
1



changelog
6 Sep 2024: add slides giving example of ambiguous seperators
when escaping is not sufficient

2



aligning bits
let’s transmit these (binary) messages:

001
0110
0010

00101100010

problem: can’t tell where messages/start end

3



aligning bits
let’s transmit these (binary) messages:

001
0110
0010

00101100010
problem: can’t tell where messages/start end

3



size ‘header’
let’s transmit these (binary) messages:

001
0110
0010

put 3-bit message size at beginning of messages
01100110001101000010
read header, then determine number of bits to read before next
header

assumption: no gaps between messages?
need to transmit something in between messages

4



size ‘header’
let’s transmit these (binary) messages:

001
0110
0010

put 3-bit message size at beginning of messages
01100110001101000010
read header, then determine number of bits to read before next
header

assumption: no gaps between messages?
need to transmit something in between messages

4



start/end symbol
alternate idea: use bit sequence to mark beginning/end

example choice: send 010 between each frame

send extra 010s when no frames to send
01000101001100100010010010010

problem: messages can contain 010 or end with 01

one solution: replace 01 in messages with 011
(need to undo replacement when receiving)

01000110100111001000110010

5



start/end symbol
alternate idea: use bit sequence to mark beginning/end

example choice: send 010 between each frame

send extra 010s when no frames to send
01000101001100100010010010010
problem: messages can contain 010 or end with 01

one solution: replace 01 in messages with 011
(need to undo replacement when receiving)

01000110100111001000110010

5



start/end symbol
alternate idea: use bit sequence to mark beginning/end

example choice: send 010 between each frame

send extra 010s when no frames to send
01000101001100100010010010010
problem: messages can contain 010 or end with 01

one solution: replace 01 in messages with 011
(need to undo replacement when receiving)

01000110100111001000110010

5



escaping?
can think of replacement similar to escaping strings in C

start/end marker is "
" → \"
\ → \\

represent foo \R"3"13\ using "foo \\R\"3\"13\\"

but needed tweaks to idea to work with bits instead of bytes

some physical layers allow transmitting bytes at a time
example: upcoming assignment
framing protocols for those (example: PPP) use \-like idea

6



escaping?
can think of replacement similar to escaping strings in C

start/end marker is "
" → \"
\ → \\

represent foo \R"3"13\ using "foo \\R\"3\"13\\"

but needed tweaks to idea to work with bits instead of bytes

some physical layers allow transmitting bytes at a time
example: upcoming assignment
framing protocols for those (example: PPP) use \-like idea

6



help from physical layer?
suppose instead of transmitting 0 or 1

…physical layer transmits 0 or 1 or 2 or 3 or 4

probably going to ‘waste’ one of these values
example: transmit every two bits as 0 or 1 or 2 or 3

idea: take advantage of leftover ‘symbol’ 4

use it to send start/end
similar idea used in many versions of Ethernet

7



help from physical layer?
suppose instead of transmitting 0 or 1

…physical layer transmits 0 or 1 or 2 or 3 or 4

probably going to ‘waste’ one of these values
example: transmit every two bits as 0 or 1 or 2 or 3

idea: take advantage of leftover ‘symbol’ 4

use it to send start/end
similar idea used in many versions of Ethernet

7



bad choice of start/end (1)
this slide added 6 Sep 2024

let’s say we choose delimiter 0000

what do we need to escape?
A. any 0000
A. any 000
B. any 00
C. any 0

8



bad choice of start/end (1)
this slide added 6 Sep 2024

sending 10 and 01
100000010000

sending 1 and 001
100000010000

oops!

textbook example: start/end = 01111110

9



types of transmission errors
desynchronization:

missing bits/bytes
adding bits/bytes

flipping bits
from ‘noise’/‘interference’

10



types of transmission errors
desynchronization:

missing bits/bytes
adding bits/bytes

flipping bits
from ‘noise’/‘interference’

11



desynchronization and framing (1)
with purely size-based framing

almost all future sizes messed up
01101010001101000111… …

01101010001101000111… …

12



desynchronization and framing (2)
with start/end marker idea

can have start/end-marker corrupted or added by corruption
may mess up multiple frames, but will eventually be resync’d

01000110100111001000110010

01000110100111001000110010

13



fixed-sized frames
suppose all packets are same size

“clock-based framing”

example: SONET looks for start symbol every 810 bytes
if starts being missing, try to resync

14



types of transmission errors
desynchronization:

missing bits/bytes
adding bits/bytes

flipping bits
from ‘noise’/‘interference’

15



flipping bits?
flipping bits basically has same problems as synchornization

can corrupt sizes and start/end markers
can add extra start/end markers

16



checksums
unsolved issue: will generate frames with bad data

could rely on other layers to deal with that, but…
a lot better to detect this early

17



checksum idea
instead of sending “message”

say Hash(“message”) = 0xABCDEF12

then send “0xABCDEF12,message”

when receiving, recompute hash

discard message if checksum doesn’t match

18



checksum functions
hashes used to check messages called checksums

used at data link layer and upper layers
lots of places networks want to check messages aren’t corrupted

provides high probability we discard corrupted messages
larger checksum → higher probability

19



example common checksums
IPv4, TCP —

based on one’s complement sum of data+metadata treated as 16-bit
numbers
one’s complement addition = add normally with wraparound + add
carry bit at end
efficient to implement on processor with addition
easy to compute incrementally

Ethernet
32-bit “cyclic redundancy code”
easy to compute fast in hardware
always detects up to 3 bits flipped (for sizes used in Ethernet)

20



beyond checksums
checksums detect errors pretty reliably

can send some extra bits can correct some errors pretty reliably

“error correcting code”
efficient ways to do this? covered in ECE/CS 4434

21



framing homework
implement send+receive messages (strings of bytes) using bits

send_message(MESSAGE)

handle_bit_from_network(BIT)
calls got_message_function(MESSAGE)

but:
need to indicate message boundaries somehow
need to handle bit flips and missing bits without losing everything

22



backup slides

23


	framing
	aligning the bits
	size strategy
	start/end symbol strategy
	aside: start/end ambiguity
	types of transmission errors

	checksums
	framing assignment
	backup slides

