
1

changelog
26 Nov 2024: fixup extra and misplaced lines on SOCKS operation
slides

26 Nov 2024: fixup formatting on SSH slide

2

on a remote network

internet

company

server

actual connections logical connections

internet

company

server

3

connecting two networks

company site A company site B

internet

setup tunnel
between disconnected sites

actual connections logical connections

company site A company site B

internet

as if directly
linked sites

4

two networks in one

phone phone

actual connections logical connections

phone phone

5

encapsulation: why? (1)
some possible scnearios (1/2):

add encryption/authentication to data in flight

more explicit way to decide what goes through firewall

be “on University/company network” from home

hide original location of Internet connection

make virtual machines running on different servers appear to be
plugged into one switch

6

encapsulation: why? (2)
some possible scnearios (2/2):

evade overally restrictive firewall rules

make two datacenters connected via Internet appear to be one big
network

‘separate’ networks for phones v. desktops without buying two sets
of switches

7

aside: non-end-to-end encryption?
often encapsulation used to have encrypted link

nice, but really want to encrypt between end-hosts
example: SSH, HTTPS

exercise: extra vulnerable points if relying on encrypted link idea?

8

encapsulation options [incomplete]
left in above TCP/UDP/higher lay-

ers
IP link-layer

above TCP/UDP HTTP proxy, DNS over
HTTP(S)

— —

TCP/UDP SOCKS, HTTP CON-
NECT, SSH conn for-
warding, TLS

— —

IP OpenVPN, WireGuard GRE, IPsec MPLS
link-layer OpenVPN, … ? VLAN,

MPLS

9

encapsulation steps
1. getting the stuff to encapsulate

2. sending it encapsulated

10

encapsulation steps
1. getting the stuff to encapsulate

2. sending it encapsulated

11

encapsulating w/ app changes
application might have special code to handle connecting differently

+ might take advantage of extra information in encapsulation

example: many application’s TLS support

example: web browser HTTP/SOCKS proxy support

12

encapsulating w/o app changes
generally: easier to do for lower layers

link-layer in something
“virtual” (probably Ethernet) device
sends/receives from ‘tunnel’

IP in something
“virtual” IP link
destination routing table can go to

UDP/TCP in something
replace socket API
convince application to connect to different IP address?
terminate UDP/TCP connection at ‘wrong’ machine

13

encapsulating w/o app changes
generally: easier to do for lower layers

link-layer in something
“virtual” (probably Ethernet) device
sends/receives from ‘tunnel’

IP in something
“virtual” IP link
destination routing table can go to

UDP/TCP in something
replace socket API
convince application to connect to different IP address?
terminate UDP/TCP connection at ‘wrong’ machine

14

Linux tap devices
create virtual ethernet device mydev
$ ip tuntap add dev mydev mode tap
mark ethernet device as up
$ ip link set mydev up
$ dhclient mydev # or other commands to use/config device

(dhclient is a DHCP client)
—
int opentap(const char * name) {

... /* setup code, not shown*/
}
...
int fd = opentap("mydev");
...
write(fd, ethernetPacket, packetSize)
/* and (probably in separate threads) */
read(fd, buffer, SIZE); processEthernetPacket(buffer);

15

encapsulating w/o app changes
generally: easier to do for lower layers

link-layer in something
“virtual” (probably Ethernet) device
sends/receives from ‘tunnel’

IP in something
“virtual” IP link
destination routing table can go to

UDP/TCP in something
replace socket API
convince application to connect to different IP address?
terminate UDP/TCP connection at ‘wrong’ machine

16

Linux tun devices
same as ‘tap’ devices, but…

get IP packets, not ethernet packets
create virtual ethernet device mydev
$ ip tuntap add dev mydev mode tun
setup device to be routed to, example:
$ ip address add 10.0.0.2 dev mydev
$ ip route add 10.0.0.0/24 dev mydev
$ ip -6 address add 3fff:1234::1 dev mydev
$ ip -6 route add 3fff:1234::/32 dev mydev

tunneling program can then open device and read/write IP packets

17

full tunnel routing table
say 198.51.100.5 is running tunnel sever,
and 10.0.2.5 is gateway beyond tunnel,
and 203.0.113.54 is local gateway:
address next hop dev priority
10.0.2.0/24 — tunnel normal
198.51.100.5/32 208.0.113.54 real high
(default) 203.0.113.54 real normal
(default) 10.0.2.5 tunnel high

18

alternate idea
shown: creating special route for tunnel destination

alternate idea: tell OS to use correct interface/IP address

most OSes: which IP address is bound = which network interface
to use

but would need to discover correct IP address
might be tricky if wireless + wifi connections, or wifi changes

19

split tunnel routing table
say 198.51.100.5 is running tunnel sever,
and 10.0.2.5 is gateway beyond tunnel,
and 10.0.0.0/16, 198.51.100.0/24 are tunneled networks
and 203.0.113.54 is local gateway:
address next hop dev priority
10.0.2.0/24 — tunnel normal
10.0.0.0/16 10.0.2.5 tunnel normal
198.51.100.0/24 10.0.2.5 tunnel normal
198.51.100.5/32 208.0.113.54 real high
(default) 203.0.113.54 real normal

20

encapsulating w/o app changes
generally: easier to do for lower layers

link-layer in something
“virtual” (probably Ethernet) device
sends/receives from ‘tunnel’

IP in something
“virtual” IP link
destination routing table can go to

UDP/TCP in something
replace socket API
convince application to connect to different IP address?
terminate UDP/TCP connection at ‘wrong’ machine

21

‘transparent’ proxy via library

configures dynamic library loader to load its library
LD_PRELOAD

with special versions of connect

22

encapsulating w/o app changes
generally: easier to do for lower layers

link-layer in something
“virtual” (probably Ethernet) device
sends/receives from ‘tunnel’

IP in something
“virtual” IP link
destination routing table can go to

UDP/TCP in something
replace socket API
convince application to connect to different IP address?
terminate UDP/TCP connection at ‘wrong’ machine

23

socket-in-socket
example: SSH connection forwarding

ssh -L X:remotehost:remoteport hostname

example: stunnel for ‘tunneling’ TCP in TLS

run on port X, configure to connect to some remote host

configure program to connect to localhost port X

…instead of remote host

24

encapsulating w/o app changes
generally: easier to do for lower layers

link-layer in something
“virtual” (probably Ethernet) device
sends/receives from ‘tunnel’

IP in something
“virtual” IP link
destination routing table can go to

UDP/TCP in something
replace socket API
convince application to connect to different IP address?
terminate UDP/TCP connection at ‘wrong’ machine

25

‘transparent’ proxy via IP interception
example use case: shared HTTP cache used automatically

if company/ISP wants everyone to use cache for performance
if company wants to audit all HTTP proxy

configure router/firewall to direct all HTTP TCP connections to
proxy
either:

configure proxy machine to accept connections on all IP addresses or
have router/firewall do network address translation (other direction)

HTTP proxy squid on Linux, some firewall boxes support this
I don’t think this is a good idea…

problematic with encryption, new HTTP features
26

encapsulation steps
1. getting the stuff to encapsulate

2. sending it encapsulated

27

encapsulation options [incomplete]
left in above TCP/UDP/higher lay-

ers
IP link-layer

above TCP/UDP HTTP proxy, DNS over
HTTP(S)

— —

TCP/UDP SOCKS, HTTP CON-
NECT, SSH conn for-
warding, TLS

— —

IP OpenVPN, WireGuard GRE, IPsec MPLS
link-layer OpenVPN, … ? VLAN,

MPLS

28

SOCKS (RFC 1928)
SOCKS motivation in RFC: firewall traversal

supports both TCP and UDP

29

SOCKS TCP operation (client)

client
SOCKS
proxy end-server

open TCP connection
CONNECT end-server:end-server-port

open TCP connection
open TCP connection

reply w/ success status

now client can use TCP connection
as if directly to server

data for server data for server

data from serverdata from server
30

SOCKS TCP operation (server)

client
SOCKS
proxy end-server

open TCP connection
BIND 0:0 or BIND end-server:port

reply w/ IP+port on proxy
open TCP connection

reply w/ success status

now client can use TCP connection
as if directly to server

data for server data for server

data from serverdata from server
31

SOCKS UDP operation
use TCP to get UDP port for proxy to use
send/receives UDP packets with “request header”:
+----+------+------+----------+----------+----------+
|RSV | FRAG | ATYP | DST.ADDR | DST.PORT | DATA |
+----+------+------+----------+----------+----------+
| 2 | 1 | 1 | Variable | 2 | Variable |
+----+------+------+----------+----------+----------+
FRAG = which fragment number

added header means we might need to split UDP packets up
0 = not fragmented, most sig bit = last fragment

ATYP = address type (IPv4/IPv6/DNS name)
32

SOCKS as interface
relatively easy to add SOCKS support to (esp. TCP) program

but SOCKS doesn’t support encryption, etc.

common trick: run SOCKS proxy program on localhost
(127.0.0.1/::1)

that program sets up ‘tunnel’ with encryption, etc. to other
machine

idea supported by OpenSSH, Tor
33

what if…
consider SOCKS TCP connection forwarding…

what happens to bandwidth, latency, resource usage,
error-reporting if…

sending lots of data and proxy to remote link is slow?

remote host goes down in middle of connection?

34

SSH protocol overview
SSH transport layer protocol

handles encryption + integrity + host authentication
uses key exchange, with key share signed by host key
rest of connection uses symmetric encryption + MACs

transport layer supports sending packets
initial 1-type “message number” identifies type
packets encrypted+MAC’d once that is negotiated

on top of transport layer:
SSH (user) authentication protocol

handles passwords, etc.

SSH connection protocol
handles terminal sessions, forwarded connections 35

SSH connection protocol
open channels identified by 32-bit integers

each channel has:
type (session or pty-req or tcpip-forward or …)
“window size”
maximum packet size

seperate packets for
opening/closing channels
adjusting “window size”
sending data
sending metadata (example: terminal window size)

36

SSH connection protocol
open channels identified by 32-bit integers

each channel has:
type (session or pty-req or tcpip-forward or …)
“window size”
maximum packet size

seperate packets for
opening/closing channels
adjusting “window size”
sending data
sending metadata (example: terminal window size)

36

SSH connection protocol
open channels identified by 32-bit integers

each channel has:
type (session or pty-req or tcpip-forward or …)
“window size”
maximum packet size

seperate packets for
opening/closing channels
adjusting “window size”
sending data
sending metadata (example: terminal window size)

36

SSH window sizes
SSH connection protocol considers window size to be
amount of data that can be sent

not same as TCP idea since no acknowledgments

decrements by X when X bytes sent

increases by Y on window adjust message with Y

37

SSH window sizes?
SSH has way of managing channel window sizes

how should SSH server do that?

(OpenSSH: 2MB max/init window size, not adjusted immediately)

38

Tor
Tor — “onion routing”
suppose connecting from A to B and A to C
goal: connection is anonymous
method: proxy through several ‘onion routers’

attacker should only know:
A is sending to someone via Tor
B is receiving from someone via Tor
C is receiving from someone via Tor

not be able to tie A and B or A and C or B and C together
otherwise 39

Tor threat model
(from Digledine, Mathewson, Syverson, “Tor: A Second-Generation
Onion Router”)

an advserary “who can observe some fraction of network traffic;
who can generate, modify, delete, or delay traffic; who can operate
onion routers of their own; and who can compromise some fraction
of onion routers”

40

Tor circuit idea (1)
EX(Y) = Y encrypted to X
to create ‘circuit’: A ↔ OR1 ↔ OR2 ↔ B

A = probably browser, B = probably webserver
OR = onion router
can choose different number of ORs if desired

A sends OR1 via TLS:
“please setup circuit to OR2: ” + EOR2(“please connect to B”)
OR1 sends A’s encrypted data to OR2 with OR1’s circuit ID
OR2 sends back responses via OR1 + OR1’s circuit iD
OR1 uses circuit ID to send back to A

41

Tor circuit idea (2)
A ↔ OR1 ↔ OR2 ↔ B

A = probably browser, B = probably webserver

OR1 doesn’t know who A is sending to

OR2 doesn’t know who is sending to B

fine if OR1, OR2 independently operated
in practice: probably add additional OR to circuit
otherwise, require large portion of ORs to be independent

42

Tor circuit

43

traffic analysis problem
problem 1: if I see A send 1000 bytes, then receive 1749 bytes,
and…

at about the same time I see B receive 1000 bytes, then send 1749
bytes

…would be a big tell

worse: B or OR 1 or OR 3 can deliberately generate patterns of
traffic to help ID A

44

mitigations for traffic analysis?
general idea: add data or delay to make everything ‘the same’

add padding to traffic sent on ‘circuit’
512-byte cells only (can’t see exact sizes in bytes)
additional padding cells added, too

“cover traffic” sent periodically between A and OR1
1.5 s to 9.5 s in each direction if no traffic
idea: hard for attacker to tell when user active

but real-time nature limits possible mitigations
similar idea for email avoids with random delays
…but can’t really browse the web that way

45

application-layer tells
browser reveals a lot of information:

browser, OS version
screen size
fonts available
timezone
…

problematic for anonymity
helps B limit possible other ends very seriously

Tor browser (modified Firefox, essentially) mitigation:
limited set of screen sizes, OS versions, fonts, etc. allowed

46

other Tor browser paranoia
scripts disabled by default

seriously limits ‘ordinary’ browser security vulnerabilities

cookies, caches cleared when browser closed

HTTPS-only by default
really dangerous otherwise since we don’t trust last onion router

47

encapsulation options [incomplete]
left in above TCP/UDP/higher lay-

ers
IP link-layer

above TCP/UDP HTTP proxy, DNS over
HTTP(S)

— —

TCP/UDP SOCKS, HTTP CON-
NECT, SSH conn for-
warding, TLS

— —

IP OpenVPN, WireGuard GRE, IPsec MPLS
link-layer OpenVPN, … ? VLAN,

MPLS

48

two networks in one

phone phone

actual connections logical connections

phone phone

49

GRE packet format
(IP or UDP header (for tunnel))

C 0 K S 0
vers
0

protocol type
(EtherType)

checksum (if C set) 0 (if C set)

key (if K set)

sequence number (if S set)
encapsulated header+data

(probably IPv4 or IPv6)

checksum, ‘key’ (∼ port), sequence number optional
key to allow multiple connections

if over UDP, could use separate ports instead
(but usualy not over UDP)

50

GRE packet format
(IP or UDP header (for tunnel))

C 0 K S 0
vers
0

protocol type
(EtherType)

checksum (if C set) 0 (if C set)

key (if K set)

sequence number (if S set)
encapsulated header+data

(probably IPv4 or IPv6)checksum, ‘key’ (∼ port), sequence number optional

key to allow multiple connections
if over UDP, could use separate ports instead

(but usualy not over UDP)

50

GRE packet format
(IP or UDP header (for tunnel))

C 0 K S 0
vers
0

protocol type
(EtherType)

checksum (if C set) 0 (if C set)

key (if K set)

sequence number (if S set)
encapsulated header+data

(probably IPv4 or IPv6)

checksum, ‘key’ (∼ port), sequence number optional

key to allow multiple connections
if over UDP, could use separate ports instead

(but usualy not over UDP)

50

encapsulatoin with encryption
GRE = sends packets as is, setup in advance

often want to add autoconfiguration + encryption + authentication
typically:

TLS-handshake like key exchange protocol to setup conncetion
add space for message authentication code, nonce
encrypt data with symmetric keys

example protocols:
IKE (setup/key exchange) + IPsec ESP (actual tunnel)
OpenVPN (both)
WireGuard (both)

51

TCP-in-TCP problems
sometimes run IP tunnel over TCP

exercise: what’s wrong with GRE for this?
(IP or UDP header (for tunnel))

C 0 K S 0 vers
0

protocol type
(EtherType)

checksum (if C set) 0 (if C set)

key (if K set)

sequence number (if S set)
encapsulated header+data

(probably IPv4 or IPv6)
52

TCP-in-TCP problems
sometimes run IP tunnel over TCP

example: picky firewall rules, or non-UDP-supporting NAT

outer TCP connection adds extra buffering
more than UDP, because will usually buffer instead of dropping

→ very high round-trip time if not careful

can result in very poor TCP performance

53

two networks in one

phone phone

actual connections logical connections

phone phone

54

VLAN idea
multiple (‘virtual’) local networks over one network

links/ports either shared or assigned to just one network

most common implementation: Ethernt 802.1q:

on shared links, frames tagged with their ‘VLAN ID’
special case: untagged frames part of VLAN ID 0x0

tags added/removed when going to unshared links
and broadcast frames filtered out if VLAN ID doesn’t match

55

Ethernet encapsulation
unencapsulated:

source MAC dest MAC type

encapsulated:
source MAC dest MAC 0x8100

Q
o
S

VLAN
ID type

encapsulation typically added/removed by switches
sysadmin configures specific ports to be on a VLAN
another common case: virtual machine software

network IDs (‘VLAN identifiers’) configured by sysadmins
special case: 0x0 = default (untagged), 0xFFF = reserved

usually increase in supported frame size to accomodate tag 56

multiprotocol label switching (MPLS)
MPLS: combines encapsulation and routing tables

0

in label dest op out
0 --- 3fff:1::/32 push 4 2
0 --- 3fff:2::/32 push 7 2
2 9 --- pop 0
… … … … …

3fff:1::/321
2

3fff:2::/32

1

label op out
24 swap 21 1
25 swap 22 1
27 swap 21 2
28 swap 29 0
… … … in label dest op out

1 --- 3fff:2::/32 push 27 0
1 --- default push 28 0
0 21 --- pop 1
0 22 --- pop 2
… … … … …

2 0 1

0

2

0

dest=3fff:1::aa …

24 dest=3fff:1::aa …

21 dest=3fff:1::aa …

‘swap’ operation to translate
between different label meanings

allows piecemail configuration

routers in ‘middle’ of network
have very simple routing decisions
no prefix matching

57

multiprotocol label switching (MPLS)
MPLS: combines encapsulation and routing tables

0

in label dest op out
0 --- 3fff:1::/32 push 4 2
0 --- 3fff:2::/32 push 7 2
2 9 --- pop 0
… … … … …

3fff:1::/321
2

3fff:2::/32

1

label op out
24 swap 21 1
25 swap 22 1
27 swap 21 2
28 swap 29 0
… … … in label dest op out

1 --- 3fff:2::/32 push 27 0
1 --- default push 28 0
0 21 --- pop 1
0 22 --- pop 2
… … … … …

2 0 1

0

2

0

dest=3fff:1::aa …

24 dest=3fff:1::aa …

21 dest=3fff:1::aa …

‘swap’ operation to translate
between different label meanings

allows piecemail configuration

routers in ‘middle’ of network
have very simple routing decisions
no prefix matching

57

multiprotocol label switching (MPLS)
MPLS: combines encapsulation and routing tables

0

in label dest op out
0 --- 3fff:1::/32 push 4 2
0 --- 3fff:2::/32 push 7 2
2 9 --- pop 0
… … … … …

3fff:1::/321
2

3fff:2::/32

1

label op out
24 swap 21 1
25 swap 22 1
27 swap 21 2
28 swap 29 0
… … … in label dest op out

1 --- 3fff:2::/32 push 27 0
1 --- default push 28 0
0 21 --- pop 1
0 22 --- pop 2
… … … … …

2 0 1

0

2

0

dest=3fff:1::aa …

24 dest=3fff:1::aa …

21 dest=3fff:1::aa …

‘swap’ operation to translate
between different label meanings

allows piecemail configuration

routers in ‘middle’ of network
have very simple routing decisions
no prefix matching

57

multiprotocol label switching (MPLS)
MPLS: combines encapsulation and routing tables

0

in label dest op out
0 --- 3fff:1::/32 push 4 2
0 --- 3fff:2::/32 push 7 2
2 9 --- pop 0
… … … … …

3fff:1::/321
2

3fff:2::/32

1

label op out
24 swap 21 1
25 swap 22 1
27 swap 21 2
28 swap 29 0
… … … in label dest op out

1 --- 3fff:2::/32 push 27 0
1 --- default push 28 0
0 21 --- pop 1
0 22 --- pop 2
… … … … …

2 0 1

0

2

0

dest=3fff:1::aa …

24 dest=3fff:1::aa …

21 dest=3fff:1::aa …

‘swap’ operation to translate
between different label meanings

allows piecemail configuration

routers in ‘middle’ of network
have very simple routing decisions
no prefix matching

57

multiprotocol label switching (MPLS)
MPLS: combines encapsulation and routing tables

0

in label dest op out
0 --- 3fff:1::/32 push 4 2
0 --- 3fff:2::/32 push 7 2
2 9 --- pop 0
… … … … …

3fff:1::/321
2

3fff:2::/32

1

label op out
24 swap 21 1
25 swap 22 1
27 swap 21 2
28 swap 29 0
… … … in label dest op out

1 --- 3fff:2::/32 push 27 0
1 --- default push 28 0
0 21 --- pop 1
0 22 --- pop 2
… … … … …

2 0 1

0

2

0

dest=3fff:1::aa …

24 dest=3fff:1::aa …

21 dest=3fff:1::aa …

‘swap’ operation to translate
between different label meanings

allows piecemail configuration

routers in ‘middle’ of network
have very simple routing decisions
no prefix matching

57

Label Distribution Protocol
share with neighbors list of:

(ultimate destination, desired label)

use entries to
allocate new local labels
setup appropriate swap entries
send other neighbors update about new labels

if using normal routing protocol to decide which neighbors routes
to accept, just a funny way to implement routing tables

58

MPLS tunnel
logical view — ‘virtual wire’

A B

actual network

0A
in label op out
0 --- push 32 1

--- 1 pop 0
… … … …

label op out
32 swap 37 4
26 swap 21 0
… … …

label op out
37 swap 20 6
39 swap 32 3
… … …

in label op out
0 --- push 37 1

--- 0 swap 29 6
… … … …

0 B1 0 4 3 6 1

59

MPLS tunnels for traffic engineering
if multiple paths from A to B often want to:

balance between them to use available bandwidth
prioritize important traffic on ‘better’ path
…

plain OSPF can’t really do any of this unless equal cost

MPLS gives mechanism to do this kind of balancing:
setup labels along desired paths
choosing new path (or failover) = changing ‘swap X’ to ‘swap Y’
can configure backup paths in advance and turn them on later

60

rapid failover
0

label op out
21 swap 25 2

(backup) 21 swap 27 1
27 swap 30 0
… … …

label op out
25 swap 31 2
30 swap 27 1

30 (backup) swap 28 3
… … …

label op out
27 swap 24 2
28 swap 27 1
… … …

1

1

2 13

2

61

RSVP-TE
RSVP-TE (RFC 3209): protocol for setting up MPLS tunnels

idea: routers figure out labels, etc.

end-user can (optionally) specify…

that tunnel go through specific routers

also setting up ‘fast reroute’ backup paths

bandwidth reservation
routers give you error if bandwidth not gaurenteed

62

nested labels
label stack allows …

nested tunnels

marking different types of packet

…

63

protocol-independence
only first/last routers care about actual protocol

easily allows for…

mix of Ethernet and IP tunnels

using routers that don’t support IP (e.g. ATM)

…

64

actual label format
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+ Label
| Label | Exp |S| TTL | Stack
+-+ Entry

Label: Label Value, 20 bits
Exp: Experimental Use, 3 bits
S: Bottom of Stack, 1 bit
TTL: Time to Live, 8 bits

TTL here is different than we’ve seen:
only processed when label popped
typically (re)set to mirror IP TTL if MPLS run over IP

65

encapsulation overheads
left in above TCP/UDP/higher

layers
IP link-layer

above TCP/UDP HTTP proxy, DNS
over HTTP(S)

— —

TCP/UDP SOCKS, HTTP
CONNECT, SSH
conn forwarding,
TLS

— —

IP OpenVPN, Wire-
Guard

GRE, IPsec MPLS

link-layer OpenVPN, … ? VLAN,
MPLS

which of these types of options…
best for throughput?
best for latency?
best if both ends are behind a NAT?
bets for compatibility?

66

which encapuslation (1)
suppose I have two racks of servers in two different buildings

want them to be in the same subnetwork
so they’ll find each other with broadcast, multicast DNS

how should I do this if…
the two buildings are connected via Ethernet also used for internet
access?
the two buildings are connected via an IP link leased from an ISP?

67

which encapuslation (2)
suppose I have a rack of servers in my building, but I’m migrating
to the cloud

I’ve moved one server to a cloud provider…

I don’t want to reconfigure the other servers that talk to it…

what would be some options to do this? what else do we need to
know about the server?

what would be useful features for cloud provider to give us?

68

which encapsulation (3)
I need to have my machines which handle payment processing go
be behind a firewall

but they’re in the same rack as machines which should have a
direct internet connection

how should I do this?

69

backup slides

70

	encapsulation motivations
	use case: on remote network
	use case: connect networks
	use case: two networks
	summary/additional
	aside: encryption via encapsulation

	encapsulation options, generally
	capturing packets

	sending encapsulated
	transport layer granularity
	SOCKS
	exercise: what if
	SSH connection forwarding
	exercise: what if revised
	TOR

	network layer granularity
	GRE
	adding encryption/authentication
	issues with over TCP

	link-layer granularity
	VLANs
	MPLS

	encapsulation costs
	which encapsulation for
	backup slides

