
1

IP on Ethernet
talked about how Ethernet works

but most Ethernet frames going to contain IP packets

IP has its own idea of addresses
used alongside MAC addresses

2

IPv6 packet format
(lower layer header)

6 diffserv/ECN flow label

payload len next header hop limit/TTL

source IPv6 address (128 bit)

destination IPv6 address (128 bit)

extension headers (variable size)

(next layer’s stuff)

identifies first “extension header” type if present
(extension header idea similar to TCP ‘options’ we saw earlier)
otherwise type of next layer (TCP, UDP, etc.)

payload = everything after fixed part of header
includes extension headers AND next layer’s data

TTL=“time-to-live”
limits how many times packet is forwarded
used to prevent “routing loops”

explicit congestion notification
(for congestion control, later topic)
and ‘hints’ for routers/switches about how ‘important’ packet is

3

IPv6 packet format
(lower layer header)

6 diffserv/ECN flow label

payload len next header hop limit/TTL

source IPv6 address (128 bit)

destination IPv6 address (128 bit)

extension headers (variable size)

(next layer’s stuff)

identifies first “extension header” type if present
(extension header idea similar to TCP ‘options’ we saw earlier)
otherwise type of next layer (TCP, UDP, etc.)

payload = everything after fixed part of header
includes extension headers AND next layer’s data

TTL=“time-to-live”
limits how many times packet is forwarded
used to prevent “routing loops”

explicit congestion notification
(for congestion control, later topic)
and ‘hints’ for routers/switches about how ‘important’ packet is

3

IPv6 packet format
(lower layer header)

6 diffserv/ECN flow label

payload len next header hop limit/TTL

source IPv6 address (128 bit)

destination IPv6 address (128 bit)

extension headers (variable size)

(next layer’s stuff)

identifies first “extension header” type if present
(extension header idea similar to TCP ‘options’ we saw earlier)
otherwise type of next layer (TCP, UDP, etc.)

payload = everything after fixed part of header
includes extension headers AND next layer’s data

TTL=“time-to-live”
limits how many times packet is forwarded
used to prevent “routing loops”

explicit congestion notification
(for congestion control, later topic)
and ‘hints’ for routers/switches about how ‘important’ packet is

3

IPv6 packet format
(lower layer header)

6 diffserv/ECN flow label

payload len next header hop limit/TTL

source IPv6 address (128 bit)

destination IPv6 address (128 bit)

extension headers (variable size)

(next layer’s stuff)

identifies first “extension header” type if present
(extension header idea similar to TCP ‘options’ we saw earlier)
otherwise type of next layer (TCP, UDP, etc.)

payload = everything after fixed part of header
includes extension headers AND next layer’s data

TTL=“time-to-live”
limits how many times packet is forwarded
used to prevent “routing loops”

explicit congestion notification
(for congestion control, later topic)
and ‘hints’ for routers/switches about how ‘important’ packet is

3

IPv6 packet format
(lower layer header)

6 diffserv/ECN flow label

payload len next header hop limit/TTL

source IPv6 address (128 bit)

destination IPv6 address (128 bit)

extension headers (variable size)

(next layer’s stuff)

identifies first “extension header” type if present
(extension header idea similar to TCP ‘options’ we saw earlier)
otherwise type of next layer (TCP, UDP, etc.)

payload = everything after fixed part of header
includes extension headers AND next layer’s data

TTL=“time-to-live”
limits how many times packet is forwarded
used to prevent “routing loops”

explicit congestion notification
(for congestion control, later topic)
and ‘hints’ for routers/switches about how ‘important’ packet is

3

IPv6 packet format
(lower layer header)

6 diffserv/ECN flow label

payload len next header hop limit/TTL

source IPv6 address (128 bit)

destination IPv6 address (128 bit)

extension headers (variable size)

(next layer’s stuff)

identifies first “extension header” type if present
(extension header idea similar to TCP ‘options’ we saw earlier)
otherwise type of next layer (TCP, UDP, etc.)

payload = everything after fixed part of header
includes extension headers AND next layer’s data

TTL=“time-to-live”
limits how many times packet is forwarded
used to prevent “routing loops”

explicit congestion notification
(for congestion control, later topic)
and ‘hints’ for routers/switches about how ‘important’ packet is

3

IPv4 packet format
(lower layer header)

4 header len diffserv/ECN total length

identification flags fragment offset

hop limit/TTL protocol header checksum

source IPv4 address (32 bit)

dest IPv4 address (32 bit)

options (variable size)

(next layer’s stuff)

data length = next layer’s data only
header length includes variable ‘options’

these fields part of support for “fragments”
where packet sent in multiple pieces
also exists in IPv6, but IPv6 uses extension headers for it
we’ll probably revisit this later

identifier for which protocol
common: TCP, UDP, ICMP

“time-to-live” / hop limit
same idea as IPv6

checksum of header only
(TCP has own checksum because header isn’t enough)
IPv6 got rid of IP-level checksums entirely

same field format as IPv6
explicit congestion notification
and ‘importance’ hint for switches/routers

4

IPv4 packet format
(lower layer header)

4 header len diffserv/ECN total length

identification flags fragment offset

hop limit/TTL protocol header checksum

source IPv4 address (32 bit)

dest IPv4 address (32 bit)

options (variable size)

(next layer’s stuff)

data length = next layer’s data only
header length includes variable ‘options’

these fields part of support for “fragments”
where packet sent in multiple pieces
also exists in IPv6, but IPv6 uses extension headers for it
we’ll probably revisit this later

identifier for which protocol
common: TCP, UDP, ICMP

“time-to-live” / hop limit
same idea as IPv6

checksum of header only
(TCP has own checksum because header isn’t enough)
IPv6 got rid of IP-level checksums entirely

same field format as IPv6
explicit congestion notification
and ‘importance’ hint for switches/routers

4

IPv4 packet format
(lower layer header)

4 header len diffserv/ECN total length

identification flags fragment offset

hop limit/TTL protocol header checksum

source IPv4 address (32 bit)

dest IPv4 address (32 bit)

options (variable size)

(next layer’s stuff)

data length = next layer’s data only
header length includes variable ‘options’

these fields part of support for “fragments”
where packet sent in multiple pieces
also exists in IPv6, but IPv6 uses extension headers for it
we’ll probably revisit this later

identifier for which protocol
common: TCP, UDP, ICMP

“time-to-live” / hop limit
same idea as IPv6

checksum of header only
(TCP has own checksum because header isn’t enough)
IPv6 got rid of IP-level checksums entirely

same field format as IPv6
explicit congestion notification
and ‘importance’ hint for switches/routers

4

IPv4 packet format
(lower layer header)

4 header len diffserv/ECN total length

identification flags fragment offset

hop limit/TTL protocol header checksum

source IPv4 address (32 bit)

dest IPv4 address (32 bit)

options (variable size)

(next layer’s stuff)

data length = next layer’s data only
header length includes variable ‘options’

these fields part of support for “fragments”
where packet sent in multiple pieces
also exists in IPv6, but IPv6 uses extension headers for it
we’ll probably revisit this later

identifier for which protocol
common: TCP, UDP, ICMP

“time-to-live” / hop limit
same idea as IPv6

checksum of header only
(TCP has own checksum because header isn’t enough)
IPv6 got rid of IP-level checksums entirely

same field format as IPv6
explicit congestion notification
and ‘importance’ hint for switches/routers

4

IPv4 packet format
(lower layer header)

4 header len diffserv/ECN total length

identification flags fragment offset

hop limit/TTL protocol header checksum

source IPv4 address (32 bit)

dest IPv4 address (32 bit)

options (variable size)

(next layer’s stuff)

data length = next layer’s data only
header length includes variable ‘options’

these fields part of support for “fragments”
where packet sent in multiple pieces
also exists in IPv6, but IPv6 uses extension headers for it
we’ll probably revisit this later

identifier for which protocol
common: TCP, UDP, ICMP

“time-to-live” / hop limit
same idea as IPv6

checksum of header only
(TCP has own checksum because header isn’t enough)
IPv6 got rid of IP-level checksums entirely

same field format as IPv6
explicit congestion notification
and ‘importance’ hint for switches/routers

4

IPv4 packet format
(lower layer header)

4 header len diffserv/ECN total length

identification flags fragment offset

hop limit/TTL protocol header checksum

source IPv4 address (32 bit)

dest IPv4 address (32 bit)

options (variable size)

(next layer’s stuff)

data length = next layer’s data only
header length includes variable ‘options’

these fields part of support for “fragments”
where packet sent in multiple pieces
also exists in IPv6, but IPv6 uses extension headers for it
we’ll probably revisit this later

identifier for which protocol
common: TCP, UDP, ICMP

“time-to-live” / hop limit
same idea as IPv6

checksum of header only
(TCP has own checksum because header isn’t enough)
IPv6 got rid of IP-level checksums entirely

same field format as IPv6
explicit congestion notification
and ‘importance’ hint for switches/routers

4

IPv4 packet format
(lower layer header)

4 header len diffserv/ECN total length

identification flags fragment offset

hop limit/TTL protocol header checksum

source IPv4 address (32 bit)

dest IPv4 address (32 bit)

options (variable size)

(next layer’s stuff)

data length = next layer’s data only
header length includes variable ‘options’

these fields part of support for “fragments”
where packet sent in multiple pieces
also exists in IPv6, but IPv6 uses extension headers for it
we’ll probably revisit this later

identifier for which protocol
common: TCP, UDP, ICMP

“time-to-live” / hop limit
same idea as IPv6

checksum of header only
(TCP has own checksum because header isn’t enough)
IPv6 got rid of IP-level checksums entirely

same field format as IPv6
explicit congestion notification
and ‘importance’ hint for switches/routers

4

IPv4 packet format
(lower layer header)

4 header len diffserv/ECN total length

identification flags fragment offset

hop limit/TTL protocol header checksum

source IPv4 address (32 bit)

dest IPv4 address (32 bit)

options (variable size)

(next layer’s stuff)

data length = next layer’s data only
header length includes variable ‘options’

these fields part of support for “fragments”
where packet sent in multiple pieces
also exists in IPv6, but IPv6 uses extension headers for it
we’ll probably revisit this later

identifier for which protocol
common: TCP, UDP, ICMP

“time-to-live” / hop limit
same idea as IPv6

checksum of header only
(TCP has own checksum because header isn’t enough)
IPv6 got rid of IP-level checksums entirely

same field format as IPv6
explicit congestion notification
and ‘importance’ hint for switches/routers

4

IPv4 addresses
32-bit numbers

typically written like 128.143.67.11
four 8-bit decimal values separated by dots
first part is most significant
same as 128 · 2563 + 143 · 2562 + 67 · 256 + 11 = 2 156 782 459

5

IPv4 address blocks
often will want to talk about group of IPv4 addresses

example: 128.143.67.64—128.143.67.127 (inclusive)

10000000 10001111 01000011 00100000

10000000 10001111 01000011 00111111

first 27 bits always same; anything for last bits

more convenient representation: 128.143.67.64/27
called “CIDR notation”

CIDR = classless inter-domain routing (will come up when we discuss
routing)

6

IPv4 address blocks
often will want to talk about group of IPv4 addresses

example: 128.143.67.64—128.143.67.127 (inclusive)

10000000 10001111 01000011 00100000

10000000 10001111 01000011 00111111

first 27 bits always same; anything for last bits

more convenient representation: 128.143.67.64/27
called “CIDR notation”

CIDR = classless inter-domain routing (will come up when we discuss
routing)

6

IPv4 address blocks
often will want to talk about group of IPv4 addresses

example: 128.143.67.64—128.143.67.127 (inclusive)

10000000 10001111 01000011 00100000

10000000 10001111 01000011 00111111

first 27 bits always same; anything for last bits

more convenient representation: 128.143.67.64/27
called “CIDR notation”

CIDR = classless inter-domain routing (will come up when we discuss
routing)

6

IPv4 address blocks
often will want to talk about group of IPv4 addresses

example: 128.143.67.64—128.143.67.127 (inclusive)

10000000 10001111 01000011 00100000

10000000 10001111 01000011 00111111

first 27 bits always same; anything for last bits

more convenient representation: 128.143.67.64/27
called “CIDR notation”

CIDR = classless inter-domain routing (will come up when we discuss
routing)

6

IPv4 address blocks
often will want to talk about group of IPv4 addresses

example: 128.143.67.64—128.143.67.127 (inclusive)

10000000 10001111 01000011 00100000

10000000 10001111 01000011 00111111

first 27 bits always same; anything for last bits

more convenient representation: 128.143.67.64/27
called “CIDR notation”

CIDR = classless inter-domain routing (will come up when we discuss
routing)

6

CIDR notation examples
5.7.3.3/14 = 5.4.0.0/14 = 5.4.0.0—5.7.255.255

also written 5.4/14

128.143.0.0/16 = 128.143.0.0—128.143.255.255

also written 128.143/16

192.168.0.0/24 = 192.168.0.0—192.168.0.255

10.0.0.0/8 = 10.0.0.0–10.255.255.255

also written 10/8

7

CIDR notation examples
5.7.3.3/14 = 5.4.0.0/14 = 5.4.0.0—5.7.255.255

also written 5.4/14

128.143.0.0/16 = 128.143.0.0—128.143.255.255
also written 128.143/16

192.168.0.0/24 = 192.168.0.0—192.168.0.255

10.0.0.0/8 = 10.0.0.0–10.255.255.255
also written 10/8

7

alternate notation: netmasks
instead of writing 128.143.67.64/27 might say

128.143.67.64 and “network mask” of 255.255.255.224

255.255.255.224 = 27 1’s

if some-address bitwise-AND netmask = 128.143.67.64
bitwise-AND netmask,
then some-address is in the range

8

alternate notation: netmasks
instead of writing 128.143.67.64/27 might say

128.143.67.64 and “network mask” of 255.255.255.224

255.255.255.224 = 27 1’s

if some-address bitwise-AND netmask = 128.143.67.64
bitwise-AND netmask,
then some-address is in the range

8

IPv6 addresses
IPv6 like IPv4, but with 128-bit numbers

written in hex, 16-bit parts, seperated by colons (:)

strings of 0s represented by double-colons (::)

typically given to users in blocks of 280 or 264 addresses

2607:f8b0:400d:c00::6a =
2607:f8b0:400d:0c00:0000:0000:0000:006a

2607f8b0400d0c0000000000000006aSIXTEEN

9

IPv6 CIDR notation examples
2607:fb80:400d:0c00::/64 =

2607:fb80:400d:0c00:0000:0000:0000:0000—
2607:fb80:400d:0c00:ffff:ffff:ffff:ffff

2607:fb80::/30 =
2607:fb80:0000:0000:0000:0000:0000:0000—
2607:fb83:ffff:ffff:ffff:ffff:ffff:ffff

10

11

(and 241 more) 12

…

13

regional internet registries (RIRs)

RIPE NCC

ARIN
APNIC
AFRINIC

LACNIC

map from Wikimedia Commons,
users Dork, Canuckguy et al, Sémhur, CC-BY-SA 3.0

most useful addresses managed by RIRs
African Network Information Centre (AFRINIC)
American Registry for Internet Numbers (ARIN)
Asia Pacific Network Information Centre (APNIC)
Latin American and Carribean Network Information Centre (LACNIC)
Réseaux IP Européens Network Coordination Centre (RIPE NCC)

14

RIR suballocations

15

special IPv4 addresses

16

special IPv4 addresses

17

selected special IP addresses
loopback (current machine) — 127/8 (v4), ::1/128 (v6)
link-local (current network only) —

169.254/16 (v4), ff80::/10 (v6)

private use (non-public networks only) —
192.168/16, 172.16/12, 10/8 (v4), (kinda) fc00::/7 (v6)

multicast groups and related — 224/4 (v4), ff00::/8 (v6)
multiple nodes can be part of a single “multicast group”

broadcast (all on current network) —
255.255.255.255, ff01::1

“future use” —
rest of 240/4 (v4), 4000::—efff:: (v6)

18

which link local?
“link local”: 169.254/16, fe80::/10
specific to each local network

fe80::17 on network A != fe80::17 on network B

problem: machine can be connected to two networks

solution: fe80::17%A versus fe80::17%B
what about IPv4? uh... too bad?

“There is no standard or obvious solution to this problem…must be done
explicitly through other means. The specification does not stipulate
those means.” — RFC 3927, section 3.2

19

which link local?
“link local”: 169.254/16, fe80::/10
specific to each local network

fe80::17 on network A != fe80::17 on network B

problem: machine can be connected to two networks
solution: fe80::17%A versus fe80::17%B

what about IPv4? uh... too bad?
“There is no standard or obvious solution to this problem…must be done
explicitly through other means. The specification does not stipulate
those means.” — RFC 3927, section 3.2

19

which link local?
“link local”: 169.254/16, fe80::/10
specific to each local network

fe80::17 on network A != fe80::17 on network B

problem: machine can be connected to two networks
solution: fe80::17%A versus fe80::17%B
what about IPv4? uh... too bad?

“There is no standard or obvious solution to this problem…must be done
explicitly through other means. The specification does not stipulate
those means.” — RFC 3927, section 3.2 19

switch v router: tables

MAC address port
00:11:22:33:44:55 1
00:33:00:01:02:aa 2
00:44:00:01:02:bb 3
… …

default (all)

switch (‘bridge’) table
IP addresses gateway iface
2001:0db8:40::/48 --- int
3fff:1000:19::/48 --- ext
… … …

default fe80::17ext

routing table

one logical device with multiple ports
not in table: always broadcast

‘interface’ = which network

one interface might have multiple ports
that are ‘bridged’ together

gateway = who to send to next
no gateway = ‘direct’ to destination

need to have specific destination
to send to on interface

20

switch v router: tables

MAC address port
00:11:22:33:44:55 1
00:33:00:01:02:aa 2
00:44:00:01:02:bb 3
… …

default (all)

switch (‘bridge’) table
IP addresses gateway iface
2001:0db8:40::/48 --- int
3fff:1000:19::/48 --- ext
… … …

default fe80::17ext

routing table

one logical device with multiple ports
not in table: always broadcast

‘interface’ = which network

one interface might have multiple ports
that are ‘bridged’ together

gateway = who to send to next
no gateway = ‘direct’ to destination

need to have specific destination
to send to on interface

20

switch v router: tables

MAC address port
00:11:22:33:44:55 1
00:33:00:01:02:aa 2
00:44:00:01:02:bb 3
… …

default (all)

switch (‘bridge’) table
IP addresses gateway iface
2001:0db8:40::/48 --- int
3fff:1000:19::/48 --- ext
… … …

default fe80::17ext

routing table

one logical device with multiple ports
not in table: always broadcast

‘interface’ = which network

one interface might have multiple ports
that are ‘bridged’ together

gateway = who to send to next
no gateway = ‘direct’ to destination

need to have specific destination
to send to on interface

20

switch v router: tables

MAC address port
00:11:22:33:44:55 1
00:33:00:01:02:aa 2
00:44:00:01:02:bb 3
… …

default (all)

switch (‘bridge’) table
IP addresses gateway iface
2001:0db8:40::/48 --- int
3fff:1000:19::/48 --- ext
… … …

default fe80::17ext

routing table

one logical device with multiple ports
not in table: always broadcast

‘interface’ = which network

one interface might have multiple ports
that are ‘bridged’ together

gateway = who to send to next
no gateway = ‘direct’ to destination

need to have specific destination
to send to on interface

20

trivial tables
let’s say we’re connected to ONE interface with ONE port

tables are really trivial:

MAC address port
default the port

switch (‘bridge’) table
IP addresses gateway iface
2001:0db8:40::/48 --- the interface

default fe80::17 the interface

routing table (IPv6)

IP addresses gateway iface
192.0.2.0/24 --- the interface

default 192.0.2.1 the interface

routing table (IPv4)

21

trivial tables
let’s say we’re connected to ONE interface with ONE port
tables are really trivial:

MAC address port
default the port

switch (‘bridge’) table
IP addresses gateway iface
2001:0db8:40::/48 --- the interface

default fe80::17 the interface

routing table (IPv6)

IP addresses gateway iface
192.0.2.0/24 --- the interface

default 192.0.2.1 the interface

routing table (IPv4)

21

trivial tables
let’s say we’re connected to ONE interface with ONE port
tables are really trivial:

MAC address port
default the port

switch (‘bridge’) table
IP addresses gateway iface
2001:0db8:40::/48 --- the interface

default fe80::17 the interface

routing table (IPv6)

IP addresses gateway iface
192.0.2.0/24 --- the interface

default 192.0.2.1 the interface

routing table (IPv4)

21

trivial tables
let’s say we’re connected to ONE interface with ONE port
tables are really trivial:

MAC address port
default the port

switch (‘bridge’) table
IP addresses gateway iface
2001:0db8:40::/48 --- the interface

default fe80::17 the interface

routing table (IPv6)

IP addresses gateway iface
192.0.2.0/24 --- the interface

default 192.0.2.1 the interface

routing table (IPv4)

21

switch v router: on the wires

10.0.1.0/24 10.0.2.0/24

MAC 00:…:AA
IP 10.0.1.2

MAC 04:…:BB
IP 10.0.1.3

MAC 05:…:CC
IP 10.0.1.4

MAC 02:…:DD / 02:…:DE
IP: 10.0.1.1 / 10.0.2.15

MAC 03:…:EE
IP: 10.0.2.2

00:…:AA → 02:…:DD

10.0.1.3 → 10.0.2.2
(actual data)

02:…:DE → 03:…:EE

10.0.1.3 → 10.0.2.2
(actual data)

MAC address = on local network
IP address = somewhere else

IP packet copied as is
placed in new frame

22

switch v router: on the wires

10.0.1.0/24 10.0.2.0/24

MAC 00:…:AA
IP 10.0.1.2

MAC 04:…:BB
IP 10.0.1.3

MAC 05:…:CC
IP 10.0.1.4

MAC 02:…:DD / 02:…:DE
IP: 10.0.1.1 / 10.0.2.15

MAC 03:…:EE
IP: 10.0.2.2

00:…:AA → 02:…:DD

10.0.1.3 → 10.0.2.2
(actual data)

02:…:DE → 03:…:EE

10.0.1.3 → 10.0.2.2
(actual data)

MAC address = on local network
IP address = somewhere else

IP packet copied as is
placed in new frame

22

switch v router: on the wires

10.0.1.0/24 10.0.2.0/24

MAC 00:…:AA
IP 10.0.1.2

MAC 04:…:BB
IP 10.0.1.3

MAC 05:…:CC
IP 10.0.1.4

MAC 02:…:DD / 02:…:DE
IP: 10.0.1.1 / 10.0.2.15

MAC 03:…:EE
IP: 10.0.2.2

00:…:AA → 02:…:DD

10.0.1.3 → 10.0.2.2
(actual data)

02:…:DE → 03:…:EE

10.0.1.3 → 10.0.2.2
(actual data)

MAC address = on local network
IP address = somewhere else

IP packet copied as is
placed in new frame

22

switch v router: on the wires

10.0.1.0/24 10.0.2.0/24

MAC 00:…:AA
IP 10.0.1.2

MAC 04:…:BB
IP 10.0.1.3

MAC 05:…:CC
IP 10.0.1.4

MAC 02:…:DD / 02:…:DE
IP: 10.0.1.1 / 10.0.2.15

MAC 03:…:EE
IP: 10.0.2.2

00:…:AA → 02:…:DD

10.0.1.3 → 10.0.2.2
(actual data)

02:…:DE → 03:…:EE

10.0.1.3 → 10.0.2.2
(actual data)

MAC address = on local network
IP address = somewhere else

IP packet copied as is
placed in new frame

22

switch v router: on the wires

10.0.1.0/24 10.0.2.0/24

MAC 00:…:AA
IP 10.0.1.2

MAC 04:…:BB
IP 10.0.1.3

MAC 05:…:CC
IP 10.0.1.4

MAC 02:…:DD / 02:…:DE
IP: 10.0.1.1 / 10.0.2.15

MAC 03:…:EE
IP: 10.0.2.2

00:…:AA → 02:…:DD

10.0.1.3 → 10.0.2.2
(actual data)

02:…:DE → 03:…:EE

10.0.1.3 → 10.0.2.2
(actual data)

MAC address = on local network
IP address = somewhere else

IP packet copied as is
placed in new frame

22

switch v router: on the wires

10.0.1.0/24 10.0.2.0/24

MAC 00:…:AA
IP 10.0.1.2

MAC 04:…:BB
IP 10.0.1.3

MAC 05:…:CC
IP 10.0.1.4

MAC 02:…:DD / 02:…:DE
IP: 10.0.1.1 / 10.0.2.15

MAC 03:…:EE
IP: 10.0.2.2

00:…:AA → 02:…:DD

10.0.1.3 → 10.0.2.2
(actual data)

02:…:DE → 03:…:EE

10.0.1.3 → 10.0.2.2
(actual data)

MAC address = on local network
IP address = somewhere else

IP packet copied as is
placed in new frame

22

switch v router: on the wires

10.0.1.0/24 10.0.2.0/24

MAC 00:…:AA
IP 10.0.1.2

MAC 04:…:BB
IP 10.0.1.3

MAC 05:…:CC
IP 10.0.1.4

MAC 02:…:DD / 02:…:DE
IP: 10.0.1.1 / 10.0.2.15

MAC 03:…:EE
IP: 10.0.2.2

00:…:AA → 02:…:DD

10.0.1.3 → 10.0.2.2
(actual data)

02:…:DE → 03:…:EE

10.0.1.3 → 10.0.2.2
(actual data)

MAC address = on local network
IP address = somewhere else

IP packet copied as is
placed in new frame

22

steps at the sender

MAC 00:…:AA
IP 10.0.1.2

src

MAC 04:…:BB
IP 10.0.1.3

MAC 05:…:CC
IP 10.0.1.4

MAC 02:…:DD / 02:…:DE
IP: 10.0.1.1 / 10.0.2.15

00:…:AA → ???????00:…:AA → 10.0.1.1’s MAC00:…:AA → 02:…:DD

10.0.1.2 → 10.0.2.2
(actual data) packet from upper layer

need to send at link layer
routing table says:
to 10.0.1.1
but need MAC address

need IP:MAC address table
called neighbor table
or ARP table

address gateway iface
10.0.1.0/24 --- wired
default 10.0.1.1 wired

src’s routing table

IP address MAC addresss
10.0.1.1 05:…:DD
10.0.1.4 05:…:CC

src’s neighbor table

23

steps at the sender

MAC 00:…:AA
IP 10.0.1.2

src

MAC 04:…:BB
IP 10.0.1.3

MAC 05:…:CC
IP 10.0.1.4

MAC 02:…:DD / 02:…:DE
IP: 10.0.1.1 / 10.0.2.15

00:…:AA → ???????00:…:AA → 10.0.1.1’s MAC00:…:AA → 02:…:DD

10.0.1.2 → 10.0.2.2
(actual data) packet from upper layer

need to send at link layer
routing table says:
to 10.0.1.1
but need MAC address

need IP:MAC address table
called neighbor table
or ARP table

address gateway iface
10.0.1.0/24 --- wired
default 10.0.1.1 wired

src’s routing table

IP address MAC addresss
10.0.1.1 05:…:DD
10.0.1.4 05:…:CC

src’s neighbor table

23

steps at the sender

MAC 00:…:AA
IP 10.0.1.2

src

MAC 04:…:BB
IP 10.0.1.3

MAC 05:…:CC
IP 10.0.1.4

MAC 02:…:DD / 02:…:DE
IP: 10.0.1.1 / 10.0.2.15

00:…:AA → ???????

00:…:AA → 10.0.1.1’s MAC00:…:AA → 02:…:DD

10.0.1.2 → 10.0.2.2
(actual data)

packet from upper layer

need to send at link layer

routing table says:
to 10.0.1.1
but need MAC address

need IP:MAC address table
called neighbor table
or ARP table

address gateway iface
10.0.1.0/24 --- wired
default 10.0.1.1 wired

src’s routing table

IP address MAC addresss
10.0.1.1 05:…:DD
10.0.1.4 05:…:CC

src’s neighbor table

23

steps at the sender

MAC 00:…:AA
IP 10.0.1.2

src

MAC 04:…:BB
IP 10.0.1.3

MAC 05:…:CC
IP 10.0.1.4

MAC 02:…:DD / 02:…:DE
IP: 10.0.1.1 / 10.0.2.15

00:…:AA → ???????

00:…:AA → 10.0.1.1’s MAC

00:…:AA → 02:…:DD

10.0.1.2 → 10.0.2.2
(actual data)

packet from upper layer
need to send at link layer

routing table says:
to 10.0.1.1
but need MAC address

need IP:MAC address table
called neighbor table
or ARP table

address gateway iface
10.0.1.0/24 --- wired
default 10.0.1.1 wired

src’s routing table

IP address MAC addresss
10.0.1.1 05:…:DD
10.0.1.4 05:…:CC

src’s neighbor table

23

steps at the sender

MAC 00:…:AA
IP 10.0.1.2

src

MAC 04:…:BB
IP 10.0.1.3

MAC 05:…:CC
IP 10.0.1.4

MAC 02:…:DD / 02:…:DE
IP: 10.0.1.1 / 10.0.2.15

00:…:AA → ???????00:…:AA → 10.0.1.1’s MAC

00:…:AA → 02:…:DD

10.0.1.2 → 10.0.2.2
(actual data)

packet from upper layer
need to send at link layer

routing table says:
to 10.0.1.1
but need MAC address

need IP:MAC address table
called neighbor table
or ARP table

address gateway iface
10.0.1.0/24 --- wired
default 10.0.1.1 wired

src’s routing table

IP address MAC addresss
10.0.1.1 05:…:DD
10.0.1.4 05:…:CC

src’s neighbor table

23

steps at the router

10.0.1.0/24 10.0.2.0/24

MAC 02:…:DD / 02:…:DE
IP: 10.0.1.1 / 10.0.2.15

rtr

00:…:AA → 02:…:DD

10.0.1.3 → 10.0.2.2
(actual data)

02:…:DE → 03:…:EE

10.0.1.3 → 10.0.2.2
(actual data)

address gateway iface
10.0.1.0/24 --- left
10.0.2.0/24 --- right

rtr’s routing table

IP address MAC addresss
10.0.2.2 03:…:EE

rtr’s neighbor table for right

24

steps at the router

10.0.1.0/24 10.0.2.0/24

MAC 02:…:DD / 02:…:DE
IP: 10.0.1.1 / 10.0.2.15

rtr

00:…:AA → 02:…:DD

10.0.1.3 → 10.0.2.2
(actual data)

02:…:DE → 03:…:EE

10.0.1.3 → 10.0.2.2
(actual data)

address gateway iface
10.0.1.0/24 --- left
10.0.2.0/24 --- right

rtr’s routing table

IP address MAC addresss
10.0.2.2 03:…:EE

rtr’s neighbor table for right

24

steps at the router

10.0.1.0/24 10.0.2.0/24

MAC 02:…:DD / 02:…:DE
IP: 10.0.1.1 / 10.0.2.15

rtr

00:…:AA → 02:…:DD

10.0.1.3 → 10.0.2.2
(actual data)

02:…:DE → 03:…:EE

10.0.1.3 → 10.0.2.2
(actual data)

address gateway iface
10.0.1.0/24 --- left
10.0.2.0/24 --- right

rtr’s routing table

IP address MAC addresss
10.0.2.2 03:…:EE

rtr’s neighbor table for right

24

steps at the router

10.0.1.0/24 10.0.2.0/24

MAC 02:…:DD / 02:…:DE
IP: 10.0.1.1 / 10.0.2.15

rtr

00:…:AA → 02:…:DD

10.0.1.3 → 10.0.2.2
(actual data)

02:…:DE → 03:…:EE

10.0.1.3 → 10.0.2.2
(actual data)

address gateway iface
10.0.1.0/24 --- left
10.0.2.0/24 --- right

rtr’s routing table

IP address MAC addresss
10.0.2.2 03:…:EE

rtr’s neighbor table for right

24

steps at the router

10.0.1.0/24 10.0.2.0/24

MAC 02:…:DD / 02:…:DE
IP: 10.0.1.1 / 10.0.2.15

rtr

00:…:AA → 02:…:DD

10.0.1.3 → 10.0.2.2
(actual data)

02:…:DE → 03:…:EE

10.0.1.3 → 10.0.2.2
(actual data)

address gateway iface
10.0.1.0/24 --- left
10.0.2.0/24 --- right

rtr’s routing table

IP address MAC addresss
10.0.2.2 03:…:EE

rtr’s neighbor table for right

24

making neighbor tables
need neighbor table to use IP addresses on network

some options:
system administrator manually configures
discover dynamically

25

manual neighbor tables
on Linux, can run some commands

ip niegh add 10.0.2.2 dev right lladdr
03:05:…:EE permanent

(newer interface, also supports IPv6)

arp -i right -s 10.0.2.2 03:05:…:EE
IPv4 only; does not allow setting validity duration

26

ARP/ND protocols
filling in tables dynamically?

key idea: ask everyone on network

entity with that IP address responds

IPv4: Address Resolution Protocol (ARP)

IPv6: ICMPv6 Neighbor Discovery (ND)
ICMP = Internet Control Message Protocol

27

ARP messages
suppose router IP address 10.0.2.15 and MAC address 02:…:DE
needs to find out that 10.0.2.2 uses 03:…:EE

02:…:DE→FF:FF:FF:FF:FF:FF: request 10.0.2.2
tell 10.0.2.15 (=02:…:DE)

FF:FF:FF:FF:FF:FF = broadcast (send to all on network)

03:…:EE→02:…:DE: reply 10.0.2.2=03:…:EE
tell 10.0.2.15=02:…:DE

28

ARP message format
32 bits

(lower layer header)
HW address type ‘protocol’ address type

HW address length ‘protocol’ address len opcode (request or reply)

sender HW addr

sender protocol addr

dest HW addr

dest protocol addr

protocol typically = IPv4
so address len = 4

seems like you could change this for IPv6
but instead IPv6 uses its own protocol

to keep format consistent
between request/replies

always have destination HW address
kept at FF:…:FF if unknown

29

ARP message format
32 bits

(lower layer header)
HW address type ‘protocol’ address type

HW address length ‘protocol’ address len opcode (request or reply)

sender HW addr

sender protocol addr

dest HW addr

dest protocol addr

protocol typically = IPv4
so address len = 4

seems like you could change this for IPv6
but instead IPv6 uses its own protocol

to keep format consistent
between request/replies

always have destination HW address
kept at FF:…:FF if unknown

29

ARP message format
32 bits

(lower layer header)
HW address type ‘protocol’ address type

HW address length ‘protocol’ address len opcode (request or reply)

sender HW addr

sender protocol addr

dest HW addr

dest protocol addr

protocol typically = IPv4
so address len = 4

seems like you could change this for IPv6
but instead IPv6 uses its own protocol

to keep format consistent
between request/replies

always have destination HW address
kept at FF:…:FF if unknown

29

ARP messages (revisited)
suppose router IP address 10.0.2.15 and MAC address 02:…:DE
needs to find out that 10.0.2.2 uses 03:…:EE

02:…:DE→FF:FF:FF:FF:FF:FF: request 10.0.2.2
tell 10.0.2.15 (=02:…:DE)

everyone who receives this can add 10.0.2.15=02:…:DE to neighbor table

03:…:EE→02:…:DE: reply 10.0.2.2=03:…:EE
tell 10.0.2.15=02:…:DE

everyone who receives this can add 10.0.2.2=03:…:EE to neighbor table

30

ICMPv6 ND
IPv6 uses different protocol for this
…but mostly works the same

differences:
sent as IPv6 packets
requests sent to special multicast address

goal: allow nodes to easily ignore irrelevant requests

different names:
request = solicitiation
reply = advertisement

31

MAC 77:…:BB
IP 10.0.2.2

MAC 99:…:BA
IP 10.0.2.9

10.0.2.9 99:…:BA
.2’s ARP table

MAC 77:…:BB
IP 10.0.2.2

MAC CC:…:01
IP 10.0.2.9

10.0.2.9 99:…:BA
.2’s ARP table

old entry prevents 10.0.2.2
from contacting new machine

Monday Tuesday

32

MAC 77:…:BB
IP 10.0.2.2

MAC 99:…:BA
IP 10.0.2.9

10.0.2.9 99:…:BA
.2’s ARP table

MAC 77:…:BB
IP 10.0.2.2

MAC CC:…:01
IP 10.0.2.9

10.0.2.9 99:…:BA
.2’s ARP table

old entry prevents 10.0.2.2
from contacting new machine

Monday Tuesday

32

gratituous ARP requests
solution: send unsolicited ARP messages

CC:…:01→FF:…:FF: request: who has 10.0.2.9, tell
10.0.2.9=CC:…:01

request not reply b/c concerns about old/broken implementations
ICMPv6 ND fixes this:
message is ‘advertisement’ (∼ reply), not ‘solicitation’ (∼ request)

33

gratituous ARP requests
solution: send unsolicited ARP messages

CC:…:01→FF:…:FF: request: who has 10.0.2.9, tell
10.0.2.9=CC:…:01

request not reply b/c concerns about old/broken implementations
ICMPv6 ND fixes this:
message is ‘advertisement’ (∼ reply), not ‘solicitation’ (∼ request)

33

MAC 77:…:BB
IP 10.0.2.2

MAC 99:…:BA
IP 10.0.2.9

MAC 09:…:FE
IP 10.0.2.9

34

MAC 77:…:BB
IP 10.0.2.2

MAC 99:…:BA
IP 10.0.2.9

MAC 09:…:FE
IP 10.0.2.9

34

duplicate addresses
recommendations in RFC 5227 “IPv4 Address Conflict Detection”

probe for IP address before using it
make sure to broadcast when starting to use address
probably give up on address if conflict found

watch out for ARP messages indicating address in use

on detecting conflict choose between:
‘defend’ address with more gratituous requests
give up address

35

ARP hijacking
MAC 77:…:BB
IP 10.0.2.2

MAC A5:…:BA
IP 10.0.2.9

MAC 09:…:FE

09:…:FE→77:…:BB
10.0.2.9 is 09:…:FE

09:…:FE→A5:…:BA
10.0.2.2 is 09:…:FE

10.0.2.2 and 10.0.2.9 have
“poisoned” ARP tables
makes them send everything to attacker
(instead of each other)

36

ARP hijacking
MAC 77:…:BB
IP 10.0.2.2

MAC A5:…:BA
IP 10.0.2.9

MAC 09:…:FE

09:…:FE→77:…:BB
10.0.2.9 is 09:…:FE

09:…:FE→A5:…:BA
10.0.2.2 is 09:…:FE

10.0.2.2 and 10.0.2.9 have
“poisoned” ARP tables
makes them send everything to attacker
(instead of each other)

36

ARP hijacking
MAC 77:…:BB
IP 10.0.2.2

MAC A5:…:BA
IP 10.0.2.9

MAC 09:…:FE

09:…:FE→77:…:BB
10.0.2.9 is 09:…:FE

09:…:FE→A5:…:BA
10.0.2.2 is 09:…:FE

10.0.2.2 and 10.0.2.9 have
“poisoned” ARP tables
makes them send everything to attacker
(instead of each other)

36

autoconfiguration
how do hosts get address + default routing table?
one answer: set manually

37

simple network config
IP address: 10.0.2.45

(sub)net mask: /25 (aka 255.255.255.128)
varies which format is input

(default) gateway: 10.0.2.102

addresses next hop device
10.2.0.0/25 (direct) out
default 10.2.0.102 out

38

simple network config
IP address: 10.0.2.45

(sub)net mask: /25 (aka 255.255.255.128)
varies which format is input

(default) gateway: 10.0.2.102
addresses next hop device
10.2.0.0/25 (direct) out
default 10.2.0.102 out

38

DHCP messages (1)
protocol looks weird in packet traces because of history

built on top of UDP + IP

built as extension to older BOOTP (bootstrap protocol)

common message format for different “operations”

39

DHCP messages (2)
from client (looking to configure itself):

DISCOVER (look for configuration server)
REQUEST (get configuration from server)

from server (offering configurations):
OFFER (‘I am a configuration server’)
ACK (here’s a configuration)

40

DHCP request example

built on IP+UDP rather than special protocol like ARP

sending to broadcast ethernet/IP address (all 1 bits)
placeholder source IP of 0.0.0.0

‘boot’ probably because derived
from bootstrap protocol (BOOTP)

message format same in both directions, so
fields here intended for use in response

41

DHCP request example

built on IP+UDP rather than special protocol like ARP

sending to broadcast ethernet/IP address (all 1 bits)
placeholder source IP of 0.0.0.0

‘boot’ probably because derived
from bootstrap protocol (BOOTP)

message format same in both directions, so
fields here intended for use in response

41

DHCP request example

built on IP+UDP rather than special protocol like ARP

sending to broadcast ethernet/IP address (all 1 bits)
placeholder source IP of 0.0.0.0

‘boot’ probably because derived
from bootstrap protocol (BOOTP)

message format same in both directions, so
fields here intended for use in response

41

DHCP request example

built on IP+UDP rather than special protocol like ARP

sending to broadcast ethernet/IP address (all 1 bits)
placeholder source IP of 0.0.0.0

‘boot’ probably because derived
from bootstrap protocol (BOOTP)

message format same in both directions, so
fields here intended for use in response

41

DHCP ACK example

response (ACK) has address fields filled in/23 = 255.255.254.0 mask
172.25.142.0 = 172.25.143.52 bitwise-AND 255.255.254.0

42

DHCP ACK example

response (ACK) has address fields filled in

/23 = 255.255.254.0 mask
172.25.142.0 = 172.25.143.52 bitwise-AND 255.255.254.0

42

DHCP ACK example

response (ACK) has address fields filled in

/23 = 255.255.254.0 mask
172.25.142.0 = 172.25.143.52 bitwise-AND 255.255.254.0

42

DHCP leases
DHCP ACKs specify a time limit

(example from prior slide (UVa eduroam): 30 minutes)

need to be renewed (new REQUEST + ACK)
REQUESTs can contain ‘desired address’ (= current address when
renewing)

43

how many DHCP servers?
DHCP assumption: broadcast to local network and there’s the
server

conflicting goals:
want broadcasts not to go too many machines
want to have few DHCP servers

solution: DHCP relays

44

how many DHCP servers?
DHCP assumption: broadcast to local network and there’s the
server

conflicting goals:
want broadcasts not to go too many machines
want to have few DHCP servers

solution: DHCP relays

44

DHCP relays

DHCP

relay

Unicast to server

Broadcast

Host

Other networks

DHCP server

45

IPv6 autoconfiguration
in IPv4, autoconfiguration “bolted on”

one protocol to be assigned address (DHCP)
one protoocl to communicate IP address to other nodes on network
(ARP)

IPv6 was designed later, so they thought about it early

46

big network address assignment
IPv6 local networks are typically /64s

264 address available for local network

why so big? allow easy address assignment

StateLess Address Auto Configuration (SLAAC)

47

MAC-address based address assignment
let’s say my local network is 2001:db8:4999:3333::/64
MAC address IPv6 address
11:22:33:44:55:66 2001:db8:4999:3333:1122:33ff:fe44:5566
01:A0:B3:CC:DD:FF 2001:db8:4999:3333:01a0:b3ff:fecc:ddff
… …

48

MAC-address based address assignment
let’s say my local network is 2001:db8:4999:3333::/64
MAC address IPv6 address
11:22:33:44:55:66 2001:db8:4999:3333:1122:33ff:fe44:5566
01:A0:B3:CC:DD:FF 2001:db8:4999:3333:01a0:b3ff:fecc:ddff
… …

48

Network Working Group T. Narten
Request for Comments: 3041 IBM
Category: Standards Track R. Draves

Microsoft Research
January 2001

Privacy Extensions for Stateless Address Autoconfiguration in IPv6

...
Abstract

........ Use of the extension causes
nodes to generate global-scope addresses from interface identifiers
that change over time, even in cases where the interface contains an
embedded IEEE identifier. Changing the interface identifier (and the
global-scope addresses generated from it) over time makes it more
difficult for eavesdroppers and other information collectors to
identify when different addresses used in different transactions
actually correspond to the same node.

49

late timeline
privacy extensions weren’t default until

MacOS X 10.7 (2011)
Windows Vista (2007)
Ubuntu 12.04 (2012)

50

SLAAC
uses as ICMPv6 (same as for neighbor discovery)

two modes:
when there’s a router (get global addresses)
when there’s only a local network (get link-local addresses)

51

router adverisements
nodes send a ICMPv6 Router Solicitation message
receive back a ICMPv6 Router Advertisement which can have:

prefix information
nodes choose address starting with prefix
check for duplicates using neighbor discovery

DNS information
“managed configuration” flag

nodes use DHCPv6 to get configuration

“other configuration” flag
nodes choose address using prefix, get additional information from
DHCPv6 52

router adverisements
nodes send a ICMPv6 Router Solicitation message
receive back a ICMPv6 Router Advertisement which can have:

prefix information
nodes choose address starting with prefix
check for duplicates using neighbor discovery

DNS information
“managed configuration” flag

nodes use DHCPv6 to get configuration

“other configuration” flag
nodes choose address using prefix, get additional information from
DHCPv6 52

router adverisements
nodes send a ICMPv6 Router Solicitation message
receive back a ICMPv6 Router Advertisement which can have:

prefix information
nodes choose address starting with prefix
check for duplicates using neighbor discovery

DNS information
“managed configuration” flag

nodes use DHCPv6 to get configuration

“other configuration” flag
nodes choose address using prefix, get additional information from
DHCPv6 52

router adverisements
nodes send a ICMPv6 Router Solicitation message
receive back a ICMPv6 Router Advertisement which can have:

prefix information
nodes choose address starting with prefix
check for duplicates using neighbor discovery

DNS information
“managed configuration” flag

nodes use DHCPv6 to get configuration

“other configuration” flag
nodes choose address using prefix, get additional information from
DHCPv6 52

router adverisements
nodes send a ICMPv6 Router Solicitation message
receive back a ICMPv6 Router Advertisement which can have:

prefix information
nodes choose address starting with prefix
check for duplicates using neighbor discovery

DNS information
“managed configuration” flag

nodes use DHCPv6 to get configuration

“other configuration” flag
nodes choose address using prefix, get additional information from
DHCPv6 52

backup slides

53

	IP on Ethernet
	IP packet format
	IP addresses
	IPv4
	address format
	CIDR notation

	IPv6
	address space allocation
	which link-local addresses

	routing versus switching
	ARP
	neighbor table, filling by hand
	ARP, ND
	what if there are two
	ARP hijacking

	DHCP
	DHCP relays
	DHCPv6

	IPv6 autoconfiguration
	backup slides

