changelog

8 Oct 2024 (after lecture): destination unreachable: fix too-big font size for ping

8 Oct 2024 (after lecture): 'flooding': correct extra gateway for 2::3/4::1 router's table entry for 4::/ route

8 Oct 2024 (after lecture): 'flooding': correct first message sent to specify 2001:db8:4::/40

8 Oct 2024: spanning tree example: fix missing hilite of G-E edge

22 Oct 2024 (after lecture): Pakistan hijack: correct addresses Youtube advertized so they match Pakistan Telecom's

routing tables

IP addresses	gateway	iface
2001:0db8:40:f000::/44		int1
2001:0db8:40:e000::/44	2001:0db8:40:f000::2	int1
2001:0db8:40:d000::/44		int3
3fff:1000:19::/48		ext1
default	fe80::17	ext2

IP addresses	gateway	iface
192.0.2.0/25		int1
192.0.2.128/26	192.0.2.1	int1
192.0.2.192/26	192.0.2.2	int1
198.51.100.0/25	192.0.2.1	int1
198.51.100.128/25		int2
	•••	•••
default	203.0.113.1	ext

filling routing tables

easy part: what networks are you directly connected to that range of IP addresses, that interface

harder part: other routers on connected router

need to learn:

addresses of other router which networks can be reached through them directly or indirectly

need to choose between multiple ways of reaching networks

problems when forwarding

no entry in routing table

no entry in neighbor table (after attempting ARP, or neighbor discovery)

packet too big for next network

there's an infinite loop in the route

problems when forwarding

no entry in routing table

no entry in neighbor table

(after attempting ARP, or neighbor discovery)

packet too big for next network

there's an infinite loop in the route

destination host unreachable

```
$ ping 128.143.67.254
PING 128.143.67.254 (128.143.67.254) 56(84) bytes of data.
From 128.143.63.1 icmp_seq=1 Destination Host Unreachable
From 128.143.63.1 icmp_seq=6 Destination Host Unreachable
^C
--- 128.143.67.254 ping statistics ---
10 packets transmitted, 0 received, +2 errors, 100% packet lo
pipe 4
```

. . . .

ICMPv6 destination unreachable messages

IPv6 header with ICMP as next protocol

- 1 byte type = 1 (destination unreachable)
- 1 byte code =

examples: address unreachable, administritatively prohibited

most of contents of message causing problem only most to avoid exceeding max packet size should let OS figure out which socket to send error to

generating destination unreachable

by routers: reached correct network, machine not there

by routers: no route to network at all

by routers: administrator rule prohibits forwarding

by destination host: no program listening to that 'port'

different code values for all cases

...

machine can also choose to send nothing back

ICMPv4 destination unrachable

basically same format as ICMPv6, but...

different type/code integer values

only IPv4 header + 64 bytes of original packet included

problems when forwarding

no entry in routing table

no entry in neighbor table (after attempting ARP, or neighbor discovery)

packet too big for next network

there's an infinite loop in the route

fragmentation

max frame data size on my local network = 1500 bytes, but...

\$ ping6 fe80::da07:b6ff:fed9:ae50 -s 4000
PING fe80::da07:b6ff:fed9:ae50 (fe80::da07:b6ff:fed9:ae50) 40
4008 bytes from fe80::da07:b6ff:fed9:ae50%eno1: icmp_seq=1 tt
4008 bytes from fe80::da07:b6ff:fed9:ae50%eno1: icmp_seq=2 tt
4008 bytes from fe80::da07:b6ff:fed9:ae50%eno1: icmp_seq=3 tt
...
\$ ping -s 4000 192.168.1.1
PING 192.168.1.1 (192.168.1.1) 4000(4028) bytes of data.
4008 bytes from 192.168.1.1: icmp seq=1 ttl=64 time=0.891 ms

4008 bytes from 192.168.1.1: icmp_seq=1 ttl=64 time=0.891 ms 4008 bytes from 192.168.1.1: icmp_seq=2 ttl=64 time=0.806 ms 4008 bytes from 192.168.1.1: icmp_seq=3 ttl=64 time=0.748 ms

fragmentation

original sender or router splits packet into multiple

each part called a *fragment*

stored temporarily and "reassembled" at receiver

Linux defaults:

max 64 packet gap between fragments per source IP 30 second time limit before discaded 3-4MB buffer of packets

IPv6 fragments

1 0.000000000 fe80::ca7f:5 fe	v
3 0.000016080 fe80::ca7f:5 fe80::da07:b ICMPv6 1174 Echo (ping) request id=0xdb 4 0.001109695 fe80::da07:b fe80::ca7f:5 IPv6 1510 IPv6 fragment (off=0 more-y 5 0.001145371 fe80::da07:b fe80::ca7f:5 IPv6 1510 IPv6 fragment (off=1448 mor 6 0.001145431 fe80::ca7f:5 fe80::ca7f:5 ICMPv6 1174 Echo (ping) reply id=0xdba3 7 1.001285765 fe80::ca7f:5 fe80::ca07:b IPv6 1510 IPv6 fragment (off=0 more-y 8 1.001300242 fe80::ca7f:5 fe80::da07:b IPv6 1510 IPv6 fragment (off=1448 mor 9 1.001300205 fe80::ca7f:5 fe80::da07:b IPv6 1510 IPv6 fragment (off=1448 mor	•
4 0.001109605 fe80::da07:b fe80::ca7f:5 IPv6 1510 IPv6 fragment (off=0 more=y 7 5 0.001145371 fe80::da07:b fe80::ca7f:5 IPv6 1510 IPv6 fragment (off=0 more=y 6 0.001145371 fe80::da07.b fe80::ca7f:5 IPv6 1510 IPv6 fragment (off=1448 mor 7 1.001285765 fe80::ca7f:5 fe80::da07:b IPv6 1510 IPv6 fragment (off==0 more=y 8 1.001300242 fe80::ca7f:5 fe80::da07:b IPv6 1510 IPv6 fragment (off==1448 mor 9 1.001300205 fe80::ca7f:5 fe80::da07:b IPv6 1510 IPv6 fragment (off==1448 mor 9 1.001300205 fe80::ca7f:5 fe80::da07:b IPv6 1174 Echo (ping) request id=0xdt	v
5 0.001145371 fe80::da07:b fe80::ca7f:5 IPv6 1510 IPv6 fragment (off=1448 mor 6 0.001145431 fe80::da07:b fe80::ca7f:5 ICMPv6 1174 Echo (ping) reply id=0xdba3 7 1.001285765 fe80::ca7f:5 fe80::da07:b IPv6 1510 IPv6 fragment (off=0 more=y 8 1.001300242 fe80::ca7f:5 fe80::da07:b IPv6 1510 IPv6 fragment (off=1448 mor 9 1.001302005 fe80::ca7f:5 fe80::da07:b IPv6 1510 IPv6 fragment (off=1448 mor 9 1.001302005 fe80::ca7f:5 fe80::da07:b IPv6 1510 IPv6 fragment (off=1448 mor	v
6 0.001145431 fe80::da07:b fe80::ca7f:5 ICMPv6 1174 Echo (ping) reply id=0xdba3 7 1.001285765 fe80::ca7f:5 fe80::da07:b IPv6 1510 IPv6 fragment (off=0 more-y 8 1.001300242 fe80::ca7f:5 fe80::da07:b IPv6 1510 IPv6 fragment (off=1448 mor 9 1.001302005 fe80::ca7f:5 fe80::da07:b IPv6 1174 Echo (ping) reply id=0xdba3	•
7 1.001285765 fe80::ca7f:5 fe80::da07:b IPv6 1510 IPv6 fragment (off=0 more=y 8 1.001300242 fe80::ca7f:5 fe80::da07:b IPv6 1510 IPv6 fragment (off=1448 mor 9 1.001302005 fe80::ca7f:5 fe80::da07:b ICMPv6 1174 Echo (ping) request id=0xdb	¥
8 1.001300242 fe80::ca7f:5 fe80::da07:b IPv6 1510 IPv6 fragment (off=1448 mor 9 1.001302005 fe80::ca7f:5 fe80::da07:b ICMPv6 1174 Echo (ping) request id=0xdb	•
9 1.001302005 fe80::ca7f:5 fe80::da07:b ICMPv6 1174 Echo (ping) request id=0xdb	v
	v
	-
10 1.001990696 fe80::da07:b fe80::ca7f:5 IPv6 1510 IPv6 fragment (off=0 more=y	
11 1 002020700 fe80de07.h fe80ce7f.5 TDV6 1510 TDV6 freement (off-1448 mor	1.1
Frame 5: 1510 bytes on wire (12080 bits), 1510 bytes capt ▲ 00000 c8 7f 54 ab 8c 2c d8 07 b6 d9 ae 50 86 dd 50 00 ce 20 ce	
▶ Ethernet II, Src: TpLinkTechno_d9:ae:50 (d8:07:b6:d9:ae:5 0010 00 00 05 b0 2c 40 fe 80 00 00 00 00 00 00 da 07 ▼ Internet Protocol Version 6. Src: fe80::da07:b6ff:fed9:ae 0020 b6 ff fe d9 ae 50 fe 80 00 00 00 00 00 00 ca 7f	
 Internet Protocol Version 6, Src: fe80::da07:b6ff:fed9:ae 0020 b6 ff fe d9 ae 50 fe 80 00 00 00 00 00 00 ca 7f 0110 = Version: 6 0030 54 ff fe ab 8c 2c 3a 00 05 a9 fe 2c 17 4e a0 a1 	
bilo Version o construction - Version	
γ 0000 0000 0000 0000 0000 = Flow Label: 0x00000 005 2 d3 d4 d5 d6 d7 d6 da	
Payload Length: 1456	
Next Header: Fragment Header for IPv6 (44)	
Hop Limit: 64	
Source Address: fe80::da07:b6ff:fed9:ae50 0000 f2 f3 f4 f5 f6 f7 f8 f9 fa fb fc fd fe ff 00 01	
Destination Address: fe80::ca7f:54ff:feab:8c2c 00a0 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11	
[Source SLAAC MAC: TpLinkTechno d9:ae:50 (d8:07:b6:d9: 00b0 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21	
Destination SLAAC MAC: ASUSTekCOMPU ab:8c:2c (c8:7f:5 00c0 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31	
✓ Fragment Header for IPv6 00d0 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f 40 41	
Next header: ICMPv6 (58) 00e0 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f 50 51	
Reserved octet: 0x00 00f0 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f 60 61	
0000 0101 1010 1 = Offset: 181 (1448 bytes) 0100 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71	
00. = Reserved bits: 0 0110 72 73 74 75 76 77 78 79 7a 7b 7c 7d 7e 7f 80 81	
1 = More Fragments: Yes 0120 82 83 84 85 86 87 88 89 8a 8b 8c 8d 8e 8f 90 91	
Identification: 0xfe2c174e 0130 92 93 94 95 96 97 98 99 9a 9b 9c 9d 9e 9f a0 at	
[Reassembled IPv6 in frame: 6] 0140 a2 a3 a4 a5 a6 a7 a8 a9 aa ab ac ad ae af b0 b1	-

IPv4 fragments

No.		Time	Source	Destination	Protocol	Length	Seq#		F	Ack#		Info	b								
	1	0.000000000	192.168.1.232	192.168.1.1	IPv4	1514						Fra	agme	nted	IP	' pr	oto	col	(p	rc	
	2	0.000011181	192.168.1.232	192.168.1.1	IPv4	1514						Fra	agme	nted	ΙP	pr	oto	col	(p	rc	_
Г	3	0.000012915	192.168.1.232	192.168.1.1	ICMP	1082						Ech	10 (ping) r	equ	iest	i	d=0	xc	
	4	0.000776503	192.168.1.1	192.168.1.232	IPv4	1514								nted							
	5	0.000812871	192.168.1.1	192.168.1.232	IPv4	1514								nted				col	(p	rc	
		0.000812931	192.168.1.1	192.168.1.232	ICMP	1082								ping					.d=0:		
		1.023997142	192.168.1.232	192.168.1.1	IPv4	1514								nted							
		1.024012951	192.168.1.232	192.168.1.1	IPv4	1514								nted							
	-	1.024014785	192.168.1.232	192.168.1.1	ICMP	1082								ping							
		1.024692402	192.168.1.1	192.168.1.232	IPv4	1514								nted							
•	11	1 004730063	102 168 1 1	102 168 1 232	TDVA	151/						Ers	acimo	nted	тс	nr	oto		(n	ř	
Þ	Frame	5: 1514 bytes	on wire (12112	bits), 1514 bv1	es capti	ur 000	0 c8	7f	54	ab	8c 2	: d8	07	b6	d9	ae	50	08	00	45	00
<pre>Ethernet II, Src: TpLinkTechno_d9:ae:50 (d8:07:b6:d9:ae:50)</pre>										20 b			25	c3	c0	a8	01	01	c0	a8	
Internet Protocol Version 4, Src: 192.168.1.1, Dst: 192.168					0 01	e8	c0	c1	c2 c3	3 c4	c5	c6	c7	c8	c9	ca	cb	сс	cd		
0100 = Version: 4					003	o ce	cf	d0	d1	d2 d3	3 d4	d5	d6	d7	d8	d9	da	db	dc	dd	
		. 0101 = Heade	r Length: 20 by	tes (5)		004	0 de	df	e0	e1	e2 e3	3 e4	e5	e6	e7	e8	e9	ea	eb	ec	ed
Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not					ot 005	• ee	ef	f0	f1	f2 f	3 f4	f5	f6	f7	f8	f9	fa	fb	fc	fd	
	Tot	al Length: 150	Θ			006	0 fe	ff	00	01	02 03	3 04	05	06	07	08	09	0a	0b	0c	0d
	Ide	ntification: 0	xaa6b (43627)			007	0 0e	0f	10	11	12 13	3 14	15	16	17	18	19	1a	1b	1c	1d
	▶ 001	= Flags	: 0x1, More fra	gments		008	0 1e	1f	20	21	22 23	3 24	25	26	27	28	29	2a	2b	2c	2d
			01 = Fragment O	ffset: 1480		009					32 33								Зb		
		e to Live: 64				00a					42 43								4b		
Protocol: ICMP (1)					00b					52 53								5b			
Header Checksum: 0x25c3 [validation disabled]					00c					62 63								6b			
[Header checksum status: Unverified]					00d					72 73								7b			
Source Address: 192.168.1.1					00e					82 83								8b			
Destination Address: 192.168.1.232					00f					92 93								9b			
[Reassembled IPv4 in frame: 6]					010					a2 a								ab			
	<pre>Data (1480 bytes)</pre>					011					b2 b3								bb		
	[Community ID: 1:Ac2BWwekehTAnPxIuiD9sNt+ItE=]					012	⊙ be	bf	c0	c1	c2 c3	3 c4	c5	c6	c7	c8	c9	са	cb	сс	cd

varying frame size support

also called maximum transmission unit (MTU)

typical Ethernet, Wifi — 1500 bytes

Ethernet with "jumbo frames" - 65535 bytes

IPsec ESP VPN over 1500-byte MTU network – \sim 1400–1440 bytes

VPN — simulated network link over other network links

routers making fragments

option in IPv4 to handle frame size mismatch, but not great:

extra data sent over network (especially if just over max size) extra copies of main headers on each fragment

extra work at receiver to reconstruct fragments

lose whole packet if one fragment is lost but other routers likely to still waste time forwarding all other fragments

avoiding fragmentation

- IPv4 DF (don't fragment) flag in packets if set, routers not allowed to fragment packet
- IPv6 routers never fragment packets any fragments made at source machine only

avoiding fragmentation

IPv4 — DF (don't fragment) flag in packets if set, routers not allowed to fragment packet

IPv6 — routers never fragment packets any fragments made at source machine only

when set — ICMP error

ICMPv6: Packet Too Big

 $\mathsf{ICMPv4:}$ destination unreachable + reason code of fragmentation needed

(hopefully, bad networks might drop packet instead)

ICMPv6 error tells you maximum supported size (by first link that got packet rejected — might be more constraining link later)

exercise: fragmentation perf

assume:

Ethernet header/trailer: 26 bytes IPv4 header: 20 bytes + 0 bytes of options TCP header: 20 bytes + 16 bytes of options

suppose local network supports 65535-byte ethernet payloads and remote network suports 1500-byte ethernet payloads

and fragmentation happens

exericses:

lowest overhead TCP segment size? overhead for 64000-byte TCP segments? highest overhead TCP segment size?

problems when forwarding

no entry in routing table

no entry in neighbor table (after attempting ARP, or neighbor discovery)

packet too big for next network

there's an infinite loop in the route

time-to-live (v4) / hop limit (v6)

stored in IP header

when forwarding packet, router will:

subtract one from TTL / hop limit and recompute checksum accordingly

if TTL/hop limit = 0, drop packet

usually send back ICMP "Time Exceeded" error

traceroute

ICMP Time Exceeded messages come from router

 \rightarrow tells you which routers are involved

traceroute

ICMP Time Exceeded messages come from router

 \rightarrow tells you which routers are involved

traceroute command: deliberately packets with low $\mathsf{TTL}/\mathsf{hop}$ limit

print out what time exceeded messages we get back

typically sent with TTL/hop limit = 255 so it doesn't get lost ('backwards' path might be longer than forwards one)

traceroute example

traceroute to ripe.net (193.0.11.51), 30 hops max, 60 byte packets

- 1 128.143.63.1 (128.143.63.1) 6.367 ms 8.562 ms 8.577 ms
- 2 cr01-gil-ae15-00.net.virginia.edu (128.143.221.17) 0.370 ms 0.334 ms 0.349 ms 3 * * *
- 4 br01-udc-et-1-2-0.net.virginia.edu (128.143.236.5) 0.502 ms 0.468 ms 0.488 ms
- 5 i2-vt.net.virginia.edu (192.35.48.34) 3.374 ms 3.448 ms 3.413 ms
- 6 192.122.175.15 (192.122.175.15) 5.715 ms 5.628 ms 5.590 ms
- 7 fourhundredge-0-0-0-17.4079.corel.ashb.net.internet2.edu (163.253.1.8) 29.163 ms fourhundredge-0-0-0-16.4079.corel.ashb.net.internet2.edu (163.253.1.2) 28.880 ms fourhundredge-0-0-0-17.4079.corel.ashb.net.internet2.edu (163.253.1.8) 28.876 ms
- 8 fourhundredge-0-0-0-1.4079.corel.clev.net.internet2.edu (163.253.1.123) 29.568 ms 28.667 ms 28.666 ms
- 9 fourhundredge-0-0-0.4079.core2.newy32aoa.net.internet2.edu (163.253.1.239) 29.608 ms 29.476 ms 29.400 ms
- 10 fourhundredge-0-0-0-19.4079.corel.newy32aoa.net.internet2.edu (163.253.1.40) 28.958 ms 28.999 ms

fourhundredge-0-0-0-21.4079.core1.newy32aoa.net.internet2.edu (163.253.1.44) 29.280 ms

- 11 e1-3-2-502.asd001b-jnx-06.surf.net (145.145.166.18) 115.822 ms 115.823 ms 115.744 ms 12 lo0-2.asd001b-jnx-01-surfinternet.surf.net (145.145.128.4) 115.988 ms 115.932 ms 115.
- 13 gw.amsix.telrtr.ripe.net (80.249.208.71) 121.956 ms 121.968 ms 121.844 ms
- 14 * * *
- 15 * * *

traceroute sent

No.	Time	Source	Destination	TTL Pro	otocol Length	Info
	1 0.000000000	128.143.71.27	193.0.11.51	1 UD	P 74	54510 → 33434 Len=32
	2 0.000042000	128.143.71.27	193.0.11.51	1 UD	P 74	$56464 \rightarrow 33435$ Len=32
	3 0.000078065	128.143.71.27	193.0.11.51	1 UD	P 74	$36104 \rightarrow 33436$ Len=32
	4 0.000115226	128.143.71.27	193.0.11.51	2 UD	P 74	$34004 \rightarrow 33437$ Len=32
	5 0.000151405	128.143.71.27	193.0.11.51	2 UD	P 74	$57973 \rightarrow 33438$ Len=32
	6 0.000186502	128.143.71.27	193.0.11.51	2 UD	P 74	$50866 \rightarrow 33439$ Len=32
	7 0.000222625	128.143.71.27	193.0.11.51	3 UD	P 74	$48263 \rightarrow 33440$ Len=32
	8 0.000257734	128.143.71.27	193.0.11.51	3 UD	P 74	$60098 \rightarrow 33441$ Len=32
	9 0.000292642	128.143.71.27	193.0.11.51	3 UD	P 74	$58655 \rightarrow 33442$ Len=32
	10 0.000327537	128.143.71.27	193.0.11.51	4 UD	P 74	40741 \rightarrow 33443 Len=32
	11 0.000362342	128.143.71.27	193.0.11.51	4 UD	P 74	$48193 \rightarrow 33444$ Len=32
	12 0.000397460	128.143.71.27	193.0.11.51	4 UD	P 74	$60985 \rightarrow 33445$ Len=32
	13 0.000433117	128.143.71.27	193.0.11.51	5 UD	P 74	38126 \rightarrow 33446 Len=32
	14 0.000468223	128.143.71.27	193.0.11.51	5 UD	P 74	38788 \rightarrow 33447 Len=32

traceroute received

30 0.003908850	192.35.48.34	128.143.71.27	251,1 ICMP	110 Time-to-live exceeded
31 0.003908954	192.35.48.34	128.143.71.27	251,1 ICMP	110 Time-to-live exceeded
35 0.006246570	192.122.175.15	128.143.71.27	250,1 ICMP	110 Time-to-live exceeded
36 0.006246708	192.122.175.15	128.143.71.27	250,1 ICMP	110 Time-to-live exceeded
37 0.006246784	192.122.175.15	128.143.71.27	250,1 ICMP	110 Time-to-live exceeded
38 0.006346847	128.143.63.1	128.143.71.27	64,1 ICMP	70 Time-to-live exceeded
43 0.008594648	128.143.63.1	128.143.71.27	64,1 ICMP	70 Time-to-live exceeded
44 0.008647695	128.143.63.1	128.143.71.27	64,1 ICMP	70 Time-to-live exceeded
50 0.029854913	163.253.1.8	128.143.71.27	243,1 ICMP	186 Time-to-live exceeded
51 0.029855048	163.253.1.2	128.143.71.27	243,1 ICMP	186 Time-to-live exceeded
52 0.029904130	163.253.1.8	128.143.71.27	243,1 ICMP	186 Time-to-live exceeded
53 0.030634797	163.253.1.123	128.143.71.27	244,2 ICMP	186 Time-to-live exceeded
54 0.031475863	128.143.236.90	128.143.71.27	253,1 ICMP	70 Time-to-live exceeded
55 0.031476027	128.143.236.90	128.143.71.27	253,1 ICMP	70 Time-to-live exceeded

aside: multiple paths

only showing *forward* path routing in reverse direction is often different

sometimes multiple forward paths way we've shown routing table so far does not allow this

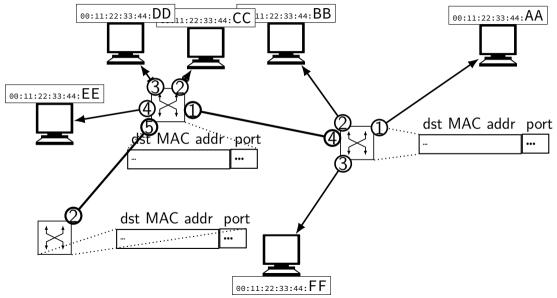
constructing routing/neighbor tables

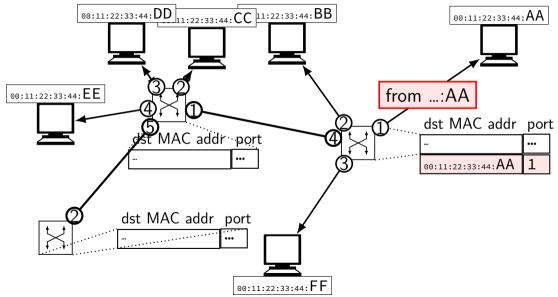
interesting task: how to fill tables

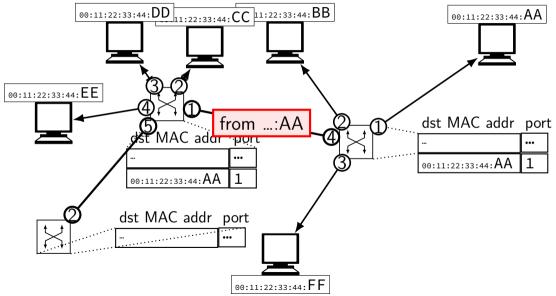
two general strategies:

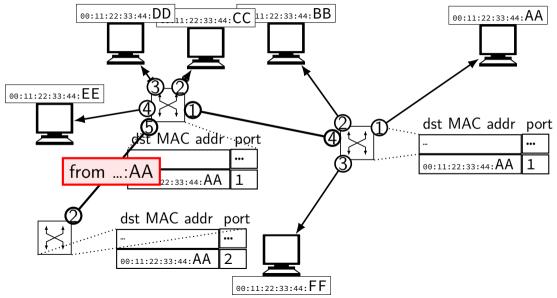
routers/switches learn from neighbors "distributed"

information gathered on single controller machine which configures routers/switches

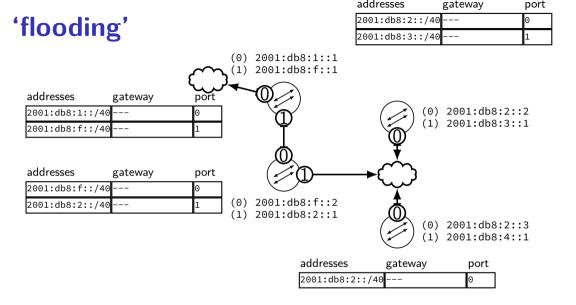

"centralized"

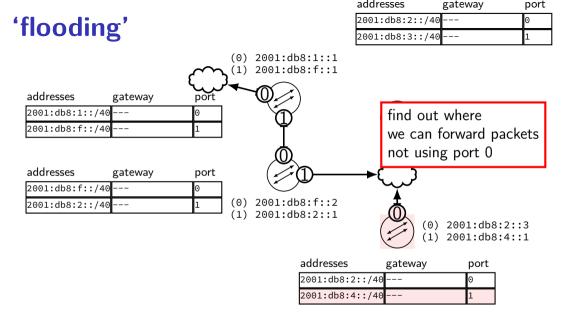

basic flooding

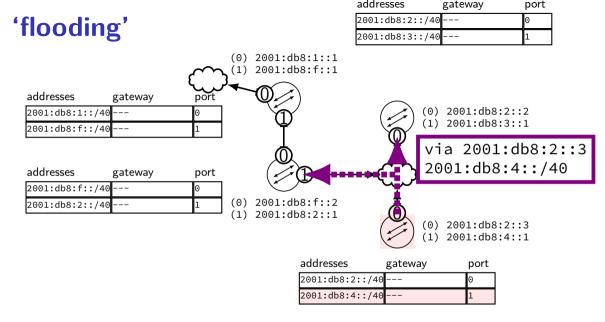

idea: broadcast message to whole network

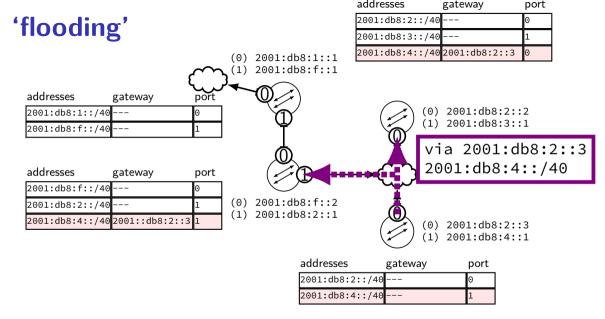

```
where message comes from = way to send back
```

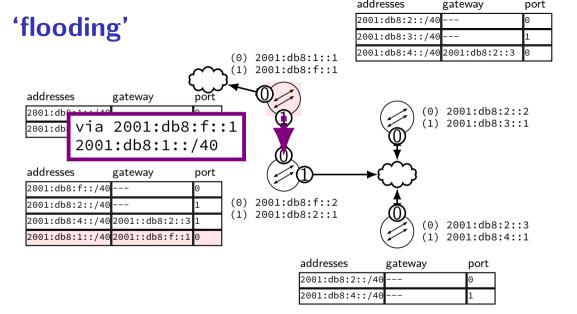
used this idea in MAC learning

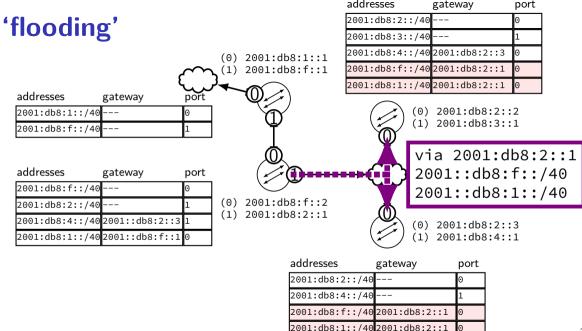









29



eventual convergence

'flooding' algorithm:

periodically send on each network:

list of routes you have that don't double-back to same network

when receiving routes sent on network: add routing table entry for each route

eventual convergence

'flooding' algorithm:

periodically send on each network: list of routes you have that don't double-back to same network

when receiving routes sent on network: add routing table entry for each route

not handled: multiple paths?

only one path?

only one path on network means:

if a link fails, bad news

network forms a tree

routing like this?

for IP routing, generally want to have multiple paths

...but this is basically how MAC learning works

but it requires a network that is a tree

what if we don't start with one?

spanning tree

given a general network, only activate subset of links

...such that network is tree that is only one path between each node

allows us to do flooding strategy

makes simple MAC learning/broadcast just work

centralized spanning tree?

one algorithm you might learn in DSA2:

mark one node called the root as 'in the tree'

repeatedly: add the 'first' link that goes to a node not in the tree mark newly connected node as 'in the tree'

result = spanning tree

centralized spanning tree?

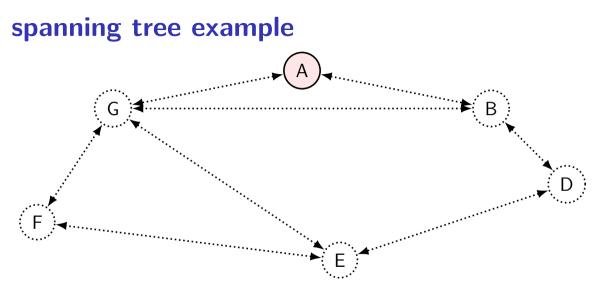
one algorithm you might learn in DSA2:

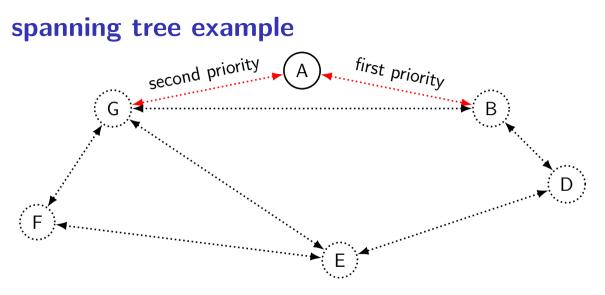
mark one node called the root as 'in the tree'

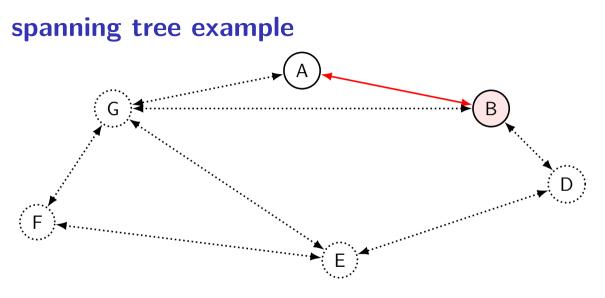
repeatedly: add the 'first' link that goes to a node not in the tree mark newly connected node as 'in the tree'

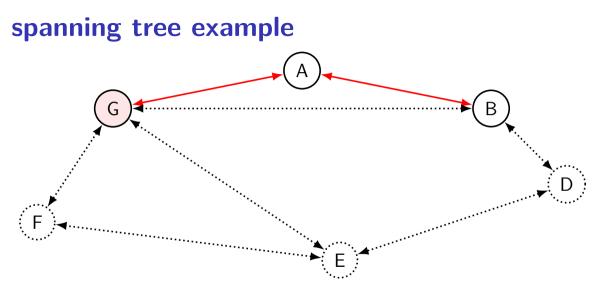
result = spanning tree

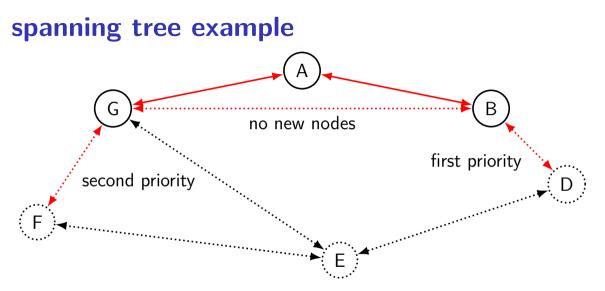
a careful ordering

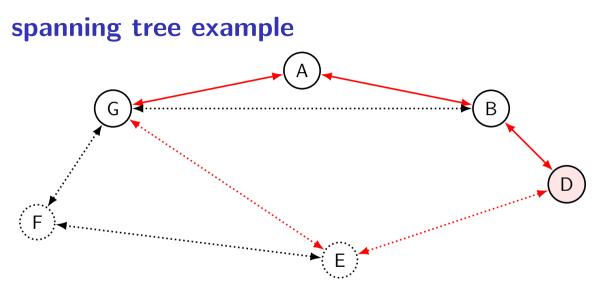

algorithm works with any idea of which link/node is first

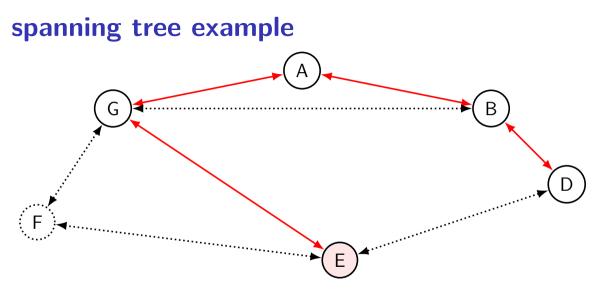

we'll choose a particular ordering (for reasons you'll see later)


root (first node) is one with earliest 'name'

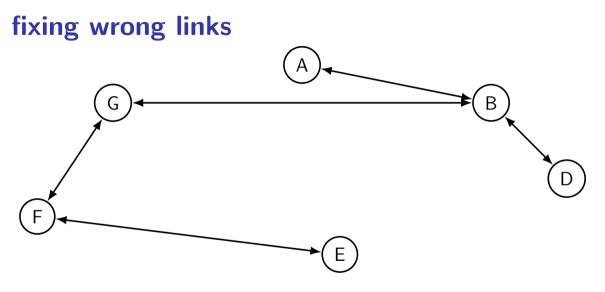

links closer to the root before further links


links from nodes with earlier names before later ones

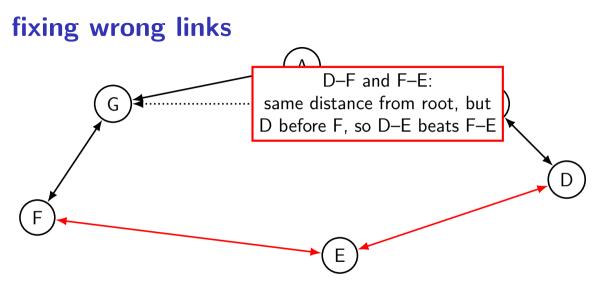


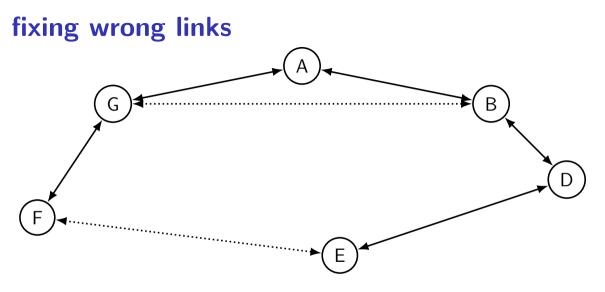


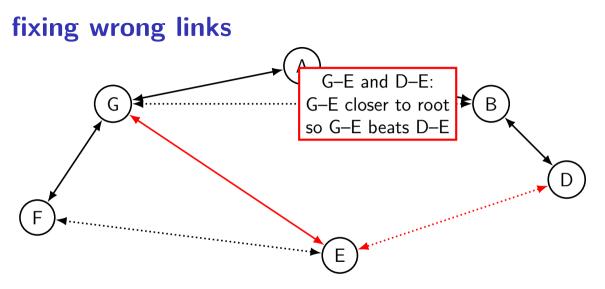


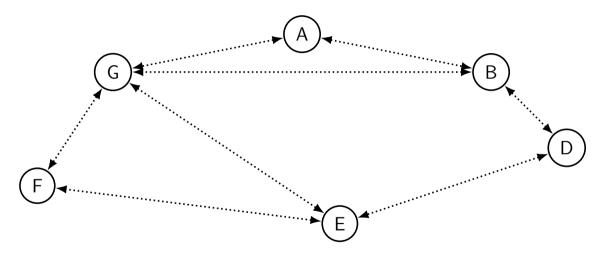

detecting 'mistakes'

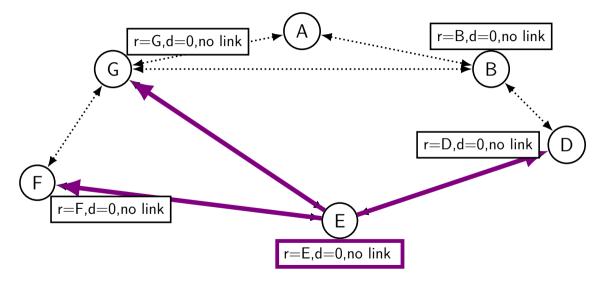
this method: consistent results every time

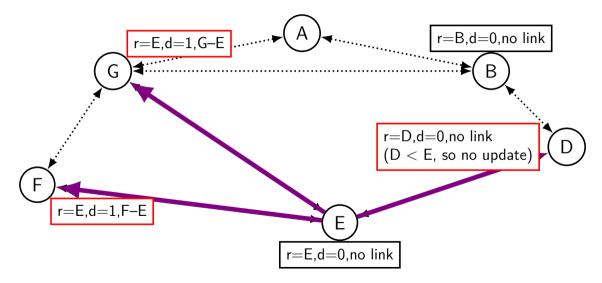

but assumes we start from scratch

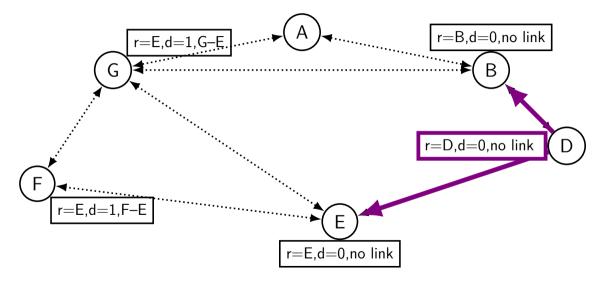

we're going to want a way of doing this dynamically

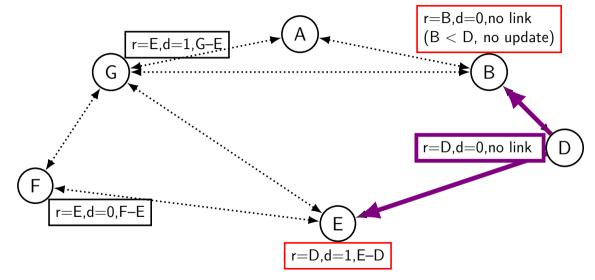

let's say we find a wrong configuration — can we fix it?


spanning tree protocol


each node tracks:


what it believes is root of tree its link toward root of tree its distance to root of tree which other nodes think it's closer to root of tree

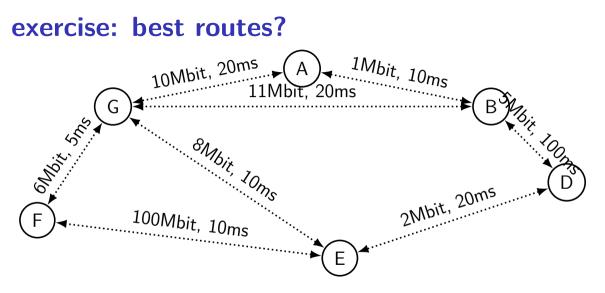

periodically sends information to neighbors


when receiving information, update: root to lower ID number (if possible) link to lower-distance link (if possible) link to lower-ID, same-distance link (if possible) which other nodes think it is closer

spanning trees in practice (1)

commonly used on Ethernet for switches

links not in spanning tree are 'blocked' not used for normal traffic assumption: would cause loop \rightarrow infinite packets


delay before activating port avoid temporary routing loops while figuring out tree periodically send updates to all neighbors order of seconds

spanning tree in practice (2)

real protocol supports variable 'cost' for links so 'distance to root' might be lower for faster links

modern variant (Rapid Spanning Tree Protocol) selects "backup" port to root

goal: faster switchover on failure

A to B? B to E? F to G?

routing metrics

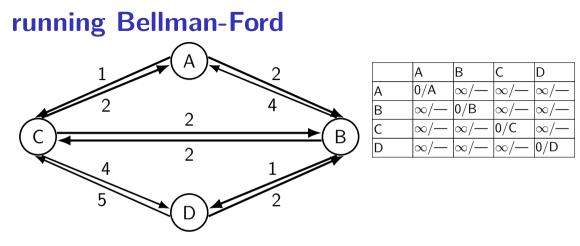
want some way of saying how 'good' link is

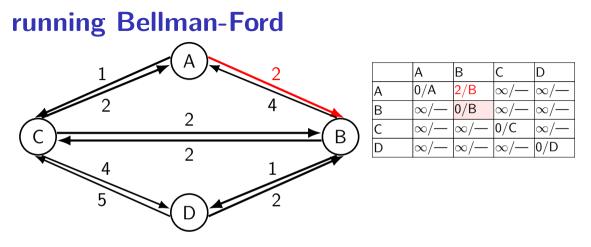
```
typically "cost"/"distance" value (so lower is better)
```

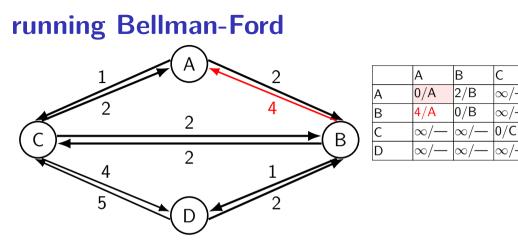
in practice, most commonly

constant

bandwidth

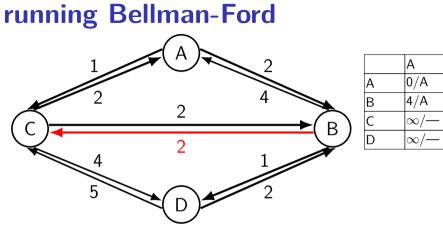

could also try to: take financial costs into account take lantency into account take reliability into account spread flows out among more links


all-pairs Bellman-Ford


one algorithm to find all shortest paths in graph (network)

d(A, B) = best distance from A to B p(A, B) = next node on path from A to B initially $d(X, X) = \infty$ for all nodes X repeatedly* do the following:

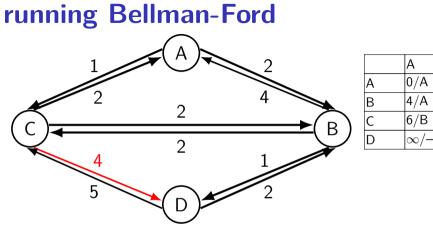
for each link from A to B, distance c: for each node X: if c + d(B, X) < d(A, X), then $d(A, X) \leftarrow c + d(B, X)$, p(A, X) = B

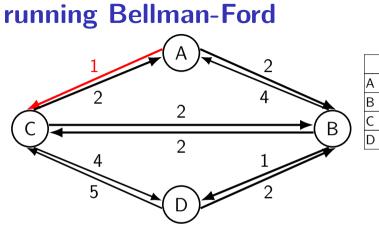

D

 ∞ /

 ∞

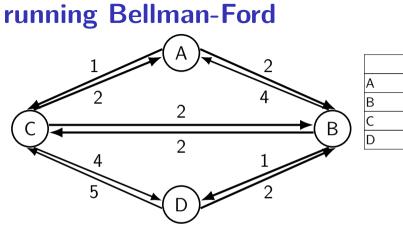
 $\infty/-$

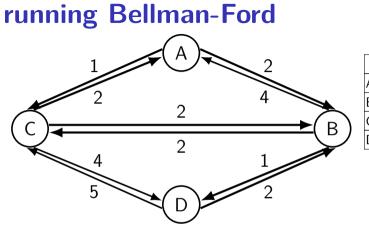

0/D


	A	В	С	D
A	0/A	2/B	$\infty/-$	$\infty/-$
В	4/A	0/B	2/C	$\infty/-$
С	$\infty/-$	$\infty/-$	0/C	$\infty/-$
D	$\infty/-$	$\infty/-$	$\infty/-$	0/D

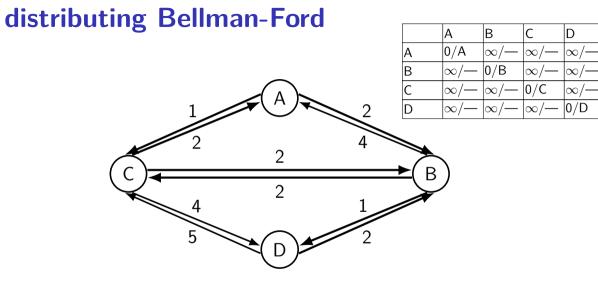
running Bellman-Ford 2 R 2 հ

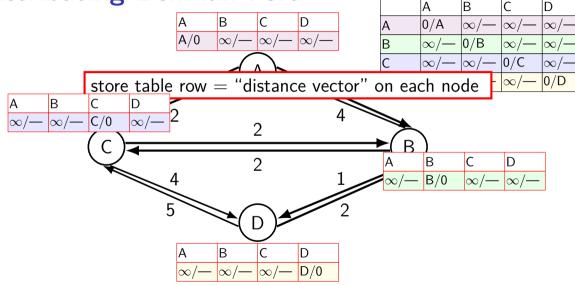
	A	В	С	D
A	0/A	2/B	$\infty/-$	$\infty/-$
В	4/A	0/B	2/C	$\infty/-$
С	6/B	2/B	0/C	$\infty/-$
D	$\infty/-$	$\infty/-$	$\infty/-$	0/D

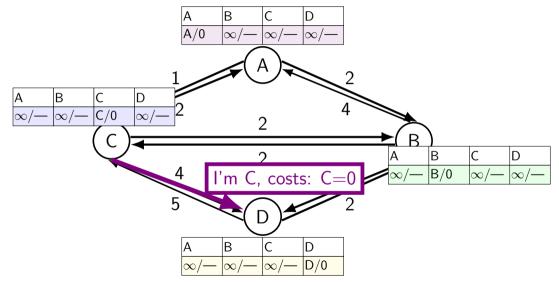

	A	В	С	D
A	0/A	2/B	$\infty/-$	$\infty/-$
В	4/A	0/B	2/C	$\infty/-$
С	6/B	2/B	0/C	4/D
D	$\infty/-$	$\infty/-$	$\infty/-$	0/D

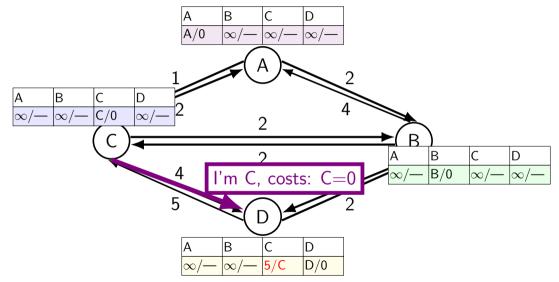

	A	В	С	D
A	0/A	2/B	1/C	5/D
В	4/A	0/B	2/C	$\infty/-$
С	6/B	2/B	0/C	4/D
D	$\infty/-$	$\infty/-$	$\infty/-$	0/D

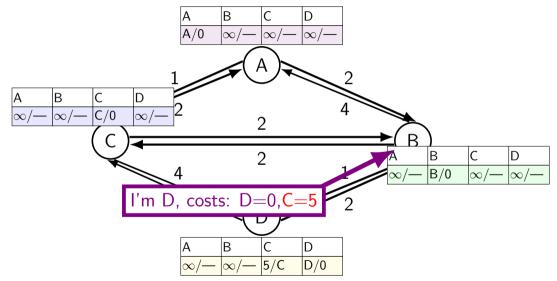
runn	ing Be	ellman-	Ford			
	1	A	2			Α
			2		A	0//
	2	2	4		В	4//
\bigcirc	1	2		► (R)	С	6/I
		2			D	∞
	4	-	1			
	5		2			
			-			

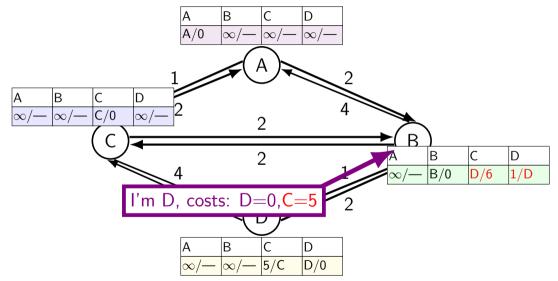

	А	В	С	D
A	0/A	2/B	1/C	5/D
В	4/A	0/B	2/C	9/A
С	6/B	2/B	0/C	4/D
D	$\infty/-$	$\infty/-$	$\infty/-$	0/D

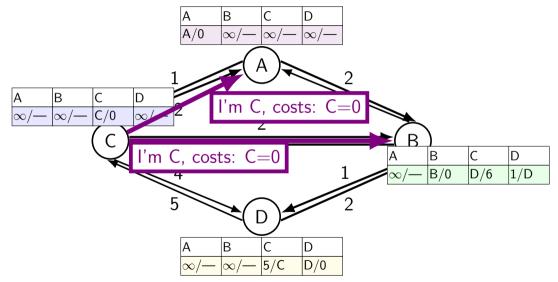

	A	В	С	D
A	0/A	2/B	1/C	5/D
В	4/A	0/B	2/C	9/A
С	6/B	2/B	0/C	4/D
D	$\infty/-$	$\infty/-$	$\infty/-$	0/D

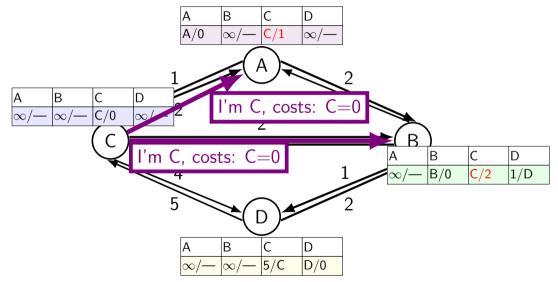


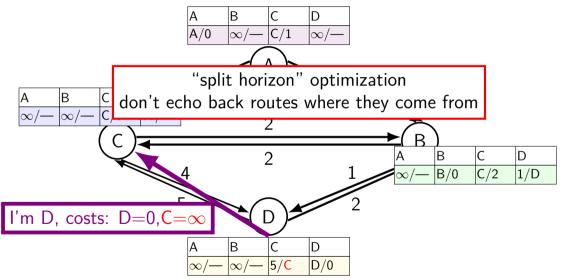

	А	В	С	D
A	0/A	2/B	1/C	3/B
В	4/A	0/B	2/C	1/D
С	2/A	2/B	0/C	4/D
D	6/B	2/B	4/B	0/D

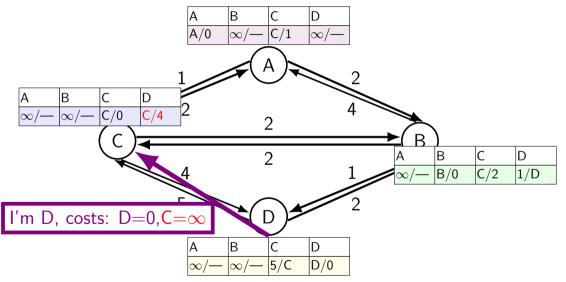


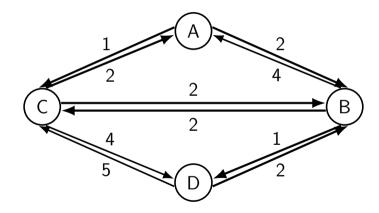


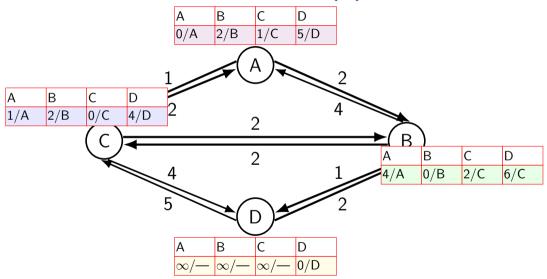


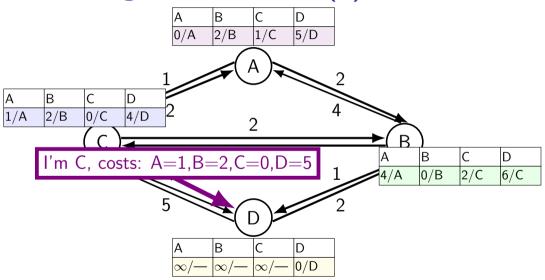


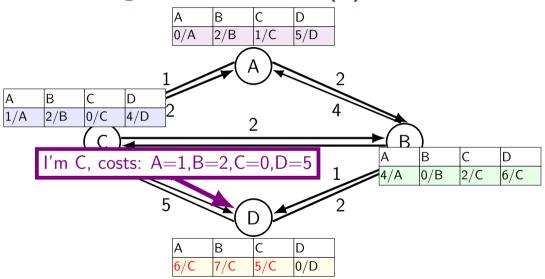


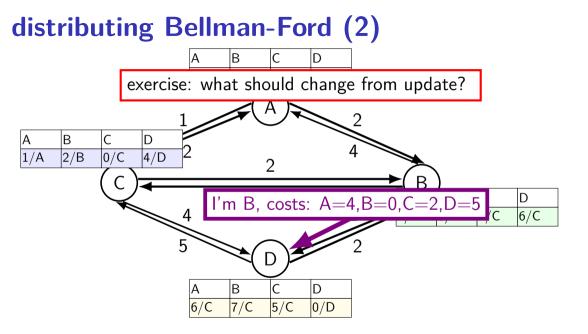


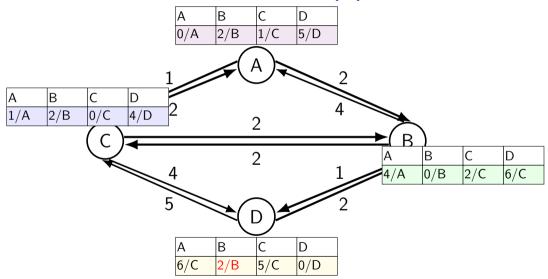


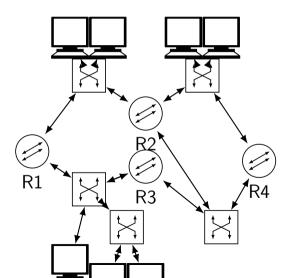


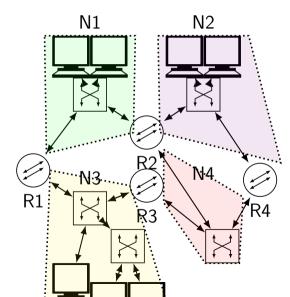


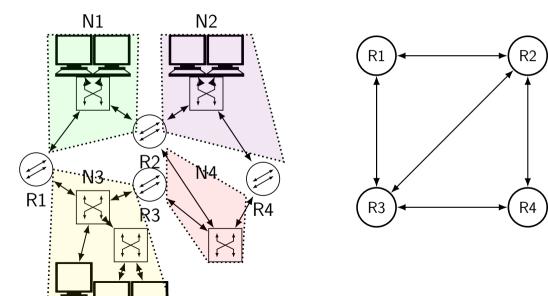


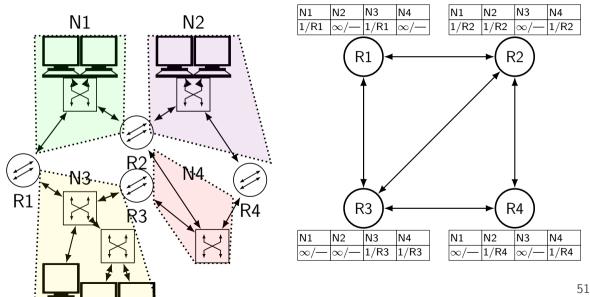


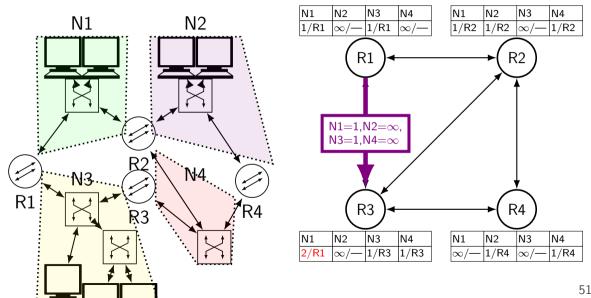


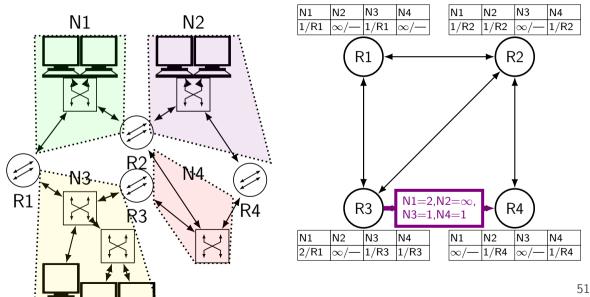



imprecision on graphs — acting as if we want distance to routers


but really want distance to networks


distance vectors will track distance to networks


but next hops will be routers



distance vector routing

each node keeps *distance vector* distance to each other node (network) also which neighbor to go through to get that distance

periodically send distance vector to all neighbors

when receiving distance vector from X, check

"would going through X give me a better distance?" if so, update distance + which neighbor

Routing Information Protocol

router broadcast on networks it's connected to packet containing list of:

networks it can reach (example: 1.2.3.0/24) its next hop to that network its metric (distance) to reach that network

each router on that network processes that packet

on receiving distances, routers see if they can update their routes routes will be to networks (1.2.3.0/24, etc.), not routers

local information

routers need to track themselves:

which networks they can reach directly (which networks is it connected to)

the 'distance' it needs to reach those networks (probably based on its bandwidth to that network?)

RIP — when to update

policy: every approx. 30 seconds always AND

```
immediately on changes ("triggered")
```

means that connecting new router should better routes quickly

links going down

problem with our update rule:

assumes routes only get better

reality: sometimes links go down

need to find different route

updating for removal (1)

let's say l'm A and my distance vector is: A=0 via A, B=4 via B, C=5 via D, D=4 via D

if my link to D goes down, new distance vector should be?

updating for removal (1)

let's say l'm A and my distance vector is: A=0 via A, B=4 via B, C=5 via D, D=4 via D

if my link to D goes down, new distance vector should be? A=0 via A, B=4 via B, C= ∞ via no one, D= ∞ via no one

later updates might fix ∞ s

updating for removal (2)

let's say l'm A and my distance vector is: B=4 via B, C=5 via D, D=4 via D

and D tells me its distance vector is B=8 via A, $C=\infty$ via no one, D=0 via D

then my (A)'s new distance vector should be?

updating for removal (2)

let's say l'm A and my distance vector is: B=4 via B, C=5 via D, D=4 via D

and D tells me its distance vector is B=8 via A, $C=\infty$ via no one, D=0 via D

then my (A)'s new distance vector should be? B=4 via B, C= ∞ via no one, D=4 via D

updating for removal (3)

let's say l'm A and my distance vector is: B=4 via B, C=5 via D, D=4 via D

and D tells me its distance vector is B=8 via A, C=5 via A, D=0 via D

then my (A)'s new distance vector should be?

updating for removal (3)

let's say l'm A and my distance vector is: B=4 via B, C=5 via D, D=4 via D

and D tells me its distance vector is B=8 via A, C=5 via A, D=0 via D

then my (A)'s new distance vector should be? B=4 via B, C= ∞ via no one, D=4 via D

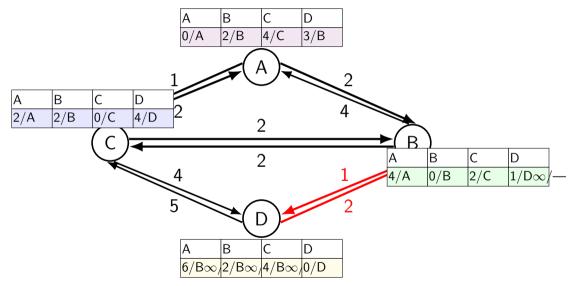
updating for removal (4)

let's say l'm A and my distance vector is: B=4 via B, C=5 via D, D=4 via D

and D tells me its distance vector is B=3 via B, C=8 via B, D=0 via D

then my (A)'s new distance vector should be?

updating for removal (4)


let's say l'm A and my distance vector is: B=4 via B, C=5 via D, D=4 via D

and D tells me its distance vector is B=3 via B, C=8 via B, D=0 via D


then my (A)'s new distance vector should be? B=4 via B, C=12 via D, D=4 via D

probably later update from B will overwrite route to C

removal?

removal?

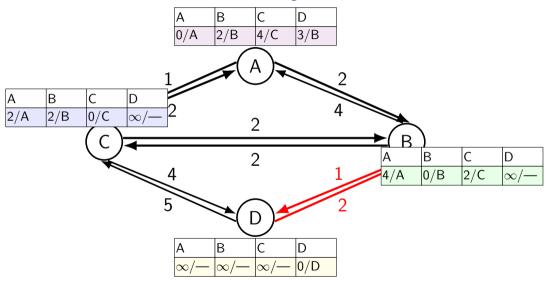
split horizon with poison reverse

when sending distance vectors, 'posion' routes to same node make sure other node won't go back to us... only to have us go back to them

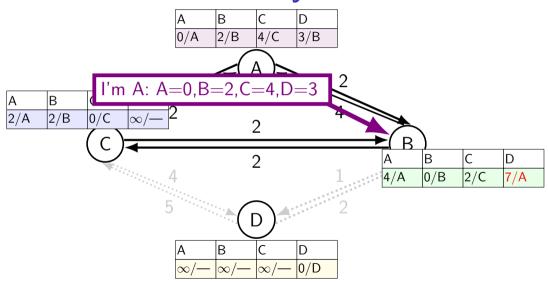
example, if I'm A and routes are: A: 0 via A; B: 2 via B; C: 4 via C; D: 6 via B

when sending to B send:

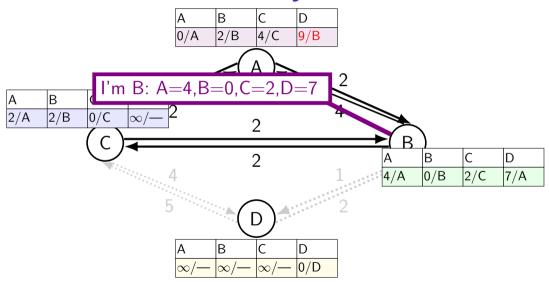
A: 0; B: 2; C: 4; D: ∞

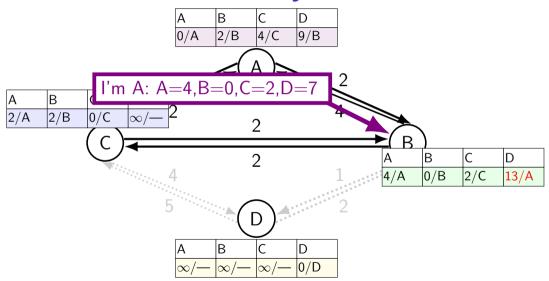

without split horizon?

can create routing loop


example: if D unreachable from B, then B goes to A and A goes to B $\ensuremath{\mathsf{B}}$

called "count-to-infinity" problem because A, B will keep updating distance higher and higher


avoided count-to-infinity


avoided count-to-infinity

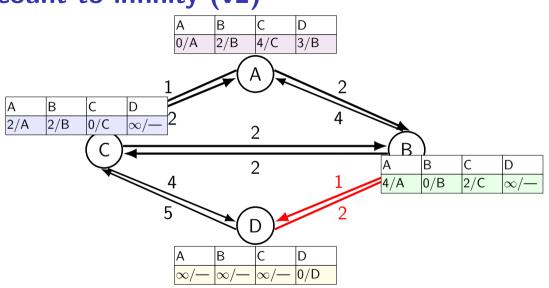
avoided count-to-infinity

avoided count-to-infinity

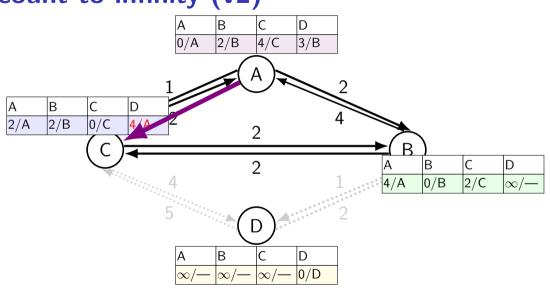
trivial loop

oops: A to B to A to B to A to B to ...

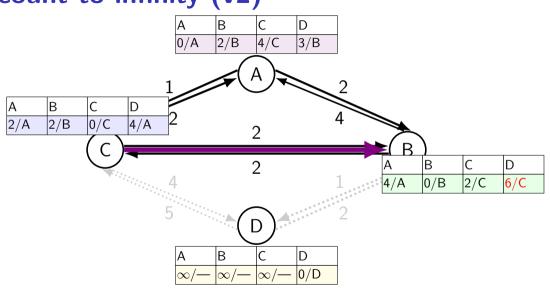
this case: relatively easy to avoid

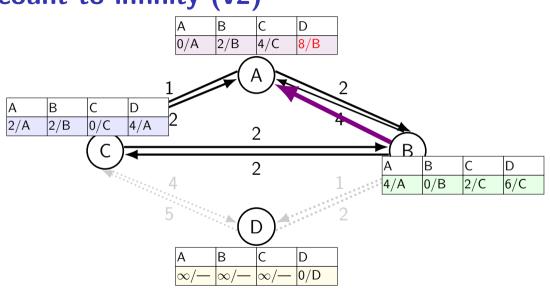

split horizon incomplete solution

split horizon prevents trivial loops, but...


doesn't actually solve the count-to-infinty problem

in well-connected network, there will be longer loops


count-to-infinity (v2)


count-to-infinity (v2)

count-to-infinity (v2)

count-to-infinity (v2)

count-to-infinity

when node becomes unreachable, can have 'phantom' routes

keep propogating in loop, incrementing metric forever

RIP solution: maximum metric is 15 (hops)

better count-to-infinity solutions?

can share information about more than just neighbors

we'll see two examples:

link-state routing protocols (example: OSPF) every router learns full map of network

border gateway protocol (BGP) (basically) track *list of hops* alongside distances eliminate potential routes that would create duplicate hops (loops)

link-state routing

will keep idea of sharing state with neighbors...

but weren't sharing enough state!

other routing idea:

routers collect *complete map* of network

example protocol for this: OSPF Open Shortest Path First

OSPF link-state advertisements (router)

age	options	type
ID		
advertising router		
sequence number		
checksum	length	
depends on LSA type		

OSPF LSA sequences/ages

sequence number for getting correction version of LSAs some tricky rules to handle routers restarting (losing track of sequence number) and sequence number wraparound

maximum 'age' for link-state advertisements
 typically minutes
 too-old LSAs not used for routing
 deliberately setting age = MaxAge used to invalidate LSAs

OSPF LSA types

'router':

list of links for router links = connect to other router or network links refer to ID numbers of network/router LSAs metrics for each link

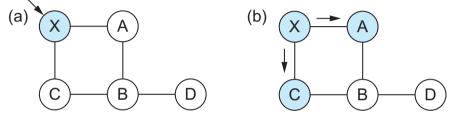
'network':

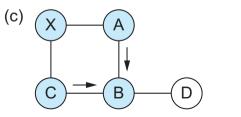
list of routers for network different version of external and internal networks

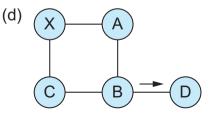
(later) 'summary':

part of support for *areas* used when sysadmin doesn't want all routers processing whole network map

link-state database


whole collection of advertisements


every router, network, link between router+network


all the metrics for those

reliable flooding (picture)

Peterson and Davie, Computer Networks: A Systems Approach, Figure 88

missing from the picture

in picture: seems like each router directly connected to each other

often we have multiple routers connected to local network

can/will share link state packets by broadcasting on local network

reliable flooding in OSPF — setup

for each subnetwork:

choose a designated and backup router make sure backup becomes designated on failure

designated router will take care of propogating updates to everyone on network

...including waiting for acknowledgments, etc.

reliable flooding in OSPF

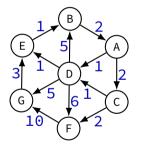
then, when receiving/generating link state packet:

send to every designed+backup router of subnetwork that you are connected to, and you are not designated/backup router for, and you did not receive the packet from

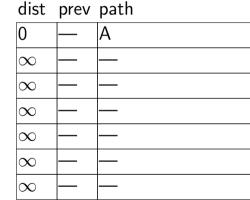
send to every router on every subnetwork that you are designated router for

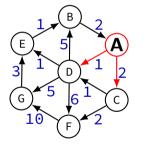
send = send + resend if no ACK

finding shortest paths

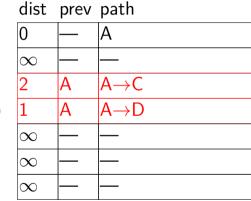

given full picture of network

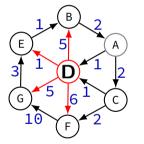
want to find all shortest paths from self shortest 'distance' = lowest sum of metric

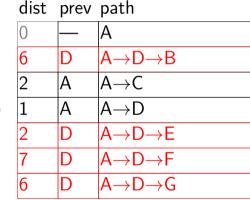

only need next hop, but will compute whole path to find that

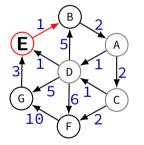

assumption: everyone using shortest path

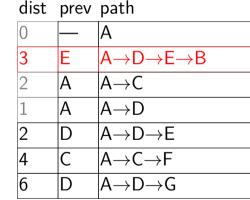
usual solution: Dijkstra's algorithm

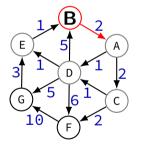




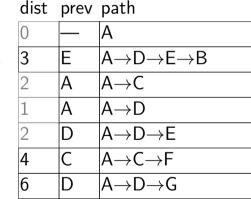


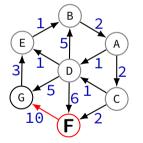


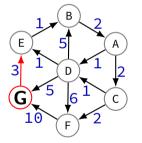

А Β С D Ε F G

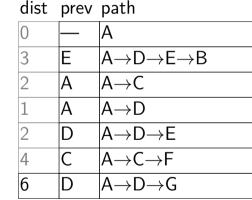


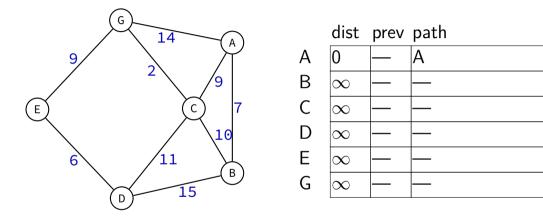
Dijkstra's algorithm example 1 D is adjacent but not a shorter path ਯਾਤਦ שמנו B В $A \rightarrow D \rightarrow B$ 6 Е Α $A \rightarrow C$ С 3 D А $A \rightarrow D$ 5 6 G Е $A \rightarrow D \rightarrow E$ 2 D 10 $A \rightarrow C \rightarrow F$ F 4 G $A \rightarrow D \rightarrow G$ D 6 F updated from distance 7 (via D)

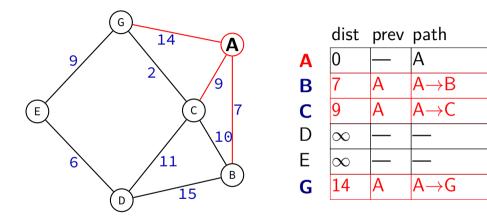


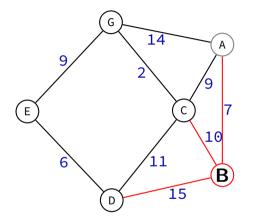


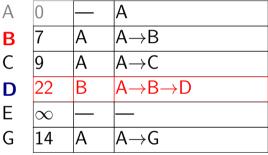


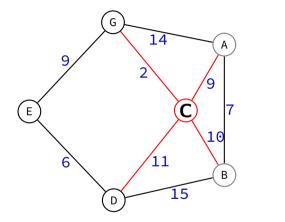


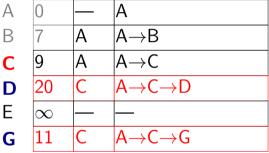


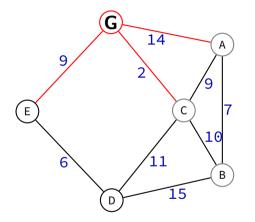


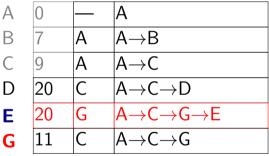


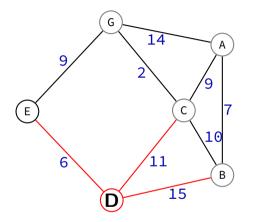

А B F F G

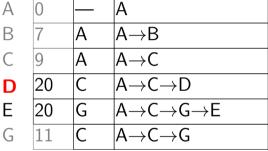


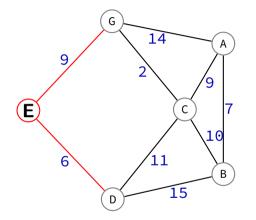


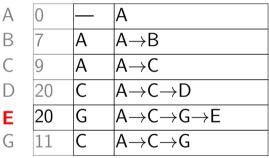


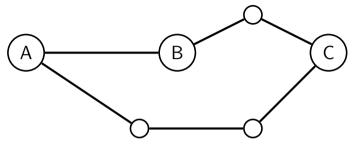




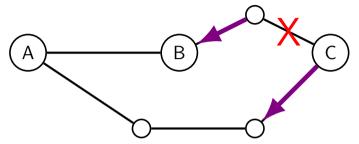







dist prev path 0 — A


consistency

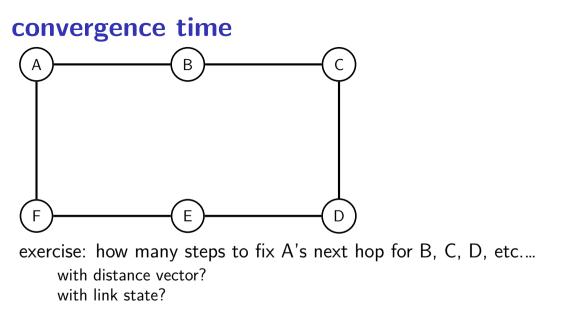

if A sends packet for C to B, how does A know B won't send it back?

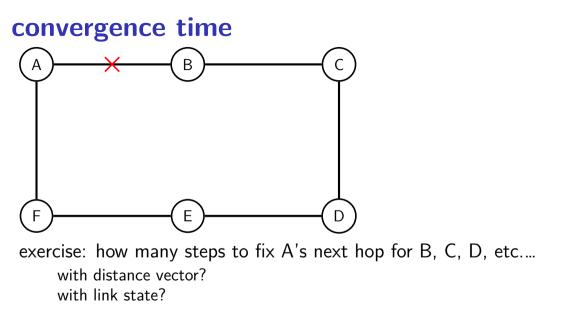
hope: if A thought shortest path to C was through B, then B should agree

inconsistency

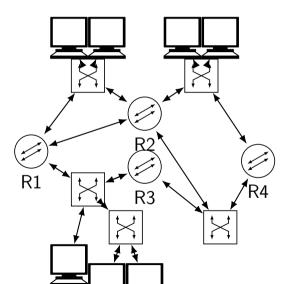
inconsistency

B thinks best route to C: through A A thinks best route to C: through B

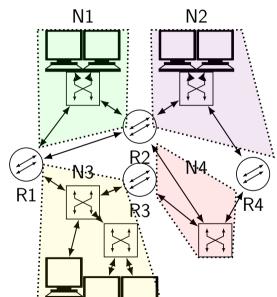

temporary bad routes

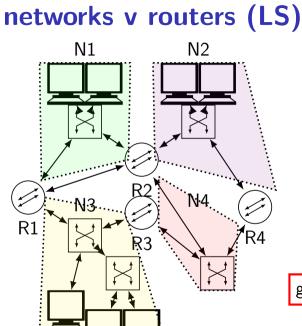

while waiting for link state updates to propogate

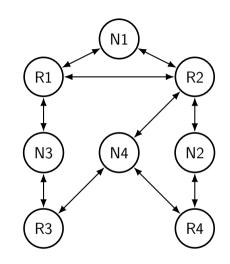
can have too-slow routes

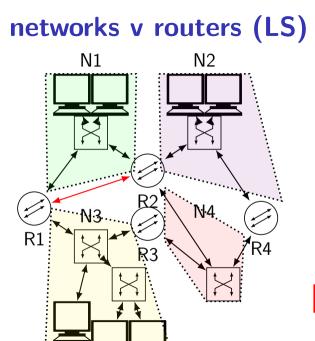

can have routing loops

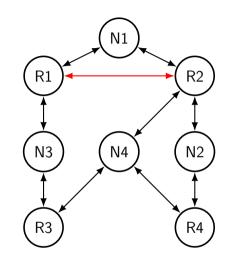
hope: this is only a few seconds at most and routing loop doesn't cause huge explosion of traffic

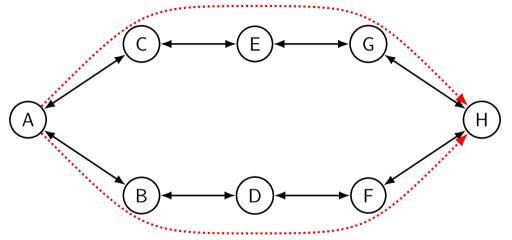





networks v routers (LS)


networks v routers (LS)




graph has nodes for routers+networks

can have direct router-router link

two good choices?

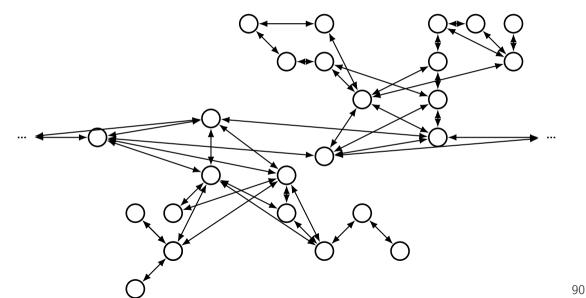
splitting packets

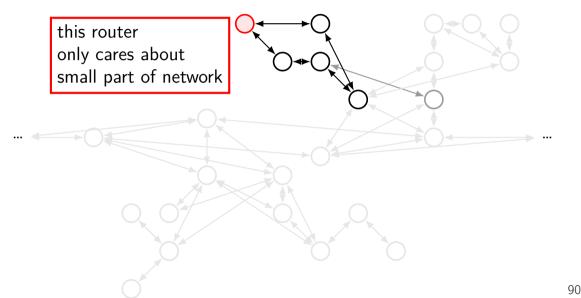
naïve idea: send every other packet on bottom link

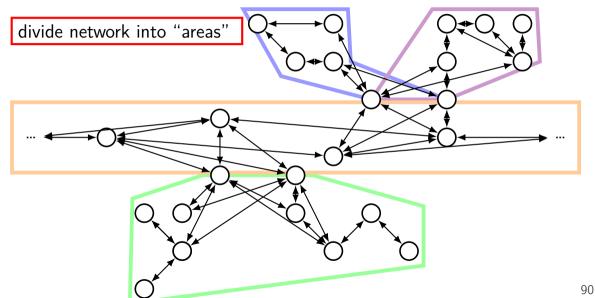
problem: bottom and top link will have different latencies (even if only temporarily from queuing)

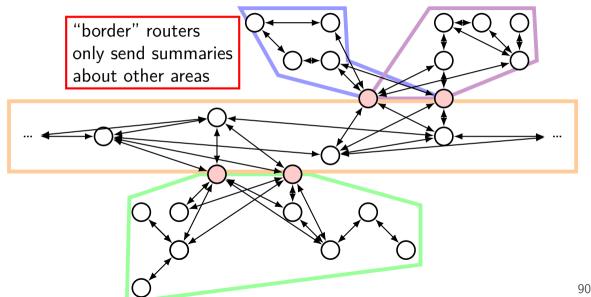
⇒ packets will be reordered a lot this is pretty bad for TCP (and many other things)

equal cost multipath (ECMP)

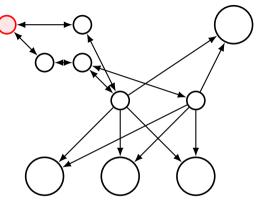

split packets by flow


goal:


each TCP connection chooses one of the N links ...but don't want to track list of TCP connections


solution:

take a hash of the connection info in header use link index $\left\lfloor \frac{\text{hash value} \times N}{\text{max hash value}} \right\rfloor$



...

router sees simpler summary of network \rightarrow hopefully faster routing

...

distance vector in link state?

summaries are distance vectors! area border routers just saying which networks + metric

idea: mix simpler distance vectors with more flexible link-state

but distance vector problems?

recall: count-to-infinity

let's say areas A, B, C, D all connected to each other...

...and area D goes offline:

could packet for D loop area A to B to C to A to B to C to ...

but distance vector problems?

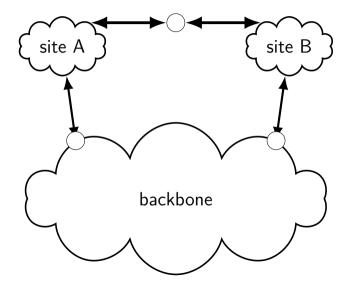
recall: count-to-infinity

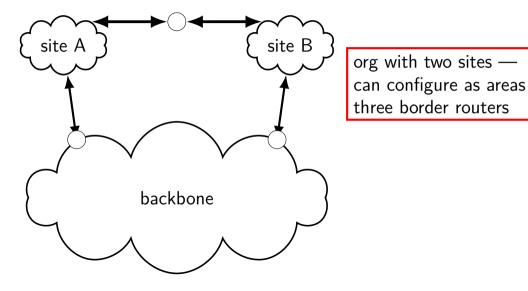
let's say areas A, B, C, D all connected to each other...

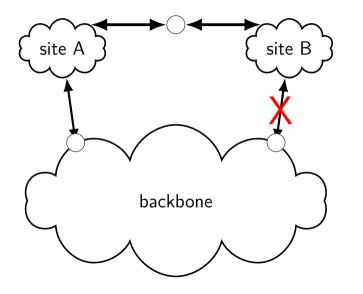
...and area D goes offline:

could packet for D loop area A to B to C to A to B to C to ...

OSPF solution: disallow this network configuration

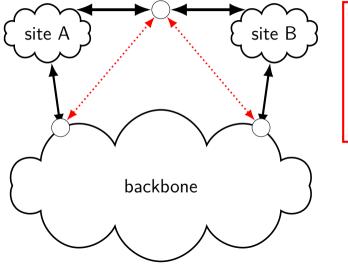

backbone


OSPF area 0 is called "backbone"


border routers only summarize routes sent to backbone *or* not obtained from other area border routers

means routing between areas must either: go through the backbone, or only go through one border router

makes loops not possible



if B's link to backbone fails, B should use building A's

but disallowed by anti-loop rule

could fix this by connecting A/B border router to backbone... solution: "virtual links"

OSPF virtual links

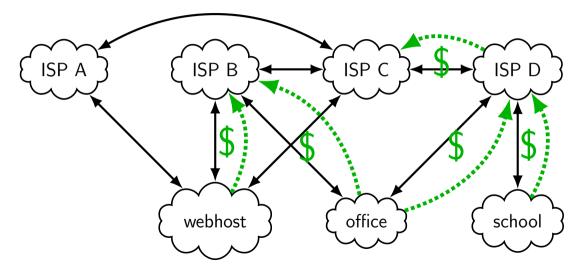
"tunnel" backbone through another area route as if 'direct' connection between two border routers but connection implemented by going through area both ends considered part of backbone

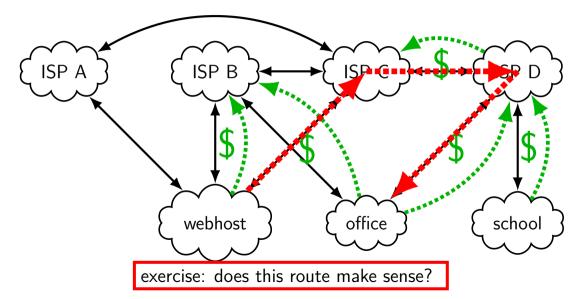
metric for virtaul link = metric of route through area

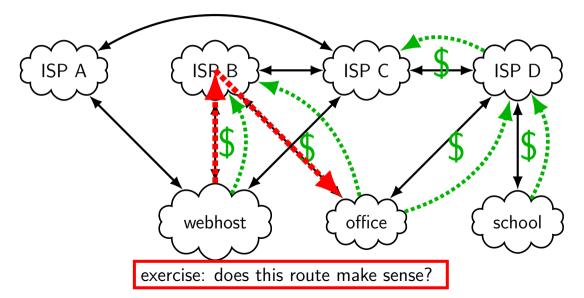
configured explicitly by administrator

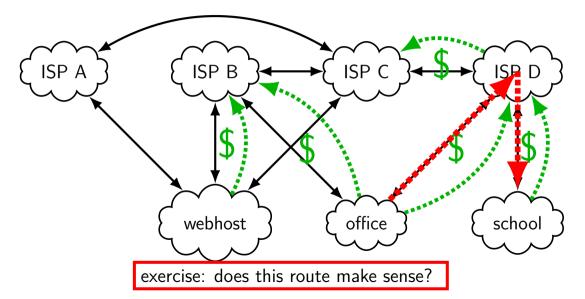
interdomain routing

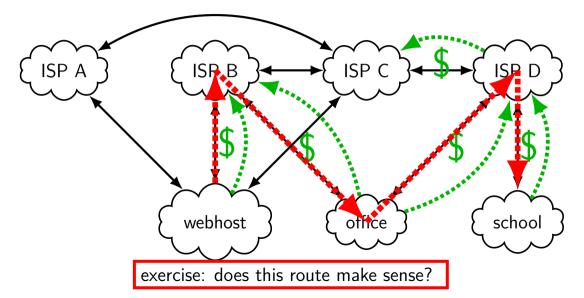
so far: routing within one organization

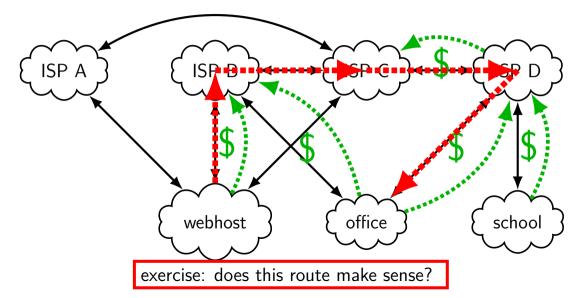

lots of trust/sharing:

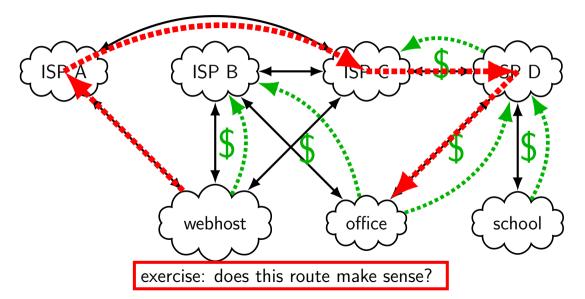

okay to send packets through (essentially) every router


okay for any router to 'announce' any address


okay to share (almost) full map of network


not what we want for interdomain routing





autonomous system

autonomous system (AS) — one "routing domain" typically = set of networks administrated by one organization decides what routing to use internally should be fully connected internally

scope of OSPF instance = one AS $% \left(A_{1}^{2}\right) =0$

each AS can connect to other ASes well-defined protocol for sending routes to other ASes

AS numbers

for Internet routing, ASes are assigned numbers

assigned by IANA and RIRs (similar to IP addresses)

originally 16-bit, now extended to 32-bit

some private use / special AS numbers

relationship types

provider/customer

typically: customer pays provider provider connects customers everywhere it can (customer paid for it) customer does **not** provide paths through its network

peer/peer

often: no payment ('settlement-free')

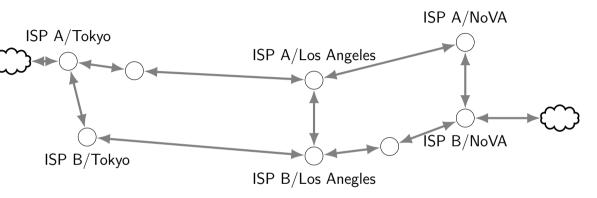
if A peers with B...

A gets connected to B's customers (customers paid B for this)

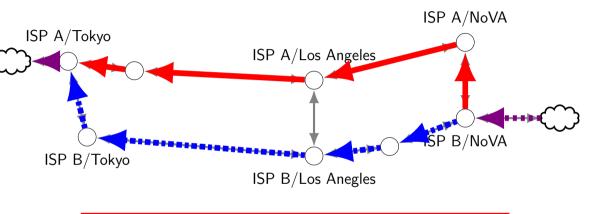
A does not get connected to B's other peers (no one paid B for this)

A does not get connected to B's providers (no one paid B for this)

connecting big networks?


some options:

(which are basically the same as connecting parts of big network)


- run a fiber between two buildings permitting and construction needed
- pay for direct access to fiber someone else ran ("dark fiber") burying one fiber costs similar to burying bundle, so spares
- pay a telecom for a site-to-site connection "gaurenteed" bandwidth+latency between two sites may or may not use series of dedicated fibers

get space in common datacenter, pay datacenter operator for connection

going the distance

going the distance

does ISP A or ISP B help packets cross the Pacific?

distance preferences

ISP $B \rightarrow ISP A$ across the Pacific:

for ISP B:

cheaper to hand-off packet to ISP A as soon as possible more control over performance if handing off as late as possible

for ISP A:

cheaper to require ISP B to hand-off packet as late as possible more control over performance if B sends as soon as possible

maybe part of ISP A and ISP B peering agreement

Border Gateway Protocol

protocol for sending routes between networks

used whereever routers from different ASes connect "EBGP"

used within AS to share routes out of AS internally "IBGP"

each router constructs list of routes to offer

each router receives list of routes, exports to OSPF/etc.

BGP connections

BGP (TCP) connections made between routers

each router keeps track of set routes advertised by other

command sent to add or withdraw specific routes

not like distance vector where we kept resending everything

BGP prefixes

routes sent via BGP called 'prefixes'

said to be "announced" from one router to another

because the network (e.g. 10.0.1.0/24) is the important part (and the next hop is implied by where prefix comes from)

BGP route

adjacent routers share list of *routes* with:

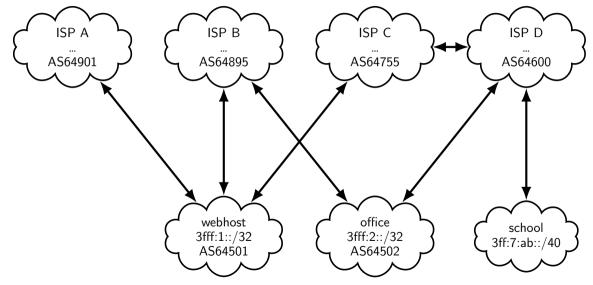
IP prefix (CIDR-style, basically)

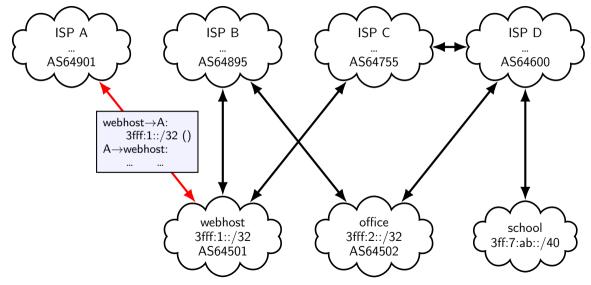
AS path — list of autonomous system the route goes through

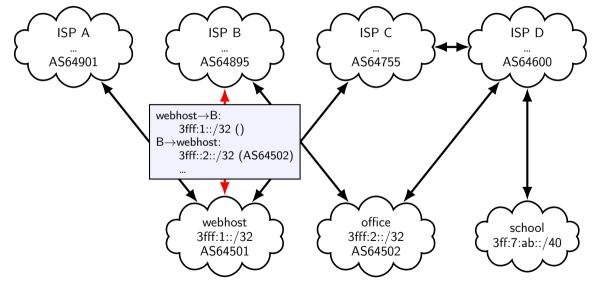
next hop router (IP address)

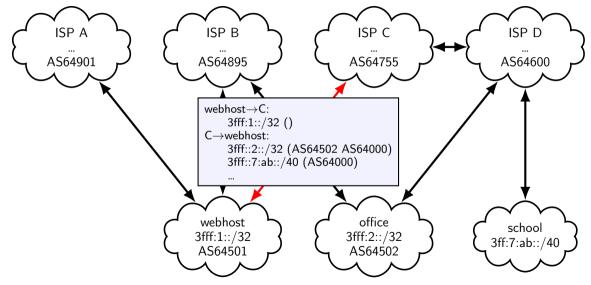
multi-exit discriminator

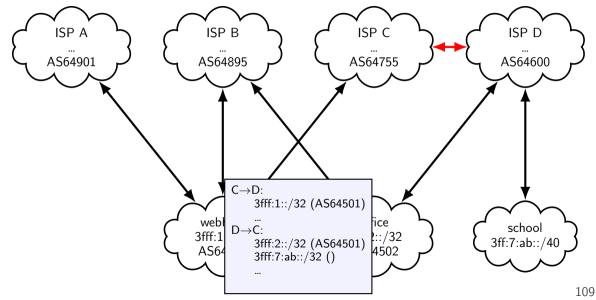
low value = this entrance to AS is better than others for these IPs

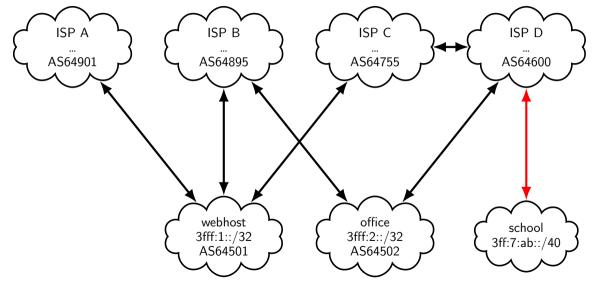

local preference (internal-only)


AS path

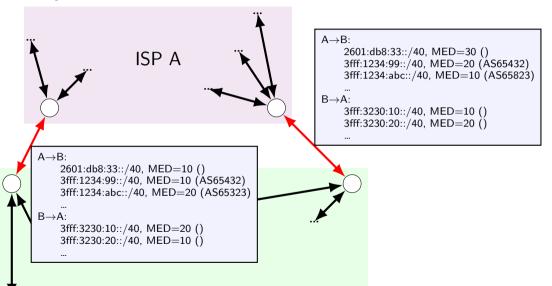

used to detect routing loops


append your AS when sending route externally

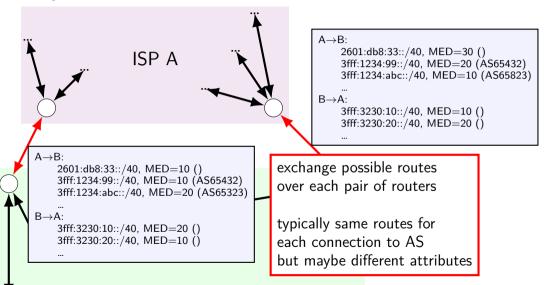

always ignore external routes with your AS in their AS path already

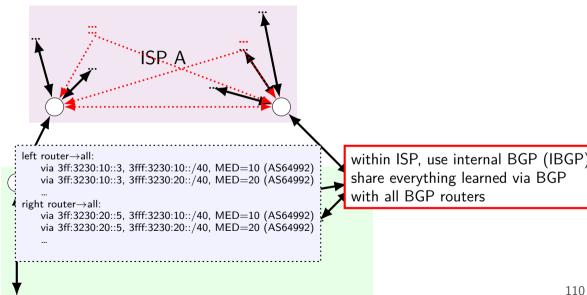






multiple BGP sessions




multiple BGP sessions

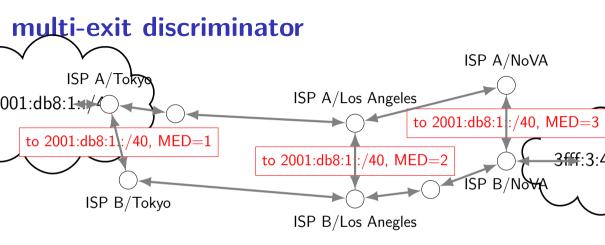
multiple BGP sessions

multiple BGP sessions

preference between routes

if multiple choices, most common strategy:...

should use most specific route


use 2001:db8:1234::/40 over 2001:db8:1234::/39 if both apply (but usually reject very small address ranges (e.g. /31 for IPv4, /60 for IPv6))

then (if tie) local policy applies

then shortest AS path

then lower AS number

then (sometimes) lower MED (multiple exit discriminator) then best route within current AS

getting your preference

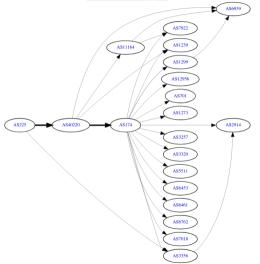
to affect how people route you, can...

prepend to AS path sent to make it longer typically add serveral copies of your AS number

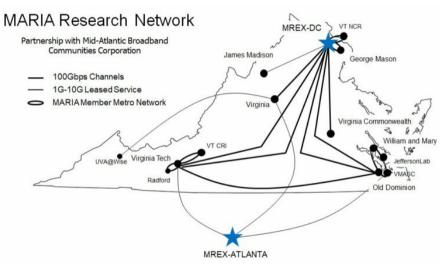
only announce network from certain of your routers problem: won't have all 'backup' paths available

announce a large network in more specific pieces 3fff:1234::/32 as 3fff:1234::/33 and 3fff:1234:8000::/33

get other networks to change how they forward your routes often enabled through 'BGP communities'


https://bgp.he.net/super-lg/

https://bgp.he.net/super-lg/#128.143.0.0/16? tob=none&mt=include&ma=6939&els=exact


https://lg.ring.nlnog.net/prefix?q=128.143.0. 0/16&match=exact&peer=all

https://bgp.he.net/AS225 (University of Virginia)

AS225 IPv4 Route Propagation

AS40220

Advanced Search

Legacy Search

English (English)

Mid-Atlantic Terascale Partnership - MATP

EXPORT

Organization	Mid-Atlantic Terascale Partnership - MATP	Public Peering Exchange Points				
Also Known As	MARIA / Virginia Tech (Virginia Polytechnic Institute and State University)	Exchange AZ ~	ASN	Speed	RS Peer	BFD Support
Long Name		IPv4	IPv6	Port Location		
Company Website		Digital Realty Atlanta	40220	10G	0	0
	40220	206.126.110.182	2001:504:17:110::182			
IRR as-set/route-set 🕐	AS40220:AS-ALL	Equinix Ashburn 206.126.236.139	40220 2001:504:0:2:0:4:220:1	20G	0	0
			2001/00/012/014/22012			
Looking Glass URL		Interconnection Fac	rilities		Filter	
Network Types	Educational/Research		cintes			
IPv4 Prefixes 🕐	90	Facility AZ ~ ASN		Country City		
IPv6 Prefixes 🕐	25					
Traffic Levels 🕜	Not Disclosed			United States Atlanta	of America	
Traffic Ratios	Mostly Inbound	Equinix DC1-DC15, DC21 - Ashburn Unite		United States	of America	
Geographic Scope	Regional	40220		Ashburn		
Protocols Supported	⊘ Unicast IPv4 ◯ Multicast ⊘ IPv6 ◯ Never via route servers ◎					
Last Updated	2022-07-27T05:34:22Z					
Public Peering Info Updated	2024-07-24T16:31:34Z					
Peering Facility Info Updated	2016-03-14T20:59:43Z					
Contact Info Updated	2020-01-22T04:24:10Z					
Notes 🕐	MATP (AS40220) is a consortium of research institutions in Viginia, Maryland, and Washington formed to to support research activities that require next-peneration high-performance network connectivity. We have routers in Equinix Ashburn and TeIX Atlanta and provide commodity and R&E network services to most					

AS3356

SOLUTIONS PRODUCTS SHOP RESOURCES DEDICATED INTERNET ACCESS Go full speed Give your enterprise a direct fast lane to 6,300+ interconnects¹ with speeds up to 100 Gbps. GET OFFER **VIEW SPECS** Benefits Pricina **Customer Stories** Overview Resources

AS3356 is a backup (8x AS prepending)

\smile					
Quick Links	Super Looking Glass Terminal				
BGP Toolkit Home BGP Prefix Report BGP Peer Report Super Traceroute Super Looking Glass Exchange Report	128.143.0.0/16 Perform Query! ✓Exact Match + 42 Paths observed	Shorter + Longer - Fant - Text - Exclude 3356			
Bogon Routes					
World Report Multi Origin Routes DNS Report Top Host Report Internet Statistics Looking Glass Network Tools App Free IPv6 Tunnel IPv6 Pertification IPv6 Progress Going Native Credits Contact Us	Neighbor	12.0.1.63 (AS7018) Learned from: route-views			
	Prefix	128.143.0.0/16			
	AS Path	7018 3356 225 225 225 225 225 225 225 225 225			
	Origin	IGP			
	RPKI validation	UNKNOWN No VRP Covers the Route Prefix			
	Communities	7018:5000 7018:37232			
	Last Updated	10/18/2024, 12:43:33 AM (0w03d11h)			

HURRICANE ELECTRIC

Netw Free IPv6 IPv6

peeringdb

https://peeringdb.com — commonly used database of ASes and how to peer with them

there is also – "whois" records (from RIRs) for ASes, IP blocks with contact info

internet exchanges and route servers

internet exchange

local network (typically within metro area) for connecting networks often run at and/or by 'carrier-neutral' datacenter typically high bandwidth (10-100Gbps ports to network) provides connections when

route servers

BGP servers run by internet exchange consolidates routes from participants goal: only need O(n) BGP connections, not $O(n^2)$

BGP communities

routes sent via BGP can have 'communities'

extra information tagged on routes sent via BGP

large ISPs have lists of communities their customers/peers can use ...and these affect how those routes are used

aside: Internet2

non-profit networking consortium

operations major US University-focused network

also makes eduroam work across different Universities

one of MARIA's major sources of connectivity (and indirectly one of UVA's major sources of connectivity)

has lots of peering relationships (incl. with big Internet companies) (but not general Internet provider)

selected Internet2 BGP communities

Internet2 External Traffic Influencing Communities

International, Non-International, or FEDNET peers may send the below community and we will set their localpref to 460 or 560 respectively:

- Default local-pref 500
- 11537:40 Low (local-pref 460)
- 11537:160 High (local-pref 560)

Connectors may send the below community and we will set their localpref to 540 or 620 respectively:

- Default local-pref 600
- 11537:140 Low (local-pref 540)
- 11537:260 High (local-pref 620)

Internet2 Peers may send the following communities:

• 11537:2002 - Block prefix to commercial R&E peers.

Internet2 International (ITN) peers may send the below communities for path prepending:

- 65001:65000 prepend x1
- 65002:65000 prepend x2
- 65003:65000 prepend x3

The following community combination of <CODE>:<ASN> allows you to block or prepend prefixes sent to individual international (ITN) peers. This is in the process of being deployed, once a peer has had the necessary configuration added, their ASN will be added here.

- · Codes:
- · 65000 prefixes will not be sent to ITN peer's ASN
- · 65001 prefixes will be prepended 1 time to ITN peer's ASN
- · 65002 prefixes will be prepended 2 times to ITN peer's ASN
- · 65003 prefixes will be prepended 3 time2 to ITN peer's ASN
- · 65012 prefixes will only be sent to ITN peer's ASN
- ITN Peer ASN:
- · 2603 NORDUnet
- 20965 GEANT

The following community combination of <CODE>:<ASN> allows you to block or prepend prefixes sent to individual NET+ peers.

- · Codes:
 - · 65000 prefixes will not be sent to NET+ peer's ASN
 - · 65001 prefixes will be prepended 1 time to NET+ peer's ASN
- · 65002 prefixes will be prepended 2 times to NET+ peer's ASN
- · 65003 prefixes will be prepended 3 time2 to NET+ peer's ASN
- · NET+ peer ASN's
- 16509 Amazon
- 62715 Code42
- · 22556 Blackboard
- · 16839 ServiceNow
- 19679 DropBox

community options from prev slide

setting local-pref:

you can decide how preferred your route is by Internet2 maybe to make one primary, another secondary?

blocking route from being sent to specific place

prepending Internet2's AS before forwarding prefix hopefully make that route less preferred by others

prepending Internet2's AS before forwarding prefix to specific place hopefully make that route less preferred by that place

other things with communities

Internet2 also uses communities to mark...

what location routes were learned from

what type of organization routes were learned from

whether Internet2 is only allowed to use the route non-commerically or not

•••

AS7007

https://seclists.org/nanog/1997/Apr/444

nanog mailing list archives

🖶 By Date 🎫 🖿 By Thread 🖿

List Archive Search

7007 Explanation and Apology

From: "Vincent J. Bono" <vbono () MAI NET> Date: Sat, 26 Apr 1997 19:41:35 EST

Dear All,

I would like to sincerely apologize to everyone everwhere who experienced problems yesterday due to the 7007 AS announcements.

If anyone cares to know, here is what happened:

At 11:36AM, EST, on 25 Apr 1997, our border router, stamped with AS 7007, recieved a full routing view from a downstream ISP (well, a view contacing 23,000 routes anyway).

There was no distibute list imposed on the downstream since they also advertise their customer AS's to us (they were also experimenting with sending some routes out through us and some out through the MAE). We did filter out routes from them containing any of our AS numbers but since they got the view from someone at MAE-East none of our internal AS numbers showed up at all. Not having a filter imposed on the inbound side was our error.

In an as yet unexplained twist of bits, the 7007 router then began to de-aggregate the 23K route view *and* strip the AS path out of it. I will emphasize that we were running no IGP at the time. Not one. Not OSPF, not RIP, nothing.

Our MAE-East border router, AS 6082, then got a feed of these routes, at last count 73,0004, which set off our network monitor system which wacthes for, among other things, route views over 45k Lines in size. At 11:45AM we disabled the BOP peering session with AS 1790 that was in place with the 7007 router and immediately

2008 Pakistan Youtube

Pakistan Telecom recieved gov't order to block youtube

implemented by inserting route for YouTube's IP in internal network

misconfiguration meant route was advertised on BGP

was more specific than YouTube's route, so made YouTube unreachablej

timeline from RIPE NCC

https://www.ripe.net/about-us/news/youtube-hijacking-a-ripe-ncc-ris-case-study/

Youtube is announcing 208.65.152.0/22

18:47Z: Pakistan Telecom starts announcing 208.65.153.0/24

20:07Z: Youtube starts announcing 208.65.153.0/24

20:18Z: Youtube starts announcing 208.65.153.0/25 and 208.65.153.128/25

20:51Z: Pakistan Telecom's ISP forwards their announcements with additional copy of Pakistan Telecom's AS number

21:01Z: Pakistan Telecom's ISP withdraws routes initiated by Pakistan Telecom (but not Pakistan Telecom's customers)

BGP Hijacking targeted cryptocurrency stuff

KLAYswap (Feb 2022), Celer Bridge (Sep 2022)

attackers intentionally redirected traffic to malicious version of services

...and stole money

both probably spoofed the final AS number in AS path sometimes involved adding attacked IP range to routing registry

nation-states?

A THROWING DOWN THE GAUNTLET

Citing BGP hijacks and hack attacks, feds want China Telecom out of the US

With a history of cyber attacks, Chinese-owned telecom is a threat, officials say.

DAN GOODIN - APR 10, 2020 8:42 AM

route security

historically, no verification routes announced by "owner" of IP addresses

Internet Routing Registries — database of AS to IP address used automatically to filter out mistakes (not really designed to resist malicious attacks)

some verify which IPs they should have with RIRs "letter of agency/authority" to delegate

effort to deploy RPKI — public-key based scheme to verify routes checks that routes originated at correct AS doesn't verify intermediate ASes will forward correctly Internet Engineering Task Force (IETF) Request for Comments: 6480 Category: Informational ISSN: 2070-1721 M. Lepinski S. Kent BBN Technologies February 2012

An Infrastructure to Support Secure Internet Routing

Abstract

This document describes an architecture for an infrastructure to support improved security of Internet routing. The foundation of this architecture is a Resource Public Key Infrastructure (RPKI) that represents the allocation hierarchy of IP address space and Autonomous System (AS) numbers; and a distributed repository system for storing and disseminating the data objects that comprise the <u>RPKI, as well as other signed objects necessary for improved routing</u> security. As an initial application of this architecture, the document describes how a legitimate holder of IP address space can explicitly and verifiably authorize one or more ASes to originate routes to that address space. Such verifiable authorizations could be used, for example, to more securely construct BGP route filters.

partial tables

dealing with full Internet routing table is expensive

common shortcut if you have a couple ISPs:

keep 'short' routes (example: short AS path) to one of your "primary" ISPs maybe using ECMP

have default route for other cases special route for 0.0.0.0/0, ::/0 to one of your ISPs

take advantage of more specific routes beating less specific typically also true in OSPF, RIP, etc.

backup slides