
1

why packet filtering
some reasons to filter packets:

remove (malicious?) packets with false source addresses

disallow external access to servers not on allowlist

block traffic from known malicious sources

only permit services on allowlist out of private network

2

packet filters = firewalls
typical name for packet filter: “firewall”

especially filtering focused on security

3

firewall design decisions
where to filter?

typically: at “edges” of network
in router, or separate box
can also do elsewhere

how much to track when filtering?
“stateless” or “stateful”

4

firewall design decisions
where to filter?

typically: at “edges” of network
in router, or separate box
can also do elsewhere

how much to track when filtering?
“stateless” or “stateful”

5

the corporate firewall
Firewall

Company site

Remote employee

of company

Random external user

Internet

6

zones of trust
most common kind of firewall policy, three zones:
internal network

can send most things
can’t receive unsolicited traffic from external network
where typical laptops/desktops live

DMZ (‘demilitrized zone’)
not ‘protected’ from external networks
access to internal network similar to being within it
where externally accessible services live

external network
can only unsolicited to DMZ
where the rest of the Internet lives

7

firewall rules
simple idea: look at packet’s fields

table indicating whether to reject

similar idea to routing, but…

table matches fields other than destination

table acitons are ‘drop’, ‘reject’, etc.

8

“stateless” firewall
this design: table is set once by sysadmin

doesn’t change based on connections, etc.
might change based on manual reconfiguration, etc.

called “stateless”

firewall doesn’t track ‘state’ based on current activity

9

exercise: what info do we need
what fields do we need to match these

(and/or can we not handle without something more stateful?)

DNS queries to recursive DNS server from external servers

packets with source address that does not match network

packets from known malicious networks

connecting from outside to TCP servers not on allowlist

connecting from inside using services (HTTP, etc.) not on allowlist

10

Linux firewall: nftables
Linux’s nftables — one Linux kernel packet filter interface

command-line tools + system call API implemented in kernel
will show syntax for nft tool
also some other kernel APIs: eBPF ‘programs’, iptables

different “hooks” where filtering can happen, list for IP:
prerouting
input (if received locally), forward (otherwise)
output (if sent from local program)
postrouting

each hook has multiple “chains” of “rules”

11

for use with 'nft' on Linux; probably not the best way to write these rules:
table inet filter {

chain EXTERNAL-INPUT {
ip6 saddr {3fff:14::/32, 3fff:30::/32} drop
ip saddr 198.51.100.0/24 drop
ip6 daddr 3fff:14:1:15 tcp dport {80, 443} accept
ip6 daddr 3fff:14:1::/48 tcp dport 22 accept
drop

}
chain INTERNAL-INPUT {

ip6 saddr != {3fff:14::/32, 3fff:30::/32} drop
ip saddr != 198.51.100.0/24 drop
udp dport 137 drop
accept

}
chain INPUT {

type filter hook input priority 0
iifname lo accept
iifname ethExt jump EXTERNAL-INPUT
iifname ethInt jump INTERNAL-INPUT
reject

}
}

12

limits of packet matching?
so far: showing stateless filtering

can stateless filtering to do a lot…:

match more header fields

check if packet contents match pattern

but some fundamental limits of design

13

filtering connections? (1)
let’s say we’re writing rule on router between 3fff::/16 network and
internet

want to rule allow…

TCP connections from 3fff::2 to outside machines

and drop all other traffic

can’t really do this with stateless rules

but can come close

14

exercise (1)
goal: allow 3fff::2 outside TCP connections only

how is this going to break?
assume we run this only packets about to be forwarded in router

ip6 saddr 3fff::2 protocol tcp accept
drop

15

exercise
goal: allow 3fff::2 outside TCP connections only

assume ethInt = inside; ethExt = outside

is this good enough?
assume we run this only packets about to be forwarded in router

iifname ethInt protocol tcp accept
iifname ethExt protocol \

tcp flags & (fin|syn|rst|ack) == syn drop
iifname ethExt ip6 daddr 3fff::2 protocol tcp accept
iifname ethExt ip6 daddr 3fff::2 \

icmpv6 { destination-unreachavble, time-exceeded } accept
drop

16

layering violation
previously router only handled IP (network layer)

but looking at UDP/TCP fields

router typically doesn’t do defragmentation

might interpret TCP/UDP fields different than end-host

17

fragmented SYN
tcp flags & (fin|syn|rst|ack) == syn drop

tcp flags are not first fragment

need to reassemble to accurately filter

…or maybe filter out very short fragments

18

ambiguous fragmentation

can have two different versions of a fragment

using different TTLs to choose which one makes it

one idea: defragment to choose which version
and drop unknown fragments

19

other interpretation issues
wrote:
tcp flags & (fin|syn|rst|ack) == syn drop

versus:tcp flags == syn drop
“mishandles”:

SYN | ECE ?
SYN | URG
SYN | first reserved flag bit?
…

some of these combinations not defined by TCP standard
don’t really know if they open connection
don’t really know if they might be used for other purpose

probably related to why ECN often filtered 20

higher-level filtering?
let’s say we want to disallow

GET /malicious HTTP/1.1, etc.

one idea: check for GET /malicious

huge number of issues:
what if split across multiple TCP packets?
what if uploading file containing GET /malicious?
what about GET /malicious, GET /%6dalicious?
…

21

web application firewalls
reverse HTTP proxy for firewalling

similar rules, but on HTTP requests/responses, not packets

example: Apache mod_security

follows: some rules from OWASP coreruleset project

22

example mod_security rule (wrapped)
SecRule RESPONSE_BODY "@rx <title>r57 Shell Version [0-9.]+

</title>|<title>r57 shell</title>" \
"id:955110,\
phase:4,\
block,\
capture,\
t:none,\
msg:'r57 web shell',\
logdata:'Matched Data: %{TX.0} found within %{MATCHED_VAR_NAME}',\
...
severity:'CRITICAL',\
setvar:'tx.outbound_anomaly_score_pl1=+%{tx.critical_anomaly_score}'"

23

example mod_security rule (wrapped)
SecRule REQUEST_URI|ARGS|REQUEST_HEADERS|!REQUEST_HEADERS:Referer|FILES|XML:\

/* "@rx (?:(?:^|[\x5c/;])\.{2,3}[\x5c/;]|[\x5c/;]\.{2,3}(?:[\x5c/;]|$))" \
"id:930110,\
phase:2,\
block,\
capture,\
t:none,t:utf8toUnicode,t:urlDecodeUni,t:removeNulls,t:cmdLine,\
msg:'Path Traversal Attack (/../) or (/.../)',\
logdata:'Matched Data: %{TX.0} found within %{MATCHED_VAR_NAME}: %{MATCHED_VAR}',\
....
ver:'OWASP_CRS/4.8.0',\
severity:'CRITICAL',\
multiMatch,\
setvar:'tx.inbound_anomaly_score_pl1=+%{tx.critical_anomaly_score}',\
setvar:'tx.lfi_score=+%{tx.critical_anomaly_score}'"

24

request smuggling
POST /foo HTTP/1.1
Content-Length: 5
Content-Length: 41

XXXXXBADMETHOD HTTP/1.1
Header-for-bad: GET /malicious HTTP/1.1
...

25

general ambiguity problem
when protocol ambiguous, filtering rules ineffective

usually lots of ‘corner cases’ where this can happen
multiple content-length heaers
unused flag bits being set to 1
multiple versions of TCP segment or fragment
…

common defense: “normalization”
remove things you don’t understand
make everything fit simple profile
problem: breaking any fancy HTTP/TCP/etc. features

26

stateful firewall
common policy: allow outgoing connections only

prior approach:
drop incoming non-TCP, or TCP SYN

problems:
disallowing UDP-based protocols (example: DNS over UDP, HTTP/3)
disallowing normal ICMP (example: ICMP ping replies)
allowing unsolicited TCP packets

27

keeping state
outgoing connections only?

really want to track list of connections

most common form of stateful firewall

28

connection tracking?
simple idea for TCP:

see SYN: add (TCP, source IP+port, dest IP+port) to table

see FIN, FIN+ACK, ACK: remove row from table after timeout

(plus other timeouts, error cases, etc.)

mirrors TCP state machine

29

Linux conntrack
in-kernel table of active “connections”

includes notion of connections for UDP, ICMP, etc.
heuristic guesses since protocol has no connect/close operation

maintains table of (proto, source host+port, dest host+port)

packets marked with connection state
new, established, related, invalid

30

Linux conntrack
in-kernel table of active “connections”

includes notion of connections for UDP, ICMP, etc.
heuristic guesses since protocol has no connect/close operation

maintains table of (proto, source host+port, dest host+port)

packets marked with connection state
new, established, related, invalid

30

related connection example

FTP — uses separate control + data TCP connections

PORT command: server creates data connection to specified
address

202 × 256 + 135 = 51847
problem for firewalls: looks like ‘fresh’ TCP connection

31

FTP: server connect to client?
PORT command: server creates data connection to specified
address

PASV command: server gets address for client to conect
most FTP clients default to this mode

why both: in theory, allows direct server-to-server transfers
one client uses PASV on one server, PORT on the other

32

other related connections Linux supports
usually: separate control and data connections

esp. when data sent with UDP or from different machine

direct-client-to-client file transfers in Internet Relay Chat

SIP, H.323 (video/audio call/conferencing protocols)

PPTP (VPN protocol)

33

nft with conntrack
table inet filter {

chain input {
type filter hook input priority 0

ct state established accept
ct state related accept
ct state invalid drop
iifname ethInt ct state new accept
drop

}
}

34

connection state timeouts
problem: TCP connection with no activity for 30 minutes

should it stay in table?

how about after 8 hours?

Linux conntrack, configurable timeouts:
default: 5 days if in ESTABLISHED TCP state machine state
lower for other connection TCP states (e.g. middle of handshake)

could disagree with end-host timeouts!
mysterious connection dropping

35

TCP keep-alive
for TCP: SO_KEEPALIVE socket option

enables periodic “keep-alive” messages
periodically send empty probe packets, resend last byte of data
threshold for number of probes after which to consider connection lost

also many protocols have periodic ‘ping/pong’ messages

36

state size
problem with stateful firewalls:

how big can state table get?

what to do if state table is too big?

no great answers

37

SYN floods
easy to create tons of connections

attacker → server some port: TCP flags=SYN, …
attacker → server some port: TCP flags=SYN, …
…

can forge source IP address to make this harder to evade

problem for stateful firewalls and servers themselves

38

aside: SYN cookies
common mitigation for end-hosts: SYN cookies

don’t store info about connections in SYN state

encode info MAC of conn.info in SYN+ACK’s sequence number
MAC = message authentication code ≈ keyed hash

check MAC when initial ACK received

39

Linux synproxy
Linux tool for stateful firewall SYN floods:

‘synproxy’: firewall uses SYN cookies itself
replies instead of sending ACK directly to machine

requires knowledge of what SYN+ACK should look like

means firewall will break more TCP features?

40

denial-of-service
denial of service attack:

overload network with too much traffic

more effective when receiver does more work than sender
reason SYN floods a common technique

also subject to “amplification”
forging source address to make short (e.g. DNS) request
…that gets long response send to victim

41

NAT idea

external
router

203.0.113.43

192.168.1.1

internal
192.168.1.*

192.168.1.2

192.168.1.3

192.168.1.4

192.168.1.5

192.168.1.6

1.2.3.4:443
→

203.0.113.43:54923

1.2.3.4:443
→

192.168.1.4:39129

42

network address translation (NAT) (1)
internal network uses private IPv4 addresses

need to translate to (fewer) public IPv4 addresses

add ‘internal IP+port’ to connection tracking state

use that info to rewrite packets
proto remote IP + port public IP + port internal IP + port
TCP 128.143.67.8:443 198.51.100.17:43232 192.168.1.54:59549
TCP 128.143.67.8:443 198.51.100.17:59948 192.168.1.13:59549
UDP 216.239.32.10:53 198.51.100.17:39554 192.168.1.2:31923

43

NAT illusion
NAT illusion:

private IP address communicating directly with public IP

inside network, talking to outside:
use private local address
use public remote address
never see router’s address

outside network, talking to inside
use public local address
use router’s public address

44

network address translation (NAT) (2)
distribute private IPv4 addresses from on internal network

most common use case: home routers for IPv4
also used by many companies, ISPs, etc.

can support tons of connections with one IPv4 address
recall: different (remote IP+port, local port) = diff connnection

can use multiple public IPs if risk of running out of port numbers
likely common in big NAT installations

45

endpoint-independent mapping
recall: UDP supports receiving from multiple places with on socket
so maybe our table entry should be:
proto remote IP + port public IP + port internal IP + port
UDP (any) 198.51.100.17:39554 192.168.1.2:31923

also might make sense for TCP
some applications may deliberate reuse source port

most common NAT implementation, but limits number of hosts
that can be supported

(can also achieve this effect by choose public IP+port consistently)
example: hash of private IP + port

46

mapping versus filtering
packet filtering can be separate from translation
NAT table:
proto remote IP + port public IP + port internal IP + port
UDP (any) 198.51.100.17:39554 192.168.1.2:31923

connection table for filtering:
proto remote IP + port public IP + port internal IP + port
UDP 203.0.113.34:4444 198.51.100.17:39554 192.168.1.2:31923
UDP 192.0.2.99:8999 198.51.100.17:39554 192.168.1.2:31923

47

running servers inside NAT (1)
so far: can’t accept connections on the private network

simple solution: sysadmin configures port forwarding

basically static connection table entries:
proto remote IP + port public IP + port internal IP + port
TCP (any) 198.51.100.17:443 192.168.1.100:443
TCP (any) 198.51.100.17:22 192.168.1.100:22

48

running servers inside NAT (2)
often want to accept connections not configured by sysadmin

example: direct video call between two users
would be better to send directly

some classes of solution:
ask router to add table entry
coordinate with other end to setup connection
go through relay

extra issues:
two hosts behind same NAT? nested NATs?

49

running servers inside NAT (2)
often want to accept connections not configured by sysadmin

example: direct video call between two users
would be better to send directly

some classes of solution:
ask router to add table entry
coordinate with other end to setup connection
go through relay

extra issues:
two hosts behind same NAT? nested NATs?

50

router protocols
several (related) protocols for router-helped NAT traversal

Port Control Protocol, NAT Port Mapping Protocol, UPnP Internet
Gateway Protocol

discovered via UDP multicast and/or DHCP

all provide:
way of learning next external IP
way to requesting externally accessible port

typical have lease times for external ports
host is expected to renew periodically

51

running servers inside NAT (2)
often want to accept connections not configured by sysadmin

example: direct video call between two users
would be better to send directly

some classes of solution:
ask router to add table entry
coordinate with other end to setup connection
go through relay

extra issues:
two hosts behind same NAT? nested NATs?

52

using learned mappings
if endpoint-independent NAT:

choose local (private) IP address + port

contact external server to learn corresponding public IP address +
port

protocol for this: STUN (RFC 5389)

communicate that IP address + port to other end
example: via video call setup server

both connect to other IP address + port

53

complications (1)
potential issue: firewall rule might block unsolicited packets

might need entry in connection table to get packet not dropped

for UDP: both ends send packet first to setup firewall rule

for TCP: simulatenous connection attempts may work
TCP state machine supports ‘simulatenous open’
probably one SYN needs to be resent

54

complications (2)
potential issue: “clever” NATs corrupt addresses

one bad NAT idea: automatically change private IP + port to
public IP + port in packet contents

…just look for matching bytes and substitute them! (don’t worry
about understanding the protocol)
shouldn’t do this: probably corrupt downloads/break things

some NATs did/do it anyways

STUN workaround: ‘obfuscate’ address+port with XOR
55

running servers inside NAT (2)
often want to accept connections not configured by sysadmin

example: direct video call between two users
would be better to send directly

some classes of solution:
ask router to add table entry
coordinate with other end to setup connection
go through relay

extra issues:
two hosts behind same NAT? nested NATs?

56

external relays
RFC 8656: Traversal Using Relays around NAT (TURN)

support for setting up relays dynamically

STUN + TURN often used with WebRTC

WebRTC = web browser video/audio-conference support

video conferencing provider might run STUN/TURN servers
info passed to WebRTC-based webapp

57

exercise: nested NATs
how do these solutions deal with nested network address
translation?

when, if ever, will these solutions break

1. A and B ask NAT for external port

2. A and B learn external IP+port and use simulatenous UDP
connection

3. A and B use external relay

58

aside: address reuse in NAT
with nested network address translation might have…
home network (10/8) ↔ ISP’s NAT (10/8) ↔ internet (‘real’)

conceptually nothing prevents this from working
NAT box translates 10.x.y.z addresses to different 10.a.b.c address
routing with 10.w.x.y ‘gateway’ also specifies interface
(yes, can’t contact other IPs in ISP’s 10/8 network easily from home
network, but probably don’t care)

…but confuses a lot of implementations
reason for special CGNAT IP space 100.64/10

supposed to only be used by devices that can handling nesting like this
59

fancier firewalls?
some additional actions we might like from firewalls:

more options for actions
log interesting packets for later
send alert to sysadmin about weird activity
trigger block of host sending traffic
…

fancier rules
pattern matching on TCP stream
pattern matching on HTTP URIs
pattern matching on app-layer stuff
heuristics, machine-learning-based rules
… 60

IDS / IPS
IDS = intrusion detection system

usually ‘passive’ monitoring
logging lots of stuff for analysis later
sometimes ‘alerting’ sysadmin/security team

IPS = intrusion prevention system
IDS + acting on alerts automatically

61

example Snort rule [reformatted]
alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (
msg:"MALWARE-CNC Win.Trojan.Rovnix variant outbound connection";
flow:to_server, established; http_method; content:"POST";
http_uri; content:"/vbulletin/post.php?qu=",fast_pattern,nocase;
http_header; content:!"User-Agent:"; content:!"Accept";
metadata:impact_flag red,ruleset community;
service:http;
reference:url,www.virustotal.com/en/file/a184775757cf30f9593977ee0344cd6c54deb4b14a012a7af8e3a2cdbb85a749/analysis/;
classtype:trojan-activity;
sid:34868;
rev:2;
)

62

Zeek
Zeek — old (c. 1996) open source IDS or ‘Network Security
Monitor’

different focus than Snort (though supports similar things)

main idea (in default config): produces log files for later analysis

examples:
list of all seen servers and software versions
list of all SSH connections
copies of downloaded files
list of all HTTP URIs

63

backup slides

64

	firewall use cases
	firewall: placement, state
	zones of trust idea

	stateless firewall idea
	nftables rules
	things we can't do

	oops: layers
	aside: WAF
	WAF ambiguity

	stateful firewalls
	TCP keep-alive
	state size
	aside: SYN floods
	aside: DoS pattern

	NAT
	IDS
	backup slides

