
1



networks / hosts aka end systems

networks connect
computers
‘cloud’ represents
any network
(whether local or not)
iconography predates
‘cloud computing’

computers on edge
of network called
hosts or end systems
(even if also ‘servers’)

2



networks / hosts aka end systems

‘network’

networks connect
computers

‘cloud’ represents
any network
(whether local or not)
iconography predates
‘cloud computing’

computers on edge
of network called
hosts or end systems
(even if also ‘servers’)

2



networks / hosts aka end systems

‘network’

networks connect
computers

‘cloud’ represents
any network
(whether local or not)
iconography predates
‘cloud computing’

computers on edge
of network called
hosts or end systems
(even if also ‘servers’)

2



networks / hosts aka end systems

‘host’

‘host’‘host’‘host’

‘host’

‘host’ ‘host’ ‘host’

networks connect
computers
‘cloud’ represents
any network
(whether local or not)
iconography predates
‘cloud computing’

computers on edge
of network called
hosts or end systems
(even if also ‘servers’)

2



direct connections?

3



shared medium: radio?

4



shared medium: wires

Ali at gwc.org.uk / Alistair1978 via Wikimedia commons / CC-BY-SA 2.5

5



shared medium: wires

Ali at gwc.org.uk / Alistair1978 via Wikimedia commons / CC-BY-SA 2.5

5



shared medium: wires

Ali at gwc.org.uk / Alistair1978 via Wikimedia commons / CC-BY-SA 2.5

5



switches / nodes / links

hosts directly connected to
switches
that implement network

(more efficiently than
shared medium)

machines on network
(hosts, switches, …)
called nodes

nodes connected by
links

(implemented by wires
or radio or …)

6



switches / nodes / links

‘switch’

‘switch’

‘switch’

hosts directly connected to
switches
that implement network

(more efficiently than
shared medium)

machines on network
(hosts, switches, …)
called nodes

nodes connected by
links

(implemented by wires
or radio or …)

6



switches / nodes / links

hosts directly connected to
switches
that implement network

(more efficiently than
shared medium)

machines on network
(hosts, switches, …)
called nodes

nodes connected by
links

(implemented by wires
or radio or …)

6



switches / nodes / links

hosts directly connected to
switches
that implement network

(more efficiently than
shared medium)

machines on network
(hosts, switches, …)
called nodes

nodes connected by
links

(implemented by wires
or radio or …)

6



routers / internetwork

routers or gateways
connect networks
connected networks
form internetwork
(example: the Internet)

7



routers / internetwork
routers or gateways
connect networks

connected networks
form internetwork
(example: the Internet)

7



routers / internetwork

routers or gateways
connect networks

connected networks
form internetwork
(example: the Internet)

7



flows / packets

1

2

flow of data between two machines

flow is very general term
will depend on context how it relates to
connections, sockets, etc.

flow of data between two machines

possibly divided up into pieces,
called packets, frames, segments
(which name is best depends on context)

8



flows / packets

1

2

flow of data between two machines

flow is very general term
will depend on context how it relates to
connections, sockets, etc.

flow of data between two machines

possibly divided up into pieces,
called packets, frames, segments
(which name is best depends on context)

8



(de)multiplexing

1

2

3

4

two or more flows can
share one or more links
left switch multiplexes the two flows onto one link
right switch demultiplexes them to separate them
this picture: multiplexed by dividing up time on linkswitches usually have buffers (also called queues)
hold waiting packets

absorbs temporary “bursts” where packets come faster
than outgoing link can handle

incomplete list of causes of ‘bursts’:

multiple unsynchronized flows
fast links produce packets faster for slow can send

if buffer full, switch must drop packets
will happen eventually if overall rate faster than outgoing link

scenario is called congestion

9



(de)multiplexing

1

2

3

4

two or more flows can
share one or more links

left switch multiplexes the two flows onto one link
right switch demultiplexes them to separate them
this picture: multiplexed by dividing up time on linkswitches usually have buffers (also called queues)
hold waiting packets

absorbs temporary “bursts” where packets come faster
than outgoing link can handle

incomplete list of causes of ‘bursts’:

multiple unsynchronized flows
fast links produce packets faster for slow can send

if buffer full, switch must drop packets
will happen eventually if overall rate faster than outgoing link

scenario is called congestion

9



(de)multiplexing

1

2

3

4

two or more flows can
share one or more links

left switch multiplexes the two flows onto one link
right switch demultiplexes them to separate them

this picture: multiplexed by dividing up time on linkswitches usually have buffers (also called queues)
hold waiting packets

absorbs temporary “bursts” where packets come faster
than outgoing link can handle

incomplete list of causes of ‘bursts’:

multiple unsynchronized flows
fast links produce packets faster for slow can send

if buffer full, switch must drop packets
will happen eventually if overall rate faster than outgoing link

scenario is called congestion

9



(de)multiplexing

1

2

3

4

two or more flows can
share one or more links
left switch multiplexes the two flows onto one link
right switch demultiplexes them to separate them

this picture: multiplexed by dividing up time on link

switches usually have buffers (also called queues)
hold waiting packets

absorbs temporary “bursts” where packets come faster
than outgoing link can handle

incomplete list of causes of ‘bursts’:

multiple unsynchronized flows
fast links produce packets faster for slow can send

if buffer full, switch must drop packets
will happen eventually if overall rate faster than outgoing link

scenario is called congestion

9



(de)multiplexing

1

2

3

4

two or more flows can
share one or more links
left switch multiplexes the two flows onto one link
right switch demultiplexes them to separate them
this picture: multiplexed by dividing up time on link

switches usually have buffers (also called queues)
hold waiting packets

absorbs temporary “bursts” where packets come faster
than outgoing link can handle

incomplete list of causes of ‘bursts’:

multiple unsynchronized flows
fast links produce packets faster for slow can send

if buffer full, switch must drop packets
will happen eventually if overall rate faster than outgoing link

scenario is called congestion

9



(de)multiplexing

1

2

3

4

two or more flows can
share one or more links
left switch multiplexes the two flows onto one link
right switch demultiplexes them to separate them
this picture: multiplexed by dividing up time on linkswitches usually have buffers (also called queues)
hold waiting packets

absorbs temporary “bursts” where packets come faster
than outgoing link can handle

incomplete list of causes of ‘bursts’:

multiple unsynchronized flows
fast links produce packets faster for slow can send

if buffer full, switch must drop packets
will happen eventually if overall rate faster than outgoing link

scenario is called congestion

9



(de)multiplexing

1

2

3

4

two or more flows can
share one or more links
left switch multiplexes the two flows onto one link
right switch demultiplexes them to separate them
this picture: multiplexed by dividing up time on linkswitches usually have buffers (also called queues)
hold waiting packets

absorbs temporary “bursts” where packets come faster
than outgoing link can handle

incomplete list of causes of ‘bursts’:

multiple unsynchronized flows
fast links produce packets faster for slow can send

if buffer full, switch must drop packets
will happen eventually if overall rate faster than outgoing link

scenario is called congestion

9



(de)multiplexing

1

2

3

4

two or more flows can
share one or more links
left switch multiplexes the two flows onto one link
right switch demultiplexes them to separate them
this picture: multiplexed by dividing up time on linkswitches usually have buffers (also called queues)
hold waiting packets

absorbs temporary “bursts” where packets come faster
than outgoing link can handle

incomplete list of causes of ‘bursts’:

multiple unsynchronized flows
fast links produce packets faster for slow can send

if buffer full, switch must drop packets
will happen eventually if overall rate faster than outgoing link

scenario is called congestion

9



buffer usage: fast to slow, store + forward

packet A packet B packet C packet Dinput
capacity

buffer
reserved
packets

1
2
3
4

packet A packet B packet C packet Doutput
capacity

store and forward
switch stores whole packet in buffer
then sends it out

our default in this class

10



buffer usage: fast to slow, store + forward

packet A packet B packet C packet Dinput
capacity

buffer
reserved
packets

1
2
3
4

packet A packet B packet C packet Doutput
capacity

store and forward
switch stores whole packet in buffer
then sends it out

our default in this class

10



buffer usage: fast to slow, cut-through

packet A packet B packet C packet Dinput
capacity

buffer
reserved
packets

1
2
3
4

packet A packet B packet C packet Doutput
capacity

cut-through forwarding
switch sends packet out as it’s being received

uncommon and much more complex to implement

11



channel abstractions
want to avoid custom network for each application

but applications have different needs

→ multiple application interfaces to networks

common implementation of common patterns

12



some abstractions
stream

continuous stream of bytes from one program to another
‘connection’ from one program to another

datagrams
send small messages (datagrams)
each datagram’s destination independently set

remote procedure calls
make function calls that run on remote machine

remote memory access
read/write bytes of data in remote memory

…
13



some abstractions
stream

continuous stream of bytes from one program to another
‘connection’ from one program to another

datagrams
send small messages (datagrams)
each datagram’s destination independently set

remote procedure calls
make function calls that run on remote machine

remote memory access
read/write bytes of data in remote memory

…
13



focus on streams
this class: focus on implementing streams of bytes

why?
most commonly used by applications on the Internet
many common tasks with other abstractions

14



stream abstraction and sockets
BSD sockets are most used abstract for using streams
server (passive end)

create socket (socket())
select address (bind())
wait for+get connection (listen()+accept())
read+write on
connection(read()+recv*()+write()+send*())

client (active end)
create socket (socket())
connect to address (connect()
read+write on
connection(read()+recv*()+write()+send*())

15



sockets and other options
sockets can also provide datagram abstraction

difference: mode where read/write keeps messages together

16



socket details later
we’re doing mostly bottom-up approach

will actually talk in detail about socket interface later in semester

17



client/server
server = entity that waits for + responds to clients

server:
always-on
well-known how to contact

client
sometimes on
only contacted by server responding to it

18



not client/server?
not everything fits into client/server neatly

sometimes something is both client and server

sometimes no distinguished entities (“peer-to-peer”)

19



client/server and channels
can have channels without client/server model

but the interface sockets provide assume client/server
(so you have to make something server-like to do peer-to-peer with
sockets)

20



exercise
video stream server

user C

user D

user A

user B
if each of users A–D are receiving (potentially different) video and
audio from the video streaming server, then…

how many flows?
how many nodes are involved?
how many switches/routers?

21



IETF
IETF = Internet Engineering Task Force

part of non-profit called Internet Society

most common internet protocols standardized by IETF

most IETF documents called RFCs
requests for comment
have unique number

https://rfc-editor.org

22

https://rfc-editor.org


other standard orgs
Bluetooth Special Interest Group

IEEE (Institute of Electrical and Electronics Engineers)
Wifi, Ethernet, …

3GPP (3rd Generation Partnership Project)
cellular phone networks

SCTE (Society of Cable Televsion Engineers)

ITU (International Telecommunication Union)

ISO (International Organization for Standardization)

23



some challenges for streams
separating data into pieces network can handle

putting pieces back together

getting network to send piece to correct remote network

getting network to send piece to correct machine

getting machine to send data to correct program

getting pieces into format wires/radio/fiber/etc. can handle

handling transmission errors

lots of work! don’t want to implement all at once!

some parts need to be different for different local networks

some parts should not concern local network implementorssome parts should be same for different abstraction

24



some challenges for streams
separating data into pieces network can handle

putting pieces back together

getting network to send piece to correct remote network

getting network to send piece to correct machine

getting machine to send data to correct program

getting pieces into format wires/radio/fiber/etc. can handle

handling transmission errors

lots of work! don’t want to implement all at once!

some parts need to be different for different local networks

some parts should not concern local network implementorssome parts should be same for different abstraction

24



some challenges for streams
separating data into pieces network can handle

putting pieces back together

getting network to send piece to correct remote network

getting network to send piece to correct machine

getting machine to send data to correct program

getting pieces into format wires/radio/fiber/etc. can handle

handling transmission errors

lots of work! don’t want to implement all at once!

some parts need to be different for different local networks

some parts should not concern local network implementorssome parts should be same for different abstraction

24



some challenges for streams
separating data into pieces network can handle

putting pieces back together

getting network to send piece to correct remote network

getting network to send piece to correct machine

getting machine to send data to correct program

getting pieces into format wires/radio/fiber/etc. can handle

handling transmission errors

lots of work! don’t want to implement all at once!

some parts need to be different for different local networks

some parts should not concern local network implementors

some parts should be same for different abstraction

24



some challenges for streams
separating data into pieces network can handle

putting pieces back together

getting network to send piece to correct remote network

getting network to send piece to correct machine

getting machine to send data to correct program

getting pieces into format wires/radio/fiber/etc. can handle

handling transmission errors

lots of work! don’t want to implement all at once!

some parts need to be different for different local networks

some parts should not concern local network implementors

some parts should be same for different abstraction

24



layered model
networking implemented in ‘layers’

upper layers implemented by making calls to lower layers

example: network implements ‘send data to (remote) machine’
function (“network layer”)

stream implementation calls this to implement ‘send stream to
remote application’

25



OSI model
End host End host

Network

Data linkData link

One or more nodes

within the network

Network

Physical Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

(7) application:
what requests/etc.

(6) presentation:
data format

(5) session:
manage group of streams

(4) transport:
streams of data

(3) network:
message to correct network

(2) data link:
message → bits
message to correct machine

(1) physical:
send bits/…

current Internet
usually* layers 5–7 merged together

Figure 13 of Chapter 1 of Computer Networks: A Systems Approach (6th ed) (Peterson and Davie) 26



OSI model
End host End host

Network

Data linkData link

One or more nodes

within the network

Network

Physical Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

(7) application:
what requests/etc.

(6) presentation:
data format

(5) session:
manage group of streams

(4) transport:
streams of data

(3) network:
message to correct network

(2) data link:
message → bits
message to correct machine

(1) physical:
send bits/…

current Internet
usually* layers 5–7 merged together

Figure 13 of Chapter 1 of Computer Networks: A Systems Approach (6th ed) (Peterson and Davie) 26



OSI model
End host End host

Network

Data linkData link

One or more nodes

within the network

Network

Physical Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

(7) application:
what requests/etc.

(6) presentation:
data format

(5) session:
manage group of streams

(4) transport:
streams of data

(3) network:
message to correct network

(2) data link:
message → bits
message to correct machine

(1) physical:
send bits/…

current Internet
usually* layers 5–7 merged together

Figure 13 of Chapter 1 of Computer Networks: A Systems Approach (6th ed) (Peterson and Davie) 26



OSI model
standardized by ISO (International Standards Organization) and
ITU (International Telecommunications Union)

full set of protocols…
file transfer, message sending, directory lookups …

that were often implemented and sometimes used…

but mostly lost out to IETF-standardized Internet protocols
Internet Engineering Task Force

27



OSI influence (1)
term ‘layer 7’, ‘layer 4’, ‘layer 3’, etc. almost always refer to OSI
model

…even though most of Internet does not follow it
early Internet protocols predate OSI

28



OSI influence (2)
are a lot of Internet protocols influenced by OSI protocols

OSI’s DAP (directory access protocol)
adapted into IETF’s LDAP (lightweight directory access protocol)

OSI presentation layer ASN.1 used in…
telephony (between telephone companies)
inter-bank messaging
lots of cryptography-related protocols
…

OSI’s routing protocol IS-IS still common in large
Internet-connected networks

(adapted to work alongside IETF protocols)
29



Internet layers
OSI layer name examples purpose
7 application HTTP, SSH, application-defined meanings

SMTP, DNS, …
4 transport TCP, UDP, … reach correct program,

reliablity/streams
3 network IPv4, IPv6, … reach correct machine

(across networks)
2 link Ethernet, Wi-Fi, … coordinate shared wire/radio
1 physical … encode bits for wire/radio

30



Internet layers
OSI layer name examples purpose
7 application HTTP, SSH, application-defined meanings

SMTP, DNS, …
4 transport TCP, UDP, … reach correct program,

reliablity/streams
3 network IPv4, IPv6, … reach correct machine

(across networks)
2 link Ethernet, Wi-Fi, … coordinate shared wire/radio
1 physical … encode bits for wire/radio

30



Internet protocols and layers (non-exhaustive)
FTP HTTP

TCP

NET1 NET2 NET
n

UDP

IP

DNS TFTP application OSI layer 7

transport OSI layer 4

network OSI layer 3

data link OSI layer 2

“narrow waist”

Figure 14 of Chapter 1 of Computer Networks: A Systems Approach (6th ed) (Peterson and Davie) 31



Internet protocols and layers (non-exhaustive)
FTP HTTP

TCP

NET1 NET2 NET
n

UDP

IP

DNS TFTP application OSI layer 7

transport OSI layer 4

network OSI layer 3

data link OSI layer 2

“narrow waist”

Figure 14 of Chapter 1 of Computer Networks: A Systems Approach (6th ed) (Peterson and Davie) 31



fuzzy layers (1)
ICMP (Internet Control Message Protocol)…

implemented using a network layer…
so seems like a transport layer protocol?

used to send errors/control messages about routing…
routing is the network layer’s job
so ICMP is part of network layer?

I think saying network layer is probably better…

but we’re not going to be picky about it

32



fuzzy layers (1)
ICMP (Internet Control Message Protocol)…

implemented using a network layer…
so seems like a transport layer protocol?

used to send errors/control messages about routing…
routing is the network layer’s job
so ICMP is part of network layer?

I think saying network layer is probably better…

but we’re not going to be picky about it

32



fuzzy layers (1)
ICMP (Internet Control Message Protocol)…

implemented using a network layer…
so seems like a transport layer protocol?

used to send errors/control messages about routing…
routing is the network layer’s job
so ICMP is part of network layer?

I think saying network layer is probably better…

but we’re not going to be picky about it
32



fuzzy layers (2)
TLS (Transport Control Protocol)…

implemented on top of TCP…
so seems like a application layer protocol?

used to send other application layer protocols
so maybe a transport layer?
or presentation layer?

I’ll call it an application layer…

33



fuzzy layers (2)
TLS (Transport Control Protocol)…

implemented on top of TCP…
so seems like a application layer protocol?

used to send other application layer protocols
so maybe a transport layer?
or presentation layer?

I’ll call it an application layer…

33



‘extra’ layers
layer terminology doesn’t always work cleanly

often “extra” layers in practice

e.g. HTTPS:
HTTP (app layer) on TLS (another app layer) on TCP (network) on …

e.g. DNS over HTTPS:
DNS (app layer) on HTTP on on TLS on TCP on …

e.g. SFTP:
SFTP (app layer??) on SSH (another app layer) on TCP on …

e.g. HTTP over OpenVPN:
HTTP on TCP on IP on OpenVPN on UDP on different IP on …

34



‘extra’ layers
layer terminology doesn’t always work cleanly

often “extra” layers in practice

e.g. HTTPS:
HTTP (app layer) on TLS (another app layer) on TCP (network) on …

e.g. DNS over HTTPS:
DNS (app layer) on HTTP on on TLS on TCP on …

e.g. SFTP:
SFTP (app layer??) on SSH (another app layer) on TCP on …

e.g. HTTP over OpenVPN:
HTTP on TCP on IP on OpenVPN on UDP on different IP on …

34



protocols usually over HTTP
SOAP (Simple Object Access Protocol) — messaging/remote
procedure calls

gRPC (originally form Google) — remote procedure calls

HLS (HTTP Live Streaming) — video streaming

DASH (Dynamic Adaptive Streaming over HTTP) — video
streaming

…

35



packet capture tools
packet capture = log of everything sent/received on some link(s)

wireshark is popular tool for making, analyzing packet captures

will be showing screenshots from that

you can download these packet captures, follow along in wireshark

36



wireshark window

packet list

packet details packet bytes

hilite in details
shows corresponding bytes

this case:
10 = 0x0a
0 = 0x00
2 = 0x02
15 = 0x0f

‘protocol’
the highest-layer protocol decoded

ethernet
IPv4 (internet protocol version 4)

TCP (transmission control protocol)
TLS (transport layer security)
HTTP/2 (hypertext transfer protocol 2)

DoH is not
one of these!

37



wireshark window
packet list

packet details packet bytes

hilite in details
shows corresponding bytes

this case:
10 = 0x0a
0 = 0x00
2 = 0x02
15 = 0x0f

‘protocol’
the highest-layer protocol decoded

ethernet
IPv4 (internet protocol version 4)

TCP (transmission control protocol)
TLS (transport layer security)
HTTP/2 (hypertext transfer protocol 2)

DoH is not
one of these!

37



wireshark window

packet list

packet details packet bytes

hilite in details
shows corresponding bytes

this case:
10 = 0x0a
0 = 0x00
2 = 0x02
15 = 0x0f

‘protocol’
the highest-layer protocol decoded

ethernet
IPv4 (internet protocol version 4)

TCP (transmission control protocol)
TLS (transport layer security)
HTTP/2 (hypertext transfer protocol 2)

DoH is not
one of these!

37



wireshark window
packet list

packet details packet bytes

hilite in details
shows corresponding bytes

this case:
10 = 0x0a
0 = 0x00
2 = 0x02
15 = 0x0f

‘protocol’
the highest-layer protocol decoded

ethernet
IPv4 (internet protocol version 4)

TCP (transmission control protocol)
TLS (transport layer security)
HTTP/2 (hypertext transfer protocol 2)

DoH is not
one of these!

37



wireshark window
packet list

packet details packet bytes

hilite in details
shows corresponding bytes

this case:
10 = 0x0a
0 = 0x00
2 = 0x02
15 = 0x0f

‘protocol’
the highest-layer protocol decoded

ethernet
IPv4 (internet protocol version 4)

TCP (transmission control protocol)
TLS (transport layer security)
HTTP/2 (hypertext transfer protocol 2)

DoH is not
one of these!

37



wireshark window
packet list

packet details packet bytes

hilite in details
shows corresponding bytes

this case:
10 = 0x0a
0 = 0x00
2 = 0x02
15 = 0x0f

‘protocol’
the highest-layer protocol decoded

ethernet
IPv4 (internet protocol version 4)

TCP (transmission control protocol)
TLS (transport layer security)
HTTP/2 (hypertext transfer protocol 2)

DoH is not
one of these!

37



wireshark window
packet list

packet details packet bytes

hilite in details
shows corresponding bytes

this case:
10 = 0x0a
0 = 0x00
2 = 0x02
15 = 0x0f

‘protocol’
the highest-layer protocol decoded

ethernet
IPv4 (internet protocol version 4)

TCP (transmission control protocol)
TLS (transport layer security)
HTTP/2 (hypertext transfer protocol 2)

DoH is not
one of these!

37



ethernet
IPv4 (internet protocol version 4)
TCP (transmission control protocol)
TLS (transport layer security)
HTTP/2 (hypertext transfer protocol 2)
DNS (domain name system)

DoH = DNS over HTTPS

38



setup step: got Firefox to output
cryptographic keys (using SSLKEYLOGFILE)

39



setup step: got Firefox to output
cryptographic keys (using SSLKEYLOGFILE)

39



setup step: got Firefox to output
cryptographic keys (using SSLKEYLOGFILE)

39



setup step: got Firefox to output
cryptographic keys (using SSLKEYLOGFILE)

39



setup step: got Firefox to output
cryptographic keys (using SSLKEYLOGFILE)

39



setup step: got Firefox to output
cryptographic keys (using SSLKEYLOGFILE)

39



setup step: got Firefox to output
cryptographic keys (using SSLKEYLOGFILE)

39



setup step: got Firefox to output
cryptographic keys (using SSLKEYLOGFILE)

39



setup step: got Firefox to output
cryptographic keys (using SSLKEYLOGFILE)

39



setup step: got Firefox to output
cryptographic keys (using SSLKEYLOGFILE)

39



setup step: got Firefox to output
cryptographic keys (using SSLKEYLOGFILE)

39



setup step: got Firefox to output
cryptographic keys (using SSLKEYLOGFILE)

39



setup step: got Firefox to output
cryptographic keys (using SSLKEYLOGFILE)

39



40



filter expression
based on address (∼ machine) and port number (∼ program/socket) fields
usually means all part of one socket connection

499 packets in “conversation”

some packets not shown from filter
highest layer used
in each packet

connection only ‘for’
DNS over HTTPS (DoH)
but many packets
only needed for
bookkeeping for
the ‘lower’ layers

bookkeeping packets sent
in both directions

41



filter expression
based on address (∼ machine) and port number (∼ program/socket) fields
usually means all part of one socket connection

499 packets in “conversation”

some packets not shown from filter

highest layer used
in each packet

connection only ‘for’
DNS over HTTPS (DoH)
but many packets
only needed for
bookkeeping for
the ‘lower’ layers

bookkeeping packets sent
in both directions

41



filter expression
based on address (∼ machine) and port number (∼ program/socket) fields
usually means all part of one socket connection

499 packets in “conversation”

some packets not shown from filter

highest layer used
in each packet

connection only ‘for’
DNS over HTTPS (DoH)
but many packets
only needed for
bookkeeping for
the ‘lower’ layers

bookkeeping packets sent
in both directions

41



filter expression
based on address (∼ machine) and port number (∼ program/socket) fields
usually means all part of one socket connection

499 packets in “conversation”

some packets not shown from filter
highest layer used
in each packet

connection only ‘for’
DNS over HTTPS (DoH)
but many packets
only needed for
bookkeeping for
the ‘lower’ layers

bookkeeping packets sent
in both directions

41



end-to-end argument
Saltzer, Reed, Clark, “End-to-End Arguments in System Design”

“The function in question can completely and correctly be
implemented only with the knowledge and help of the application
standing at the end points of the communication system.
Therefore, providing that questioned function as a feature of the
communication system itself is not possible. (Sometimes an
incomplete version of the function provided by the communication
system may be useful as a performance enhancement.)”

42



end-to-end argument
Saltzer, Reed, Clark, “End-to-End Arguments in System Design”

“The function in question can completely and correctly be
implemented only with the knowledge and help of the application
standing at the end points of the communication system.
Therefore, providing that questioned function as a feature of the
communication system itself is not possible. (Sometimes an
incomplete version of the function provided by the communication
system may be useful as a performance enhancement.)”

43



example: reliable file transfer
want to make sure correct data transferred

want to protect against:
error in hardware/software on sending machine reading file
bits being flipped in memory on forwarding machine
communication system flipping bits in data
hosts crashing during communication

communication system can’t help a lot of these things

authors experienced router with bad memory/processor

44



example: reliable file transfer
want to make sure correct data transferred

want to protect against:
error in hardware/software on sending machine reading file
bits being flipped in memory on forwarding machine
communication system flipping bits in data
hosts crashing during communication

communication system can’t help a lot of these things

authors experienced router with bad memory/processor

44



example: reliable file transfer
want to make sure correct data transferred

want to protect against:
error in hardware/software on sending machine reading file
bits being flipped in memory on forwarding machine
communication system flipping bits in data
hosts crashing during communication

communication system can’t help a lot of these things

authors experienced router with bad memory/processor
44



solution: end-to-end checks
want reliable transfer: compare final files (with hash or similar)

“end-to-end” — doesn’t care what middle systems do

45



end-to-end argument
Saltzer, Reed, Clark, “End-to-End Arguments in System Design”

“The function in question can completely and correctly be
implemented only with the knowledge and help of the application
standing at the end points of the communication system.
Therefore, providing that questioned function as a feature of the
communication system itself is not possible. (Sometimes an
incomplete version of the function provided by the communication
system may be useful as a performance enhancement.)”

46



end-to-end in practice
“narrow waist” of IP doesn’t provide many gaurnetees

no gaurentees about reliable transmission, duplicate suppression,
message order, …

but try to provide good service (“best effort”)

in design: typically middle systems won’t know/care about what’s
forwarded

but many exceptions

47



backup slides

48


	network terminology
	nodes / links / internetworks
	flows
	types of channels
	channels and sockets
	client/server

	exercise: terms

	standardization
	building with layers
	separation of responsibility
	OSI/Internet model

	interlude: wireshark preview
	some examples in wireshark
	end-to-end argument

	backup slides

