
1

changelog
1 Nov: \0a \0d → \x0a \x0d

2

2012 opinion piece

3

URL / URIs
Uniform Resource Locators (URL)

tells how to find “resource” on network
uniform — one syntax for multiple protocols (types of servers, etc.)

Unifrom Resources Identifiers
superset of URLs

4

URI examples
https://kytos02.cs.virginia.edu:443/cs3130-spring2023/

quizzes/quiz.php?qid=02#q2

https://kytos02.cs.virginia.edu/cs3130-spring2023/
quizzes/quiz.php?qid=02

https://www.cs.virginia.edu/

sftp://cr4bd@portal.cs.virginia.edu/u/cr4bd/file.txt

tel:+1-434-982-2200

//www.cs.virginia.edu/~cr4bd/3130/S2023/
/~cr4bd/3130/S2023

scheme and/or host implied from context 5

URI generally
scheme://authority/path?query#fragment
scheme: — what protocol
//authority/

authoirty = user@host:port OR host:port OR user@host OR host

path
which resource

?query — usually key/value pairs
#fragment — place in resource

most components (sometimes) optional
6

HTTP typical flow
client server

GET / cr4bd/4457/F2024/ HTTP/1.1
Host: www.cs.virginia.edu
…

HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 5432
…

<!DOCTYPE html…

GET / cr4bd/4457/F2024/main.css HTTP/1.1
Host: www.cs.virginia.edu
…

7

HTTP message fields
requests:

method (GET, HEAD, POST, …) — what to do
URI (‘path’ and ‘query’ part of URL, usually)

responses:
status code and message (200 OK, 404 Not Found, etc.)

both:
headers (key-value pairs)
(sometimes) message body (arbitrary data)

8

HTTP/1.1 message format (RFC 2616)
ASCII text over TCP or TLS

all newlines use ‘CRLF’ (\x0d\x0a = \r\n)

method URI HTTP/1.1
header-name: header-value
header-name: header-value

(depending on method) message-body

request
HTTP/1.1 status-code status message
header-name: header-value
header-name: header-value

(depending on method+status code) message-body
(depending on headers) header-name: header-value

response

9

HTTP/2, HTTP/3
‘new’ versions, not ubiquitously deployed

HTTP/2: over TCP or over TLS over TCP
HTTP/3: over QUIC over UDP

multiple ‘streams’ within one connection

send series of ‘frames’ with stream ID + type + data
frame types include:

HEADERS — encode message headers (key/value pairs)
DATA — include message bodies

method, status-code, URI encoded as special headers
10

HTTP/1.1 example (GET)

11

HTTP/2.0 example (GET request)

12

HTTP/1.1 example (POST)

13

selected HTTP methods
method purpose request body? respones body? ‘safe’
GET retrieve resource never usually yes
HEAD retrieve resource headers never never yes
POST provide data always usually no
PUT set contents of resource always maybe no
DELETE delete resource never maybe no
OPTIONS get info about server maybe maybe no

14

safety
GET, HEAD = ‘safe’ methods
okay for clients to repeat, send unprompted

‘prefetch’ resources
redo when user presses back button unprompted

other methods: that’s not okay!

15

HTTP POST
POST /cs4457-fall2024-quiz-listener.php HTTP/1.1
Host: kytos02-noauth.cs.virginia.edu
Content-Type: application/json
Content-Length: 184
...

{"user":"cr4bd","realuser":"cr4bd","session_id":"abcdefabcdef0123456789aa","quiz":"week09","slug":"71d45222","answer":["d2f4e81b"],"sequence":0}

16

HTML forms (GET)
<form action="https://example.com/foo" method="get">
Name: <input type="text" name="name">

Query: <input type="text" name="query">

<input type="submit" value="Submit">
</form>

GET /foo?name=Some+Name&query=the+thing+to+find%21 HTTP/1.1
Host: example.com
...

17

HTML forms (POST)
<form action="https://example.com/foo" method="post">
Name: <input type="text" name="name">

Comment:
<textarea name="comment">
</textarea>

<input type="submit" value="Submit">
</form>

POST /foo HTTP/1.1
Host: example.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 60
...

name=Some+Name&comment=A+comment%0D%0Ain%0D%0Aseveral+lines.

18

HTML forms (multipart/form-data)
<form action="https://example.com/foo" method="post"

enctype="multipart/form-data">
...

POST /foo HTTP/1.1
Host: example.com
Content-Type: multipart/form-data; boundary=---------------------------81545828010202052201987031310
Content-Length: 321
...

-----------------------------30871118663472832060210928793
Content-Disposition: form-data; name="name"

Some Name
-----------------------------30871118663472832060210928793
Content-Disposition: form-data; name="comment"

A comment
in
several lines.
-----------------------------30871118663472832060210928793-- 19

GET v POST
GET POST
works with back button, caches not resent automatically
limited by URL size huge possible size
saving URL accesses page again form info never ‘leaked’ in browser

history, referer, etc.
only simple text fields supports file uploads (via

multipart/form-data)

20

exercise: which method
GET or POST or something else for

image that shows a clock with current time

rating a product and displaying the resulting summary of all ratings

search query for a Twitter-like website

getting the 2nd page of search results

21

multiple names, one IP
$ dig +short es.wikipedia.org aaaa
dyna.wikimedia.org.
2620:0:860:ed1a::1
$ dig +short en.wikipedia.org aaaa
dyna.wikimedia.org.
2620:0:860:ed1a::1
es.wikipedia.org = Spanish Wikipedia

en.wikipedia.org = English Wikipedia

how does this work?

22

Host/:authority header
when getting http://somehostname/path, send header

Host: somehostname (HTTP/1.1)

:authority: somehostname (HTTP/2, HTTP/3)

allows for ‘virtual hosts’

23

selected HTTP status codes
1xx — informational
2xx — successful

200 OK, 204 No Content

3xx — redirection
301 Moved Permanently, 302 Found, 303 See Other
‘Location’ header gives next URL to use
304 Not Modified (conditional GET — later)

4xx — client error
403 Forbidden, 404 Not Found

5xx — server error
24

HTTP redirects
HTTP/1.1 301 Moved Permanently
Location: https://foo.com/quux/bar
Content-Type: text/plain

(This text may be shown by clients that don't process the redirect
automatically, or if there's a problem following it. It is up
to the serer what to put here, but typical might be something like:)

Redirecting to https://foo.com/quux/bar

25

HTTP redirect codes
a bunch of different status codes:

301 Moved Permanently
302 Found
303 See Other
307 Temporary Redirect
308 Permanent Redirect

mostly behave all the same, but…
POST request receiving 301/302 redirects into GET request

26

HTTP error pages
HTTP/1.1 403 Forbidden
Content-Type: text/html
Content-Length: ..

[This can be a full web page that is displayed....]
error status codes can still have full responses

web browsers will usualy render response normally

27

delay for errors
PUT /some/file/location HTTP/1.1
Content-Length: 5368709120

(lots of data)

HTTP/1.1 403 Forbidden
...
...

28

100 continue (error case)
PUT /some/file/location HTTP/1.1
Content-Length: 5368709120
Expect: 100-continue

HTTP/1.1 403 Forbidden
...
...

29

100 continue (no error case)
PUT /some/file/location HTTP/1.1
Content-Length: 5368709120
Expect: 100-continue

HTTP/1.1 100 Continue

(now send lots of data)

30

if server does not support (good case)
PUT /some/file/location HTTP/1.1
Content-Length: 5368709120
Expect: 100-continue

HTTP/1.1 417 Expectation Failed
...

PUT /some/file/location HTTP/1.1
Content-Length: 5368709120

(lots of data)

31

if server does not support (bad case)
PUT /some/file/location HTTP/1.1
Content-Length: 5368709120
Expect: 100-continue

client
waits a while, but gets not response

(lots data)

32

one connection, multiple requests
HTTP/0.9, HTTP/1.0 — one request+response per connection

big efficiency problem

solution 1: persistent connections

solution 2: pipelining

solution 3 (HTTP/2+): multiple ‘streams’ in one connection

33

end-of-request/response
body of request/response can be variable length

so when does request/response end if it has a body?
HTTP/1.0 original solution (RFC 1945)

“the length of that body may be determined in two ways. If a
Content-Length field is present, the value in bytes represents the length
of the Entity-Body. Otherwise, the body length is determined by the
closing of the connection by the server.”

advantage of latter idea: don’t need to generate whole document
before sending headers
disadvantage: no persistent connections!

34

chunked transfer coding
HTTP/1.1 200 OK
Content-Type: text/plain
Transfer-Coding: chunked
...

1B
This is 0x1B bytes of text.
21
And 0x21 bytes
with more lines.
0

35

pipelining
client server

GET /image1.png HTTP/1.1 …
GET /image2.png HTTP/1.1 …
GET /script.js HTTP/1.1 …

HTTP/1.1 200 OK …

HTTP/1.1 200 OK …

HTTP/1.1 200 OK …

36

HTTP/1.1 ‘pipelining’
send series of requests before receiving any response

potentailly server can potentially process requests in parallel

need to handle resending requests if connection dropped early

37

HTTP/2.0 multiple streams

38

trailers
GET /foo?bar HTTP/1.1
TE: trailers
...

HTTP/1.1 200 OK
Transfer-Coding: chunked
Trailer: Expires
Date: Wed, 30 Oct 2024 23:57:04 GMT

12343
...
...
42342
...
...
0
Expires: Mon, 4 Nov 2024 23:57:04 GMT

39

content negotiation
Firefox on my desktop → wikipedia:

accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/png,image/svg+xml,*/*;q=0.8

list of formats and preference indicator for each (q)
described using “media types” (RFC 6838)

accept-language: en-US,en;q=0.5

accept-encoding: gzip, deflate, br, zstd
allowed compression formats

40

advice against content negotation
current HTTP standard (RFC 9110) says this approach “has
several disadvantages”:

advises considering approaches where client chooses version

‘impossible for the server to accurately determine what might be
“best” ’

‘having the [client] describe its capabilities in every request can be
very inefficient …and a potential risk to the user’s privacy’

‘complicates the implementation’

‘limits …shared caching’
41

HTTP non-state
HTTP is a ‘stateless’

each request stands on its own
processed independently of all other requests
even if multiple in a connection

this is disappointing for websites:
supporting ‘login’ functionality
supporting user preferences

42

HTTP cookies (RFC 6265)
example.com → client
HTTP/1.1 200 OK
Set-Cookie: SessionID=31d4d96e407aad42; Path=/; Domain=example.com

client → example.com on later requests:
GET /some-path HTTP/1.1
Host: example.com
Cookie: SessionID=31d4d96e407aad42

43

session ID concept
assign random ID number to each ‘session’ if no cookie set

in some database:

if they add to shopping cart, associate ID number with shopping
cart items

if user logs in, associate ID number with user

…

44

selected cookie attributes
domain — limit to subset of domains

domain=example.com matches example.com, foo.example.com, but not
other.com

secure — only send back on encrypted connections

httponly — do not expose to in-webpage scripts

expires, max-age — limit how long cookie kept around
default = until browser closed

45

cookies and tracking
cookies often used for tracking users across websites

and not by setting cookies valid for tons of domains

how: websites load data from other websites
separate HTTP requests with separate cookies

46

cookie tracking example
foo.com, bar.com, quux.com all include an image

https://tracker.com/track-XXX.png where XXX is foo, bar or quux

tracker.com can read cookie every time image is accessed
and set a cookie to unique number if not set

now tracker.com knows:
when/if every visitor of foo.com visited bar.com and/or quux.com

47

more detailed tracking?
“just” learned about how many visitors visited combinations of
websites

with some cooperation can get more info:
which subpages on those websites
username or email entered into those websites
…

one way to pass info: add extra data to image filename

48

third party cookie rules
some browsers might restrict ‘third-party cookies’

cookies sent to Y because of visit to X

various options, with variable deployment:
only make third-party cookies work if marked SameSite=None
separate cookie storage for each ‘root’ website
ignore cookies from unvisited sites
disable only cookies that heuristically look like tracking

49

cookie exercise

50

exercise
time IP path cookie header set-cookie header
1pm 1.2.3.4 /foo SID=1234 —
1pm 1.2.3.4 /bar — SID=9999
2pm 1.2.3.4 /foo — SID=2345
3pm 2.3.4.5 /quux SID=2345 —
4pm 1.2.3.4 / SID=1234 —
4pm 3.4.5.6 /foo SID=2345 —
5pm 1.2.3.4 /quux SID=1234 —
6pm 1.2.3.4 /quux — SID=3456

exercise: how many unique users?

exercise: how many IPs per user?

51

HTTP caching (RFC 9111)
making webpages fast — let clients cache values for later

some problems:

how to tell if something’s out of date

how to tell if changes to cookies/accept-language/etc. change item

52

is it out of date? options
expire date; max-age in seconds

check with server if it has changed

53

is it out of date? options
expire date; max-age in seconds

check with server if it has changed

54

expires
HTTP/1.1 200 OK
Date: Mon, 28 Oct 2024 00:29:02 GMT
Expires: Mon, 28 Oct 2024 04:29:02 GMT
...

HTTP/1.1 200 OK
Cache-Control: max-age=14400
...

55

aside: why date + expire
server time and client time might differ

makes Expires idea not great…

56

is it out of date? options
expire date; max-age in seconds

check with server if it has changed

57

conditional GETs
GET /3/library/struct.html HTTP/1.1
...

HTTP/1.1 200 OK
Date: Sun, 27 Oct 2024 20:01:15 GMT
Last-Modified: Sun, 27 Oct 2024 18:50:46 GMT
ETag: 671e8b86-13e32

GET /3/library/struct.html HTTP/1.1
If-Modified-Since: Sun, 27 Oct 2024 18:50:46 GMT
If-None-Match: 671e8b86-13e32
...
HTTP/1.1 304 Not Modified
...

58

variable responses
HTTP/1.1 200 OK
...
Vary: Accept, Accept-Lnaguage, Cookie
...
page contents may vary even though URL doesn’t change

Vary header says what things need to be the same

typically used to discard cached responses

59

other cache-control settings
seen max-age=X, also…

no-store
do not store a copy of this response

no-cache
do not use without checking for new version first (conditional GET or
similar)

private, public
indicate if acceptable for cache shared between users

60

caches as cookies
let’s say we load an image

with unique ETag each time

browser stores ETag, makes If-None-Match request

…kinda acts like cookie
but not susceptible to third-party cokie rules

part of set of ideas called ‘supercookies’

61

Firefox supercookie mitigations
https://blog.mozilla.org/security/2021/01/26/
supercookie-protections/

for each top-level website, separate:

caches (for everything — images, resolved domain names, fonts,
etc.)

connections (even for same hostname)

62

https://blog.mozilla.org/security/2021/01/26/supercookie-protections/
https://blog.mozilla.org/security/2021/01/26/supercookie-protections/

HTTP proxies (1)

63

user-agent
(example:

web browser)
proxy
server

web
server

client server client server

request specifies
which web server

to contact

looks like normal
user-agent request

64

HTTP proxies (2)
browser→HTTP(S) proxy sever:
GET http://example.com/somesite HTTP/1.1
Host: example.com
...

instead of path, can put full URL

doesn’t have to be http URL

65

proxy functionality
caching for multiple users

reason for Cache-Control: private

filtering content
antimalware, adblocking, etc.

logging content (example: debugging webapp)

…

66

user-agent
(example:

web browser)
forward proxy

server
web

server
client server client server

request specifies
which web server

to contact

looks like normal
user-agent request

user-agent
(example:

web browser)
reverse proxy

server
backend
server

client server client server

looks like normal
user-agent request

selected from
user-agent request path

67

reverse proxy
why not just go directly to actual web server?

make multiple web severs appear as one? example:
https://example.com/foo/XXX goes to
https://foo-backend.example.com/XXX
https://example.com/bar/XXX goes to
https://bar-backend.example.com/XXX
https://example.com/ goes to https://frontpage.example.com/

do caching, filtering, or similar on behalf of webservers

split requests between multiple identical servers for performance
68

non-HTTP in HTTP proxy
client → server:
CONNECT ns.foo.com:53 HTTP/1.1
Host: ns.foo.com:53

server
→ client:
HTTP/1.1 200 OK
Some-header: some-value

client
→ server: (dns request)
server → client: (dns response from ns.foo.com)
client → server: (dns request)
server → client: (dns response from ns.foo.com)
… 69

CONNECT
allows “tunnelling” arbitrary TCP connections through HTTP

often not implemented by HTTP proxies and/or very restricted

70

Wikimedia architecture

71

single-sign on
client → foo.com: GET /foo
foo.com → client: redirect to
https://sso.com/login?from=foo.com&…
client → sso.com: GET /login?from=foo.com&…

sent with cookies set by sso.com

sso.com → client: web page with form action=http://foo.com/...
and method=post

possibly with script to submit automatically
data in form tells foo.com about username, etc.
cryptographically signed or similar

client → foo.com: POST /... with data from sso.com
72

REST
REpresentational State Transfer

idea for application interface on top of HTTP

entities in system represented with URLs

GET requests to get state of that entity

PUT and/or POST requests to update entity state

DELETE requests to remove entity

73

example: Canvas API for announcements (1)
client → canvas HTTP server:
GET /api/v1/courses/123456/discussion_topics?only_announcements=true
Authorization: Bearer [secret code]

HTTP/1.1 200 OK
...

[{
"id":1,
"title":"Welcome to the Course!",
"message":"...",
...

},
{

"id":2,
...

74

example: Canvas API for announcements (2)
client → canvas HTTP server:
POST /api/v1/courses/123456/discussion_topics
Authorization: Bearer [secret code]
Content-Type: application/json
...

{
"is_announcement":true,
"title":"Class Cancelled",
"message":"....."

}

HTTP/1.1 200 OK
...

{
"id": 41,
"title":"Class Cancelled",
....

} 75

example: Canvas API for announcements (3)
client → canvas HTTP server:
PUT /api/v1/courses/123456/discussion_topics/41
Authorization: Bearer [secret code]
Content-Type: application/json
...

{
"is_announcement":true,
"title":"Class Cancelled [updated!]",
"message":"UPDATE: prevoiusly,.."
...

}

HTTP/1.1 200 OK
...

{
"id": 41,
"title":"Class Cancelled [updated!]",
....

}
76

backup slides

77

	``narrow waist''
	URIs and URLs
	HTTP messages
	HTTP methods, briefly
	HTTP POST
	exercise: HTTP which
	virtual hosting, Host header
	error codes
	redirects
	error pages
	100 continue

	persistent, pipelining
	trailers

	content negotiation
	HTTP authentication
	cookies
	exercise
	tracking

	caching
	supercookies
	proxies and reverse proxies
	aside: wikimedia architecture

	SSO
	REST
	backup slides

