginia.edu. 3548 IN TXT "google-site-verification=rePHmrM7FEfSw62DHq9TpuMFUw66J6hgpFFh5cq8 virginia.edu. 3548 IN TXT "v=spf1 a mx ip4:52.254.56.82 ip4:52.137.91.139 ip4:128.143.125.90 virginia.edu. 3548 IN TXT "docusign=6547d080-1c40-427c-8736-fafa466ff73f" virginia.edu. 3548 IN TXT "apple-domain-verification=zllSamqSFAw4lNQo" virginia.edu. 3548 IN TXT "v=msv1 t=537499f256ea46bd386f7543d18d28" virginia.edu. 3548 IN TXT "atlassian-domain-verification=ze045p2Vl1fXekKYCzmq40NEpDEkGKx3Y8C virginia.edu. 3548 IN TXT "00256316" virginia.edu. 3548 IN TXT "vYMwnn+VY4w6aVf+cE4888ppz+MDXBKnaI0m5eteiMGgwWIBTOgA6aTSJM40YRG6s virginia.edu. 3548 IN TXT "apple-domain-verification=mROwKUEMfwLBfltC" virginia.edu. 3548 IN TXT "e2ma-verification=rx8eb" virginia.edu. 3548 IN TXT "ZOOM verify PuU-eOzv070Nrii vTP72A" virginia.edu. 3548 IN TXT "sending domain1023271=f4a69653389ff4543a64e982f1cbc2e9db30eab95cc

TXT record usage

TXT records 'just' hold arbitrary strings

lots of machine-based usage of TXT records

probably in part because it's too slow/hard to add new record types

TXT example: **SPF**

virginia.edu. 3548 IN TXT "v=spf1 a mx ip4:52.254.56.82 ip4:52.137.91.139 ip4:128.143.125.90 ip4:128.143.125.91 include:spf.protection.outlook.com include:_spf.google.com include:spf.elluciancloud.com ~all"

SPF protocol for specifying who can send email from domain

why in TXT record instead of its own type?

RFC 6686, Appendix A excerpt

At the time of SPF's initial development, the prospect of getting an RRTYPE allocated for SPF was not seriously considered, partly because doing so had high barriers to entry....

Later, after RRTYPE 99 was assigned ...a plan was put into place to effect a gradual transition to using RRTYPE 99 instead of using RRTYPE 16. This plan failed to take effect for four primary reasons:...

1....existing nameservers (and, in fact, DNS-aware firewalls) would drop or reject requests for unknown RRTYPEs ...

2. many DNS provisioning tools ...were, and still are, typically lethargic about adding support for new RRTYPEs

primary and secondary servers

usually have multiple DNS servers for each zone needed to handle outages

DNS protocol supports *zone transfers* to synchronize them DNS query for type AXFR returns all RRs as special case (most public DNS servers block this from 'normal'users)

one server designed as 'primary'; others are 'secondary'

special SOA (start of authority) record provides metadata about zone

name of primary server to contact serial number for current version (to quickly check if update) how long to wait between updates, etc.

DNS messages (1)

client sends query to server

server responds with response

response and query have same format but different fields set/used

ID	QR opcode AATCRDRA 0 ADCD RCODE					
QDCOUNT (0 or 1)	ANCOUNT					
NSCOUNT	ARCOUNT					
QDCOUNT questions						
ANCOUNT+NSCOUNT+ARCOUNT RRs						

ID	QR opcode AATCRDRA 0 ADCD RCODE					
QDCOUNT (0 or 1)	ANCOUNT					
NSCOUNT	ARCOUNT					
$\begin{array}{c} & \ & \ & \ & \ & \ & \ & \ & \ & \ & $						

ID			орсос	de	AA	тсf	RDRA	0	ADCI	D	RCO	DE
QDCOUNT (0 o	or 1)		ANCOUNT									
NSCOUNT	opcode 0 for query some other operations		-	ARCOUNT								
ANCOUNT+NSCOUNT+ARCOUNT RRs												

ID	QR opcode AATCRDRA 0 ADCD RCODE				
QDCOUNT (0 or 1)	ANCOUNT				
NSCOU response code, 0 for no error COUNT					
QDCOUNT questions					
ANCOUNT+NSCOUNT+ARCOUNT RRs					

caching 'domain name does not exist'

when domain does not exist (RCODE=3, "NXDOMAIN"):

(RFC 2308)

response should include SOA record recall: indicates primary server for zone and how often secondaries should update

can cache NXDOMAIN based on minimum of TTL and SOA record's update frequency

DNS message

header

0 or 1 question domain name + class + type (RR without TTL or value) special type values for ANY, some other things

ANCOUNT RRs in 'answer section': CNAMEs (even if that's not the question type) matches for domain name (or CNAME) + class + type

 $\mathsf{NSCOUNT} + \mathsf{ARCOUNT}\ \mathsf{RRs}$ in 'authority section' and 'additional section

not always included; usually NS or SOA records plus corresponding A/AAAA recods

DNS over ...

UDP port 53 send DNS message reply with DNS message back

TCP port 53 send length (2B, big endian) + message reply with length (2B, big endian) + message (+ repeat)

over HTTPS (RFC 8484) using https://server/dns-query

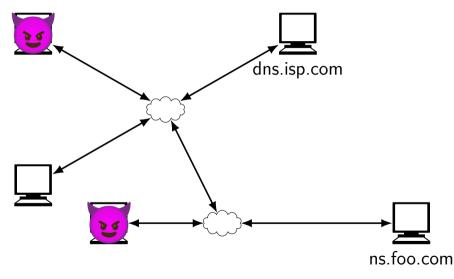
DNS UDP size limit

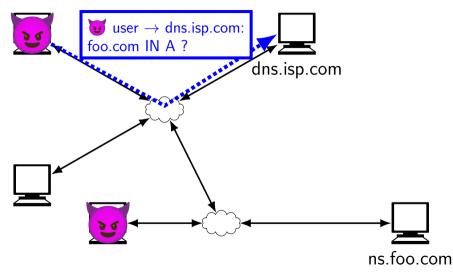
```
$ dig virginia.edu txt +notcp +all
;; Truncated, retrying in TCP mode.
; <<>> DiG 9.18.28-Oubuntu0.22.04.1-Ubuntu <<>> virginia.edu txt +notcp +all
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 53043
:: flags: gr rd ra; OUERY: 1, ANSWER: 17, AUTHORITY: 0, ADDITIONAL: 1
:: OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 65494
;; QUESTION SECTION:
;virginia.edu.
                                       IΝ
                                                 ТХТ
:: ANSWER SECTION:
virginia.edu. 3537 IN TXT "cisco-ci-domain-verification=268b991de3589451b38fcfeaas
. . . .
```

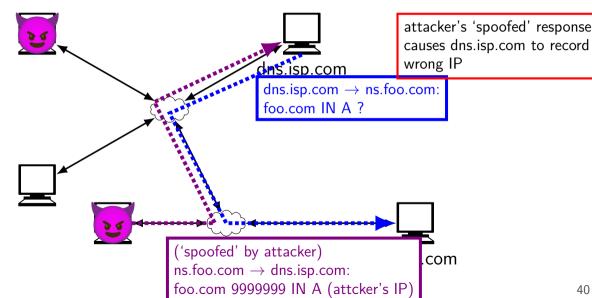
DNS UDP size limit

512 byte size limit for UDP if exceeded, set TC (truncate) flag and truncate response clients supposed to retry with TCP

extensions to DNS increase limit (but have to be opted into by clients)


explains why only 13 root server names 13 NS RRs + 13 A RRs \approx 480 bytes (w/ name compression)


eDNS(0) (RFC 6891)


extend DNS protocol by sending psuedo-RR added in additoinal section of requests name . (empty) type OPT/44 CLASS, TTL fields reused for other stuff

specifies:

max size over UDP extra bits for RCODE additoinal, variable length data

mitigating cache poisoning attacks

filter out packets with source address for where they come from? not feasible if real/spoofed packets forwarde through many other ISPs

use random port number for queries attacker can spoof many port numbers at once attacker can keep trying until they guess right

use random ID number in DNS query not good enough alone — attacker can guess often enough probably enough with random port?

add additional randomness to DNS query randomize capitalization (assuming it's returned the same in response) 'DNS cookie' extension (RFC 7873; assuming remote server supports it)

use TCP with random sequence number (slow)

DNSSEC

public key infrastructure for DNS

single set of root keys from ICANN/IANA no certificate authorities like web PKI

each DNS zone has its own public key

all records within zone have a signature

delegation records have keys for subzones

digital signature

generate (public key, private key) such that

```
Sign(private key, message) = signature
```

Verify(public key, signature, message) = 1

```
and it's really hard to generate X s.t.
Verify(public key, X, signature) = 1
if you don't know the private key
```

distribute public key widely

DNSSEC offline signing

design goal: generate + sign zone

have digital signatures that can verify all records

means: DNS servers don't need to actually sign anything! can have signing keys offline much lower security risk

RRSIG components

rr-type = type of resource record sign (example: NS, A, ...) covers ALL resource records for that type

sig-type = which digital signature algorithm

- orig-ttl = original time-to-live
- expiration, inception = dates; when this is considered valid
- key tag + zone name = identifies which key is used zone name is something like 'com.' or 'example.com' or 'cs.virginia.edu.' key tag meant to distinguish between keys (but still might be multiple keys with same tag+zone name!)

signature = data from digital signature algorithm

awkwardness with TTLs

signature covers range of dates

attacker can always 'replay' record + signature within that range

TTL doesn't really do anything about it

RRSIG example

cloudflare.com. 86400 ΤN NS ns3.cloudflare.com. cloudflare.com. 86400 ΤN NS ns4.cloudflare.com. cloudflare.com. ΤN NS ns5.cloudflare.com. 86400 cloudflare.com. 86400 ΤN NS ns6.cloudflare.com. cloudflare.com. 86400 ΤN NS ns7.cloudflare.com. cloudflare.com. 86400 ΤN RRSIG NS 13 2 86400 \ 20241025022114 20241023002114 34505 cloudflare.com. \ VtBeT5L8cznPZmXB81txqhj1SBs94CnI7ocA2cVsU7j3lChMYnpITUfNetWYTbu8go50tKjL5HZG7r

RRSIG verifies all the NS records

from 2024-10-23 02:21:14 UTC to 2024-10-25 02:21:14 UTC

key tag 34505 for cloudflare.com.

VtBe...is digital signature data

pass to signature verification function with all the NS records to validate

DNSKEY / DS

DNSKEY records hold public keys gives zone key is intended for doesn't tell you the key is actually good

DS records delegate from key to another each DNSKEY needs corresponding DS record DS record contains hash of DNSKEY + related info

DS records signed using RRSIG records combination of DS + DNSKEY tells you key is good

multiple DNSKEYs

can/usually do have multiple keys per zone

typically "Key-Signing Key" (KSK) + "Zone-Signing Key" (ZSK)

goal: if ZSK is compromised, replace it

keep KSK protected much more heavily than ZS

DNSKEY/DS signing

;; records maintained by com. server: cloudflare.com. 86400 IN DS 2371 13 2 329968....F6D6 3826F2B9 cloudflare.com. 86400 IN RRSIG DS 13 2 86400 20241030011127 20241023000127 29942 cloudflare.com. 3600 IN DNSKEY 257 3 13 mdss...kHAeF+ KkxL...KGQ==

;; records maintained by cloudflare.com. servers: cloudflare.com. 3600 IN DNSKEY 256 3 13 oJMRES...5ar0IRd8 KqXXF...hSA== cloudflare.com. 3600 IN RRSIG DNSKEY ...

DS record signed by com. keyid 29942

'flags' of 257 = key-signing key, 256 = zone-signing key not the key tag, that's derived from key itself

RRSIG verifies that zone-signing key is endorsed from key-signing key

DNSSEC root key

root key-signing key

key material split between air-gapped safe and... designated 'crpytographic officers' (3 of 7 needed to do signing) cryptographic officers have smart card with some key material

designated 'recovery key share holders' (5 of 7 can reconstruct keys if disaster) semi-public 'key signing ceremonies'

periodically (approx 4x/year) new root zone-signing keys

DANE/TLSA (RFC 7671)

DANE — mechanism for authenticating websites/email servers/etc. with DNSSEC

not supported by any browser I know of

instead, authenticate websites [mostly] separate from DNS

DNSSEC and missing records

'easy' idea: sign "randomjunk.cs.virginia. IN DOESNOTEXIST"

problems:

violates model of signing everything 'offline'

potential way to overload server with lots of requests

do we really want to cache randomjunk.cs.virginia.edu does not exist?

...for each value of randomjunk?

DNSSEC and missing records

multiple options:

signed 'no result between W.Y.Z, type Q and Z.Y.Z, type A' message (NSEC) signed 'no result with hash(?) = A < hash(X) < B = hash(?)' message (NSEC3)

can be generated in advance (with signing keys kept 'offline') can also generate dynamically to reveal less informationx

NSEC ('next secure')

\$ dig +trace +dnssec weird.invalid ... intuit. 86400 IN NSEC investments. NS DS RRSIG NSEC intuit. 86400 IN RRSIG NSEC ...

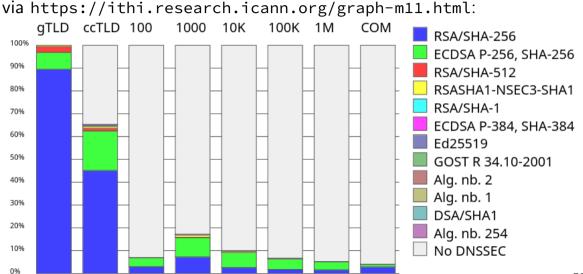
there are no NS, DS, RRSIG, NSEC recods between 'intuit.' and 'investments.'

NSEC3

\$ dig +trace +dnssec foo.example.com a ... 0qn0igs6chbcq47kevankt96i9obe5he.example.com. 3600 IN NSEC3 \ 1 0 5 A4196F45E2097176 DCKKHGFRAJB05JCM258PTCEHOVGMIPAN \ A NS SOA MX TXT AAAA RRSIG DNSKEY NSEC3PARAM 0qn0igs6chbcq47kevankt96i9obe5he.example.com. 3600 IN RRSIG NSEC3 ...

A4196...is a 'salt' to make hash unique

defense against 'rainbow tables'


0qn0...and DCKK...hashes of names on either side of 'foo' record proves: no names in between exist

DNSSEC deployment: validation

queries supporting validation: approx. 35%
from https://stats.labs.apnic.net/dnssec/

approx. 45% recursive resolvers support
 from https://ithi.research.icann.org/

DNSSEC deployment: signing

reverse DNS (IPv4)

what's a domain name for IP 128.143.107.101?

special domain name: 101.107.143.128.in-addr.arpa

...and PTR record type for this: \$ dig -x 128.143.107.101 . . . 101.107.143.128.in-addr.arpa. 3516 IN PTR eip-04-udc.net.virginia.edu. \$ dig eip-04-udc.net.virginia.edu a . . . eip-04-udc.net.virginia.edu. 3600 IN A 128,143,107,101 . . . might not be only name: \$ dig nom.virginia.edu a . . . nom.virginia.edu. 86400 ΤN Α 128,143,107,101 . . .

reverse DNS (IPv6)

\$ dig -x 2607:f8b0:4004:c1d::65

. . .

5.6.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.d.1.c.0.4.0.0.4.0.b.8.f.7.0.6.2.ip6.arpa. 3345 IN PTR ww-in-f101.1e100.net.

. . .

internationalized domain names

https://**日本レジストリサービス**.jp/

how does this work?

becomes: https://xn--vckfdb7e3c7hma3m9657c16c.jp/ encoding scheme called punycode

IDN homograph attacks

```
bankofamerica.com
```

```
xn--bnkofamerica-x9j.com
```

```
a = U+0430 = CYRLLIC SMALL LETTER A
```

defenses against homograph attacks

at registries, restrict domain registration disallow mixed scripts (e.g. latin and cyllric) test if looks identical to registered domains

at browsers, restrict display in non-xn-... form allow-list for 'good' top-level domains (e.g. .gr, .jp, etc.) otherwise, only allow known non-confusing combinations

domain name system blocklists

historically common non-domain-name use of DNS I'm including to illustrate idea of 'other' DNS usage

database identifying (typically) IP addresses for filtering

used for spam/bot detection/prevention these days tend to expect payment for serious use

typical idea similar to reverse IP lookups use specific IP address to mark 'in' or 'not in' list

domain name system blocklists

```
example: Team Cymru's Bogon list identifies invalid addresses
# 248.1.1.1 is on blocklist
$ dig 1.1.1.248.v4.fullbogons.cymru.com a
. . .
1.1.1.248.bogons.cymru.com. 21600 IN
                                         А
                                                  127.0.0.2
. . .
# 128.143.67.31 is not on blocklist
$ dig 31.67.143.128.v4.fullbogons.cymru.com a
. . .
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 6153
```

. . .

backup slides