

changelog

1 Nov: \0a \0d — \x0a \x0d

2012 opinion piece

HTTP: An Evolvable Narrow Waist for the Future Internet

Lucian Popa®

Abstract

‘While the Internet is designed to accommodate multiple
transport and application layer protocols, a large and
growing fraction of Internet traffic runs directly over
HTTP. Observing that HTTP is poised to become the
de-facto “narrow waist” of the modern Internet, this
paper asks whether an HTTP narrow waist, compared
with the an IP-layer waist, facilitates a more evolvable
Internet. Evolvability is highly desirable for the Internet,
since communication patterns change must faster than
the underlying infrastructure. Furthermore, the narrow
waist plays in important role in enabling or preventing
architectural evolvability. We argue that HTTP is highly
evolvable, due to (i) naming flexibility, (ii) indirection

Patrick Wendell*

Ali Ghodsi” Ion Sgoica™

then all applications can take advantage of such function-
ality. If the narrow waist is not evolyable, the applications
have to either implement the fung¢tionality themselves,
or wait for their protocol of choige to implement it. In
fact, one could argue that the main motivation behind
the flurry of recent proposals for jew network architec-
tures [9,20,26,27,39,42] is a response to IP’s inability
to evolve and support features such as content dissemi-
nation, explicit support for middlepoxes. and anycast. It
should come as no surprise that evplvability has recently
been singled out by several clean-slate proposals as the
most desirable feature of a future architecture [8, 19].

In this context, we ask the following natural question:
Is HTTP evolvable? Despite the fagt that one could con-
vincingly argue that HTTP is alregdy an “ossified” pro-

URL / URIs

Uniform Resource Locators (URL)

tells how to find “resource” on network
uniform — one syntax for multiple protocols (types of servers, etc.)

Unifrom Resources ldentifiers
superset of URLs

URI examples

https://kytos02.cs.virginia.edu:443/cs3130-spring2023/
quizzes/quiz.php?qid=02#g2

https://kytos02.cs.virginia.edu/cs3130-spring2023/
quizzes/quiz.php?qid=02

https://www.cs.virginia.edu/
sftp://cr4bd@portal.cs.virginia.edu/u/crd4bd/file.txt
tel:+1-434-982-2200
//www.cs.virginia.edu/~cr4bd/3130/S2023/

/~cr4bd/3130/S2023
scheme and/or host implied from context

URI generally

scheme: //authority/path?query#fragment
scheme: — what protocol

/ /authority/
authoirty = user@host:port OR host:port OR user@host OR host

path

which resource
?query — usually key/value pairs

#fragment — place in resource

most components (sometimes) optional

HTTP typical flow

client server

—— | GET / cr4bd/4457/F2024/ HTTP/1.1
Host: www.cs.virginia.edu

I
HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 5432
I
- ————
<!DOCTYPE html..

—— GET / cr4bd/4457/F2024/main.css HTTP/1.1
Host: www.cs.virginia.edu

HTTP message fields

requests:

method (GET, HEAD, POST, ..) — what to do
URI (‘path’ and ‘query’ part of URL, usually)

responses:
status code and message (200 OK, 404 Not Found, etc.)

both:

headers (key-value pairs)
(sometimes) message body (arbitrary data)

HTTP/1.1 message format (RFC 2616)
ASCII text over TCP or TLS
all newlines use ‘CRLF" (\x0d\x0a = \r\n)

request response
method URI HTTP/1.1 HTTP/1.1 status-code status message
header-name: header-value header-name: header-value
header-name: header-value header-name: header-value
epending on method) message-body epending on method--status code) message-body
d di hod bod d di hod d bod
(depending on headers) header-name: header-value

HTTP/2, HTTP/3

‘new’ versions, not ubiquitously deployed
HTTP/2: over TCP or over TLS over TCP
HTTP/3: over QUIC over UDP

multiple ‘streams’ within one connection
send series of ‘frames’ with stream ID + type + data

frame types include:
HEADERS — encode message headers (key/value pairs)
DATA — include message bodies

method, status-code, URI encoded as special headers

10

HTTP/1.1 example (GET)

GET /~cr4bd/4457/F2024/ HTTP/1.1

Host: www.cs.virginia.edu

Connection: keep-alive

Upgrade-Insecure-Requests: 1

User-Agent: Mozillas5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/130.0.0.8 Safari/537.36
Accept: text/html,application/xhtml+xml,application/xm1;q=0.9, image/avif, image/webp, image/apng, */*;q=0.8,application/signed-exchange;v=b3;q=0.7
Sec-Fetch-Site: none

Sec-Fetch-Mode: navigate

Sec-Fetch-User: 71

Sec-Fetch-Dest: document

sec-ch-uva: "Chromium";v="13@8", "Google Chrome";v="138", "Not?A_Brand";w="93"

sec-ch-ua-mobile: 7€

sec-ch-ua-platform: "Linux™

Accept-Encoding: gzip, deflate, br, zstd

Accept-Language: en-US,en;q=8.9

HTTP/1.1 200 0K

Date: Sun, 27 Oct 2024 02:08:48 GMT
Server: Apache/2.4.52 (Ubuntu)
Accept-Ranges: bytes

vary: Accept-Encoding
Content-Encoding: gzip
Content-Length: 1665

Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/html

w....Xmo.6.

S c=iFerde | [UaT

1., .+.5kR..T..-q.DM..

11

HTTP/2.0 example (GET request)

{vvvvw

Frame 182: 628 by
Ethernet II, Src:
Internet Protocol Version 6, Src
Transmission Control Protocol, Src
Transport Layer Security

HyperText Transfer Protocol 2

= Stream: HEADERS, Stream ID: 15, Length 498, GET /wiki
Length: 498

Type: HEADERS (1)

Flags: ©x25, Priority, End Headers, End Stream

Bivs wiet veee eee aeae saws sase ... = Reserved
.00 0PEO 0099 0000 00D EEE® ©PE0 1111 = Stream I
[Pad Length: @]

= Exclusiv
eae 0080 0060 0000 G909 DOOO 0BG 1161 = Stream D

Weight: 41
[Weight real: 42]

Header Block Fragment: 82858b63c1ba998de335516blce
[Header Length: 877]

[Header Count: 22]

Header: :method: GET

ath: /wiki/Main_Page
uthority: en.wikipedia.org
Header: :scheme: https

Header: user-agent: Mozilla /5.8 (X11; Ubuntu; Linu
Header: accept: text/html,application/xhtml+xml,ap
Header: accept-language: en-US,en;q=0.5

Header: accept-encoding: gzip, deflate, br, zstd
Header: cookie: WMF-Last-Access=27-0Oct-2824
Header: cookie: WMF-Last-Access-Global=27-0Oct-2024
Header: cookie: NetworkProbelimit=0.861

Header: cookie: GeoIP=US:VA:Charlottesville:38.03:
Header: cookie: enwikimwuser-sessionId=2771b23b954
Header: upgrade-insecure-requests: 1

Header: sec-fetch-dest: document

Header* =sec-fetch-mode: naviaoate

B0BE0 80 01 ea B1 25 00 B0 @@ Of 60 6O 60

8b 63 c1 ba 99 8d 83 35 51 &b 1c cb

i)

37
a1
33
7O
ca
43
fa
Te
T
bt
7o
42
a3
ole]
Gc
91
ole]
e3
bc
05
bé
d5
41
af
cd
a3
a2
6f
86
bl

53
be
9a
ki
ki
ae
1d
ad
46
34
dd
ch
Ba
4d
54
dz2
3r
b2
bb
b1
99
28
48
48
38
aB
f
48
a8
ir

56
da
ab
Ba
2c
ba
75
43
ad
di
T4
40
da
it
le
54
it
83
4ar
64
7d
ad
b4
8a
d2
5
B3
85
eb
[clc]

59 Bc
eb 53
7c a9
62 29
05 90
Bc 41
de 62
e6 2b
73 15
T5 12
5a be
dz 57
chG 84
Te 99
31 d1
T8 3d
g1 al
ad 25
dc ee
15 08
b9 43
b6 c2
a5 49
41 48
5F 48
17 48
46 86
ae cl
16 64
00 04

35

cf
fc
e7
9d
er
c7
26
ee
ea
cf
40
23
89

64
k3
22
81
53
ad
3d
69
9b
dr
5
b3
3
Ba
5b
da
ed4
51
B2
c9
3f
b
42
49
438
438
ie
L
40
[clt]

df
Te
71
[oLt]
d3
af
4c
Te
el
68
db
el
54
d9
51
78
di
41
9t
24
40
5a
al
27
b4
b4
c3
86
82
[oLt]

a7
d4
af
20
49
33
79
ad
d4
ol]
5@
47
22
ch
12
ch
o7
Ge
2d
02
92
54
ar
5a
as
as
27
EL)
49
0e

Ta
el
b5

ed
41
bb
1d
2c
40
as
9a
ar
eb
62
df
9b
4c
3a
ad
80
d4
d7
2
ed
de
b9
if
90
c8
27
27
85
10
86
[1¢]

29
8c
do
b5
ef
15
89
3r
be
2b
b@
51
dg
ar
b6
09
26
99
38
ed
d4
cb
ac
81
ed
5f
59
5a
b6
64
4d
be

82 [H

2d
7t
26
78
38
d3
df
d
le
Be
8b
ab
60
az
[:1:]
bt
30
c3
66
d4
26
1c
of
b6
86
06
d4
1]
9c
83
1]

12

HTTP/1.1 example (POST)

13

selected HTTP methods

method purpose

GET retrieve resource

HEAD retrieve resource headers
POST provide data

PUT set contents of resource

DELETE delete resource
OPTIONS get info about server

request body?
never

never

always

always

never

maybe

respones body?
usually

never

usually

maybe

maybe

maybe

‘safe’
yes
yes
no
no
no
no

14

safety
GET, HEAD = ‘safe’ methods

okay for clients to repeat, send unprompted
‘prefetch’ resources
redo when user presses back button unprompted

other methods: that's not okay!

To display this page, Firefox must send information that will repeat

any action (such as a search or order confirmation) that was
performed earlier

Cancel

15

HTTP POST

POST /cs4457-fall2024-quiz-listener.php HTTP/1.1
Host: kytos02-noauth.cs.virginia.edu
Content-Type: application/json

Content-Length: 184

{"user":"cr4bd","realuser":"cr4bd","session_id":"abcdefabcdef

16

HTML forms (GET)

<form action="https://example.com/foo" method="get">
| Name: <input type="text" name="name">

Name: | Some Name

Queryﬂ | Query: <input type="text" name="query">

(n <input type="submit" value="Submit">
lfﬂ@ﬂﬁ] </form>

GET /foo?name=Some+Name&query=the+thingt+to+find%21 HTTP/1.1
Host: example.com

e o o

17

HTML forms (POST)

| <form action="https://example.com/foo" method="post">
Name: <input type="text" name="name">

Comment:
<textarea name="comment'">
</textarea>

<input type="submit" value="Submit">
</form>

Naﬂw:homeName

Canungnt
lSubka

POST /foo HTTP/1.1
Host: example.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 60

name=Some+Name&comment=A+comment%OD%OA1n%OD%OAseveral+1lines.

18

HTML forms (multipart/form-data)

<form action="https://example.com/foo" method="post"
enctype="multipart/form-data">

POST /foo HTTP/1.1

Host: example.com

Content-Type: multipart/form-data; boundary=—--------------"--"-"----————— 8154582801¢
Content-Length: 321

————————————————————————————— 30871118663472832060210928793
Content-Disposition: form-data; name="name"

Some Name
————————————————————————————— 30871118663472832060210928793
Content-Disposition: form-data; name='"comment"

A comment

in

several lines.

————————————————————————————— 30871118663472832060210928793-- 19

GET v POST
GET

POST

works with back button, caches
limited by URL size
saving URL accesses page again

only simple text fields

not resent automatically

huge possible size

form info never ‘leaked’ in browser
history, referer, etc.

supports file uploads (via
multipart /form-data)

20

exercise: which method
GET or POST or something else for

image that shows a clock with current time
rating a product and displaying the resulting summary of all ratings
search query for a Twitter-like website

getting the 2nd page of search results

21

multiple names, one IP

$ dig +short es.wikipedia.org aaaa
dyna.wikimedia.org.
2620:0:860:edla::1
$ dig +short en.wikipedia.org aaaa
dyna.wikimedia.org.
2620:0:860:edla::1

es.wikipedia.org = Spanish Wikipedia
en.wikipedia.org = English Wikipedia

how does this work?

22

Host /:authority header

when getting http://somehostname/path, send header
Host: somehostname (HTTP/1.1)
tauthority: somehostname (HTTP/2, HTTP/3)

allows for ‘virtual hosts’

23

selected HTTP status codes

1xx — informational

2xx — successful
200 OK, 204 No Content

3xx — redirection
301 Moved Permanently, 302 Found, 303 See Other

‘Location’ header gives next URL to use
304 Not Modified (conditional GET — later)

4xx — client error
403 Forbidden, 404 Not Found

bxx — server error

24

HTTP redirects

HTTP/1.1 301 Moved Permanently
Location: https://foo.com/quux/bar
Content-Type: text/plain

(This text may be shown by clients that don't proce
automatically, or if there's a problem following it
to the serer what to put here, but typical might be

Redirecting to https://foo.com/quux/bar

25

HTTP redirect codes

a bunch of different status codes:

301 Moved Permanently
302 Found

303 See Other

307 Temporary Redirect

308 Permanent Redirect

mostly behave all the same, but..
POST request receiving 301/302 redirects into GET request

26

HTTP error pages

HTTP/1.1 403 Forbidden
Content-Type: text/html
Content-Length:

[This can be a full web page that is displayed....]

error status codes can still have full responses

web browsers will usualy render response normally

27

delay for errors

PUT /some/file/location HTTP/1.1
Content-Length: 5368709120

(lots of data)

HTTP/1.1 403 Forbidden

28

100 continue (error case)

PUT /some/file/location HTTP/1.1
Content-Length: 5368709120
Expect: 100-continue

HTTP/1.1 403 Forbidden

29

100 continue (no error case)

PUT /some/file/location HTTP/1.1
Content-Length: 5368709120
Expect: 100-continue

HTTP/1.1 100 Continue

(now send lots of data)

30

if server does not support (good case)

PUT /some/file/location HTTP/1.1
Content-Length: 5368709120
Expect: 100-continue

HTTP/1.1 417 Expectation Failed

PUT /some/file/location HTTP/1.1
Content-Length: 5368709120

(lots of data)

31

if server does not support (bad case)

PUT /some/file/location HTTP/1.1
Content-Length: 5368709120
Expect: 100-continue

waits a while, but gets not response

(lots data)

client

32

one connection, multiple requests

HTTP/0.9, HTTP/1.0 — one request+response per connection
big efficiency problem

solution 1: persistent connections
solution 2: pipelining

solution 3 (HTTP/2+): multiple ‘streams’ in one connection

33

end-of-request /response

body of request/response can be variable length

so when does request/response end if it has a body?

HTTP/1.0 original solution (RFC 1945)

“the length of that body may be determined in two ways. If a
Content-Length field is present, the value in bytes represents the length
of the Entity-Body. Otherwise, the body length is determined by the
closing of the connection by the server.”

advantage of latter idea: don't need to generate whole document
before sending headers

disadvantage: no persistent connections!
34

chunked transfer coding

HTTP/1.1 200 OK
Content-Type: text/plain
Transfer-Coding: chunked

1B

This is 0x1B bytes of text.
21

And 0x21 bytes

with more lines.

0]

35

pipelining

client server
\
— | GET /imagel.png HTTP/1.1 ..
— | GET /image2.png HTTP/1.1 ..[>
1GET /script.js HTTP/1.1 . ———b
< T ———
HTTP/1.1 200 OK ..
I
HTTP/1.1 200 OK ..
— |
S
HTTP/1.1 200 OK ..
— |

36

HTTP/1.1 ‘pipelining’
send series of requests before receiving any response

potentailly server can potentially process requests in parallel

need to handle resending requests if connection dropped early

37

HTTP/2.0 multiple streams

[l |tcp.stream eq 76 && http2

No. Time
I .668110937

Source

Destinatic TTL

Protocol
HTTP2

Length Info

Magic, SETTINGS[

, WINDOW_UPDATE[O], PR

.668544496
.672022778
.672439045
.672445467
.674546658
.680438054
.683155746
.697392727
.698099486
.698277728
.698335626
.698377545
.698418020
.701618974
. 703327863
.703804353
4552 14.705737741
.708977267
. 709304999
. 709620107
.713570149
.713938877
. 714649293
.715338880
T1RAAET CE

5o 00 e

DOOVONDOODBPONNODOOOONNDD O ®™C

HTTP2
HTTP2
HTTP2
HTTP2
HTTP2
HTTP2
HTTP2
HTTP2
HTTP2
HTTP2
HTTP2
HTTP2
HTTP2
HTTP2
HTTP2
HTTP2
HTTP2
HTTP2
HTTP2
HTTP2
HTTP2
HTTP2
HTTP2
HTTP2
uTTP?o

453
138
1342
117
267
7226
500
416
228
216
258
207
205
8871
6903
3213
8876
236
342
854
12938
4106
16791
32788
29020

HEADERS[15] :
SETTINGS[O],
HEADERS[15] :
SETTINGS[0]

HEADERS[17] :
HEADERS[17] :

GET

/wiki/, WINDOW_UPDATE[1

SETTINGS[O]

301

GET
200

Moved Permanently

/wiki/Main_Page, WINDOW.
OK, DATA[17]

DATA[17] (text/html)

HEADERS[19] :
HEADERS[21] :
HEADERS[23]:
HEADERS[25] :
HEADERS[27]:
HEADERS[29] :
HEADERS[19] :
HEADERS[21]:
HEADERS[23] :
HEADERS[25] :
HEADERS[31] :
HEADERS[33] :
HEADERS[35] :
HEADERS[31] :

GET
GET
GET
GET
GET
GET
200
200
200
200
GET
GET
GET
200

/w/load.php?lang=en&modt
/w/load.php?lang=en&modt
/w/load.php?lang=en&modt
/static/images/icons/wil
/static/images/mobile/ct
/static/images/mobile/ct
OK, DATA[19], DATA[19] |
0K, DATA[21], DATA[21] |
OK, DATA[23] (text/css)
0K, DATA[25] (PNG), HEAI
/w/load.php?lang=en&modt
/w/load.php?lang=en&modt
/w/load.php?lang=en&modt
OK, DATA[31] (text/java:

DATA[33], DATA[33] (text/javascript)
HEADERS[35]: 200 OK, DATA[35], DATA[35]

DATA[35]
NATATM2=

38

trailers

GET /foo?bar HTTP/1.1
TE: trailers

HTTP/1.1 200 OK

Transfer-Coding: chunked

Trailer: Expires

Date: Wed, 30 Oct 2024 23:57:04 GMT

12343
42342

(0]
Expires: Mon, 4 Nov 2024 23:57:04 GMT

39

content negotiation
Firefox on my desktop — wikipedia:

accept:
text/html,application/xhtml+xml,application/xml;g=0.9,image/a

list of formats and preference indicator for each (q)
described using “media types” (RFC 6838)

accept-language: en-US,en;q=0.5

accept-encoding: gzip, deflate, br, zstd
allowed compression formats

40

advice against content negotation

current HTTP standard (RFC 9110) says this approach “has
several disadvantages”:

advises considering approaches where client chooses version

‘impossible for the server to accurately determine what might be
“best” 1)

‘having the [client] describe its capabilities in every request can be
very inefficient ..and a potential risk to the user’s privacy’

‘complicates the implementation’

‘limits ..shared caching’

41

HTTP non-state
HTTP is a ‘stateless’

each request stands on its own

processed independently of all other requests
even if multiple in a connection

this is disappointing for websites:
supporting ‘login’ functionality
supporting user preferences

42

HTTP cookies (RFC 6265)

example.com — client

HTTP/1.1 200 OK
Set-Cookie: SessionID=31d4d96e407aad42; Path=/; Domain=exampl

client — example.com on later requests:

GET /some-path HTTP/1.1
Host: example.com
Cookie: SessionID=31d4d96e407aad42

43

session ID concept

assign random ID number to each ‘session’ if no cookie set

in some database:

if they add to shopping cart, associate ID number with shopping
cart items

if user logs in, associate ID number with user

44

selected cookie attributes

domain — limit to subset of domains

domain=example.com matches example.com, foo.example.com, but not
other.com

secure — only send back on encrypted connections

httponly — do not expose to in-webpage scripts

expires, max-age — limit how long cookie kept around
default = until browser closed

45

cookies and tracking
cookies often used for tracking users across websites

and not by setting cookies valid for tons of domains

how: websites load data from other websites
separate HT TP requests with separate cookies

46

cookie tracking example

foo.com, bar.com, quux.com all include an image
https://tracker.com /track-XXX.png where XXX is foo, bar or quux

tracker.com can read cookie every time image is accessed
and set a cookie to unique number if not set

now tracker.com knows:
when /if every visitor of foo.com visited bar.com and/or quux.com

47

more detailed tracking?

“just” learned about how many visitors visited combinations of
websites

with some cooperation can get more info:

which subpages on those websites
username or email entered into those websites

one way to pass info: add extra data to image filename

48

third party cookie rules

some browsers might restrict ‘third-party cookies’
cookies sent to Y because of visit to X

various options, with variable deployment:
only make third-party cookies work if marked SameSite=None
separate cookie storage for each ‘root’ website
ignore cookies from unvisited sites
disable only cookies that heuristically look like tracking

49

cookie exercise

50

exercise

time
1pm
1pm
2pm
3pm
4pm
4pm
5pm
6pm

IP

1.2.3.4
1.2.3.4
1.23.4
2.3.45
1.2.3.4
3.45.6
1.2.3.4
1.2.3.4

path
/foo
/bar
/foo

/quux

/foo

/quux
/quux

cookie header
SID=1234

SID=2345
SID=1234
SID=2345
SID=1234

set-cookie header

SID=9999
SID=2345

SID=3456

exercise: how many unique users?

exercise: how many IPs per user?

51

HTTP caching (RFC 9111)

making webpages fast — let clients cache values for later

some problems:

how to tell if something's out of date

how to tell if changes to cookies/accept-language/etc. change item

52

is it out of date? options
expire date; max-age in seconds

check with server if it has changed

53

is it out of date? options
expire date; max-age in seconds

check with server if it has changed

54

expires

HTTP/1.1 200 OK
Date: Mon, 28 Oct 2024 00:29:02 GMT
Expires: Mon, 28 Oct 2024 04:29:02 GMT

HTTP/1.1 200 OK
Cache-Control: max-age=14400

55

aside: why date + expire
server time and client time might differ

makes Expires idea not great...

56

is it out of date? options
expire date; max-age in seconds

check with server if it has changed

57

conditional GETs

GET /3/library/struct.html HTTP/1.1

HTTP/1.1 200 OK

Date: Sun, 27 Oct 2024 20:01:15 GMT
Last-Modified: Sun, 27 Oct 2024 18:50:46 GMT
ETag: 671e8b86-13e32

GET /3/library/struct.html HTTP/1.1
If-Modified-Since: Sun, 27 Oct 2024 18:50:46 GMT
If-None-Match: 671e8b86-13e32

HTTP/1.1 304 Not Modified

58

variable responses
HTTP/1.1 200 OK

Vary: Accept, Accept-Lnaguage, Cookie
page contents may vary even though URL doesn’t change

Vary header says what things need to be the same

typically used to discard cached responses

59

other cache-control settings

seen max-age=X, also...

no-store
do not store a copy of this response

no-cache

do not use without checking for new version first (conditional GET or
similar)

private, public
indicate if acceptable for cache shared between users

60

caches as cookies
let's say we load an image

with unique ETag each time
browser stores ETag, makes If-None-Match request

..kinda acts like cookie
but not susceptible to third-party cokie rules

part of set of ideas called ‘supercookies’

61

Firefox supercookie mitigations

https://blog.mozilla.org/security/2021/01/26/
supercookie-protections/

for each top-level website, separate:

caches (for everything — images, resolved domain names, fonts,
etc.)

connections (even for same hostname)

62

https://blog.mozilla.org/security/2021/01/26/supercookie-protections/
https://blog.mozilla.org/security/2021/01/26/supercookie-protections/

HTTP proxies (1)

Connection Settings

Configure Proxy Access to the Internet

No proxy
Auto-detect proxy settings for this network
Use system proxy settings

Manual proxy configuration

Automatic proxy configuration URL

No proxy for

Example: .mezilla.org, .net.nz, 192.168.1.0/24
Connections to localhost, 127.0.0.1/8, an 1 are never proxied.

Do not prompt for authentication if password is saved
Proxy DNS when using SOCKS v5

Cancel

63

user-agent
(example:
web browser)

client server

request specifies
which web server
to contact

proxy
server

client server

>

looks like normal
user-agent request

web
server

64

HTTP proxies (2)

browser—HTTP(S) proxy sever:

GET http://example.com/somesite HTTP/1.1
Host: example.com

instead of path, can put full URL
doesn’t have to be http URL

65

proxy functionality

caching for multiple users
reason for Cache-Control: private

filtering content
antimalware, adblocking, etc.

logging content (example: debugging webapp)

66

user-agent _ :
(example: <c||ent server forward proxy <cI|ent server web
web browser) server server
request specifies looks like normal
which web server user-agent request
to contact

user-agent lient fient ———
client server [reverse proxy | client server
(example: |« . proxy | & _| backen

server

web browser) Server
looks like normal selected from
user-agent request user-agent request path

67

reverse proxy

why not just go directly to actual web server?

make multiple web severs appear as one? example:

https://example.com /foo/XXX goes to
https://foo-backend.example.com /XXX
https://example.com /bar /XXX goes to
https://bar-backend.example.com /XXX
https://example.com/ goes to https://frontpage.example.com/

do caching, filtering, or similar on behalf of webservers

split requests between multiple identical servers for performance

68

non-HTTP in HTTP proxy

client — server:

CONNECT ns.foo.com:53 HTTP/1.1
Host: ns.foo.com:53

server
— client:
HTTP/1.1 200 OK
Some-header: some-value
client

— server: (dns request)

server — client: (dns response from ns.foo.com)
client — server: (dns request)

server — client: (dns response from ns.foo.com)

69

CONNECT

allows “tunnelling” arbitrary TCP connections through HTTP

often not implemented by HTTP proxies and/or very restricted

70

Wikimedia architecture

MediaWiki webrequest flow
Wikipedia, August 2022 Internet

Srequestio
HITP roqvest resove wkipediaors”
CON cache provies

Losd bt (V5) "GooDNS i)
Terminate LS (AProny) | <

Edge caching P— —————
(data center) l. o e
care

| oo oven

[—— —)
‘ L=l (| -
| esarnimiones
oS .
Virtual host (Apache) I t 4

Core services

premrey [. (=]
=7

(data center) A V_ E"“] :-“g‘i.’.‘:}ﬁ
S 1 T |
= =

arepacon

srecaon Repietion

(o (o iz |

ParerCache || Medasiore
siemiamy) (S| | e) "o || e
Core services
(Primary DC) y y
Grote et < e
.
> = [

[5=] =]

71

single-sign on
client — foo.com: GET /foo

foo.com — client: redirect to
https://sso.com/login?from=foo.com&..

client — sso.com: GET /login?from=foo.com&..
sent with cookies set by sso.com

sso.com — client: web page with form action=http://foo.com/...
and method=post

possibly with script to submit automatically

data in form tells foo.com about username, etc.

cryptographically signed or similar

client — foo.com: POST /... with data from sso.com
72

REST

REpresentational State Transfer

idea for application interface on top of HT TP

entities in system represented with URLs
GET requests to get state of that entity
PUT and/or POST requests to update entity state

DELETE requests to remove entity

73

example: Canvas API for announcements (1)

client — canvas HT TP server:

GET /api/vl/courses/123456/discussion_topics?only_announcements=true
Authorization: Bearer [secret code]

HTTP/1.1 200 OK

({
|l.'|d||:l’
"title":"Welcome to the Course!",
"message":"...",

1,

{

"id":2,

74

example: Canvas API for announcements (2)

client — canvas HT TP server:

POST /api/vl/courses/123456/discussion_topics
Authorization: Bearer [secret code]
Content-Type: application/json

{
"is_announcement":true,
"title":"Class Cancelled",
"message":"..... "

}

HTTP/1.1 200 OK

"id": 41,
"title":"Class Cancelled",

75

example: Canvas API for announcements (3)

client — canvas HT TP server:

PUT /api/vl/courses/123456/discussion_topics/41
Authorization: Bearer [secret code]
Content-Type: application/json

{
"is_announcement":true,
"title":"Class Cancelled [updated!]",
"message" :"UPDATE: prevoiusly,.."

}

HTTP/1.1 200 OK

"id": 41,
"title":"Class Cancelled [updated!]",

76

backup slides

e

	``narrow waist''
	URIs and URLs
	HTTP messages
	HTTP methods, briefly
	HTTP POST
	exercise: HTTP which
	virtual hosting, Host header
	error codes
	redirects
	error pages
	100 continue

	persistent, pipelining
	trailers

	content negotiation
	HTTP authentication
	cookies
	exercise
	tracking

	caching
	supercookies
	proxies and reverse proxies
	aside: wikimedia architecture

	SSO
	REST
	backup slides

