
1



FIFO + drop-tail
scheduling policy: first-in first-out (FIFO)

drop policy: drop tail

newest message next out / oldest messageempty? first message placed herepartly full? use next slot

discarded

full? discard new packets

tail head

2



FIFO + drop-tail
scheduling policy: first-in first-out (FIFO)

drop policy: drop tail

newest message next out / oldest message

empty? first message placed herepartly full? use next slot

discarded

full? discard new packets

tail head

2



FIFO + drop-tail
scheduling policy: first-in first-out (FIFO)

drop policy: drop tail

newest message next out / oldest message

empty? first message placed here

partly full? use next slot

discarded

full? discard new packets

tail head

2



FIFO + drop-tail
scheduling policy: first-in first-out (FIFO)

drop policy: drop tail

newest message next out / oldest messageempty? first message placed here

partly full? use next slot

discarded

full? discard new packets

tail head

2



FIFO + drop-tail
scheduling policy: first-in first-out (FIFO)

drop policy: drop tail

newest message next out / oldest messageempty? first message placed herepartly full? use next slot

discarded
full? discard new packets

tail head

2



queue scheduling
“what goes out on network first?”

simple policy: first-in, first-out (FIFO)

FIFO minimizes per-packet average latency, but…

doesn’t distinguish between different flows

3



unfair dequeue/drop

7 pkt/ms

3 pkt/ms
switch

max 5 pkt/sec

7 pkt/ms into switch 3.5 pkt/ms out
50% packet loss

3 pkt/ms into switch
1.5 pkt/ms out
50% packet loss

intuitive notion of ‘fair’ would mean:
top flow gets 2.5 pkts/sec out
bottom flow gets 2.5 pkts/sec out

FIFO + drop-tail does not distinguish flows
so both flows have same drop rate

preserve ratio of input demand
far from even (‘intuitive fair’) split

4



unfair dequeue/drop

7 pkt/ms

3 pkt/ms
switch

max 5 pkt/sec

7 pkt/ms into switch 3.5 pkt/ms out
50% packet loss

3 pkt/ms into switch
1.5 pkt/ms out
50% packet loss

intuitive notion of ‘fair’ would mean:
top flow gets 2.5 pkts/sec out
bottom flow gets 2.5 pkts/sec out

FIFO + drop-tail does not distinguish flows
so both flows have same drop rate

preserve ratio of input demand
far from even (‘intuitive fair’) split

4



unfair dequeue/drop

7 pkt/ms

3 pkt/ms
switch

max 5 pkt/sec

7 pkt/ms into switch 3.5 pkt/ms out
50% packet loss

3 pkt/ms into switch
1.5 pkt/ms out
50% packet loss

intuitive notion of ‘fair’ would mean:
top flow gets 2.5 pkts/sec out
bottom flow gets 2.5 pkts/sec out

FIFO + drop-tail does not distinguish flows
so both flows have same drop rate

preserve ratio of input demand
far from even (‘intuitive fair’) split

4



unfair dequeue/drop

7 pkt/ms

3 pkt/ms
switch

max 5 pkt/sec

7 pkt/ms into switch 3.5 pkt/ms out
50% packet loss

3 pkt/ms into switch
1.5 pkt/ms out
50% packet loss

intuitive notion of ‘fair’ would mean:
top flow gets 2.5 pkts/sec out
bottom flow gets 2.5 pkts/sec out

FIFO + drop-tail does not distinguish flows
so both flows have same drop rate

preserve ratio of input demand
far from even (‘intuitive fair’) split

4



fair (de)queuing

alternate (‘round robin’)
when possible

always keep link busy

5



fair (de)queuing

alternate (‘round robin’)
when possible

always keep link busy

5



problem 1: variable packet size
????

just alternating packets doesn’t work with variable sizes

need to send more packets from flows with faster packets

6



problem 2: packets arriving late
time = queue

A1, B1, B2, B3
0.0 B1, B2, B3 start sending A1
1.0 B1, B2, B3 finish sending A1
1.0 B2, B3 start sending B1
2.0 B2, B3 finish sending B1
2.0 B3 start sending B2
2.1 B3, A2 receive A2
2.9 B3, A2, A3 receive A3
3.0 B3, A2, A3 finish sending B2

flow A missed a turn because packet was just a little late
intuition: should get extra turn to make up for this?

7



problem 2: packets arriving late
time = queue

A1, B1, B2, B3
0.0 B1, B2, B3 start sending A1
1.0 B1, B2, B3 finish sending A1
1.0 B2, B3 start sending B1
2.0 B2, B3 finish sending B1
2.0 B3 start sending B2
2.1 B3, A2 receive A2
2.9 B3, A2, A3 receive A3
3.0 B3, A2, A3 finish sending B2

flow A missed a turn because packet was just a little late
intuition: should get extra turn to make up for this?

7



theoretical model: alternating bit
let’s say we can split up packets into individual bits

fair sharing:
one bit from A, one bit from B, one bit from A, one bit from B,
one bit from A, etc.

preview:

figure out what timing would look like if we could do this

use this timing to decide what packets to send
(the way we can actually send packets)

8



alternating bit ordering
sending A1 (2 bit), A2 (1 bit), A3 (2 bit), B1 (4 bit), B2 (1 bit)

step —
1 send A1 bit 1
2 send B1 bit 1
3 send A1 bit 2
4 send B1 bit 2
5 send A2 bit 1
6 send B1 bit 3
7 send A3 bit 1
8 send B1 bit 4
9 send A3 bit 2
10 send B2 bit 1

packet finish step
A1 3
A2 5
A3 9
B1 8
B2 10

packet finish step
A1 3
A2 5
B1 8
A3 9
B2 10

sort

9



alternating bit ordering
sending A1 (2 bit), A2 (1 bit), A3 (2 bit), B1 (4 bit), B2 (1 bit)

step —
1 send A1 bit 1
2 send B1 bit 1
3 send A1 bit 2
4 send B1 bit 2
5 send A2 bit 1
6 send B1 bit 3
7 send A3 bit 1
8 send B1 bit 4
9 send A3 bit 2
10 send B2 bit 1

packet finish step
A1 3
A2 5
A3 9
B1 8
B2 10

packet finish step
A1 3
A2 5
B1 8
A3 9
B2 10

sort

9



alternating bit ordering
sending A1 (2 bit), A2 (1 bit), A3 (2 bit), B1 (4 bit), B2 (1 bit)

step —
1 send A1 bit 1
2 send B1 bit 1
3 send A1 bit 2
4 send B1 bit 2
5 send A2 bit 1
6 send B1 bit 3
7 send A3 bit 1
8 send B1 bit 4
9 send A3 bit 2
10 send B2 bit 1

packet finish step
A1 3
A2 5
A3 9
B1 8
B2 10

packet finish step
A1 3
A2 5
B1 8
A3 9
B2 10

sort

9



alternating bit ordering
sending A1 (2 bit), A2 (1 bit), A3 (2 bit), B1 (4 bit), B2 (1 bit)

step —
1 send A1 bit 1
2 send B1 bit 1
3 send A1 bit 2
4 send B1 bit 2
5 send A2 bit 1
6 send B1 bit 3
7 send A3 bit 1
8 send B1 bit 4
9 send A3 bit 2
10 send B2 bit 1

packet finish step
A1 3
A2 5
A3 9
B1 8
B2 10

packet finish step
A1 3
A2 5
B1 8
A3 9
B2 10

sort

9



using this order
computed the order packets “should” be received in

goal: achieve same order but without bit-by-bit

…by sending packets in desired receive order

10



full packet and ordering
sending A1 (2 bit), A2 (1 bit), A3 (2 bit), B1 (4 bit), B2 (1 bit)

packet finish at
A1 3
A2 5
B1 8
A3 9
B2 10

bit-by-bit time

step=
1 start sending A1
2 A1’s last bit
3 start sending A2
3 A2’s last bit
4 start sending B1
7 B1’s last bit
8 start sending A3
9 A3’s last bit
10 start sending B2
10 B2’s last bit

whole-packet schedule
packet finish at
A1 2
A2 3
B1 7
A3 9
B2 10

actual time

11



full packet and ordering
sending A1 (2 bit), A2 (1 bit), A3 (2 bit), B1 (4 bit), B2 (1 bit)

packet finish at
A1 3
A2 5
B1 8
A3 9
B2 10

bit-by-bit time
step=
1 start sending A1
2 A1’s last bit
3 start sending A2
3 A2’s last bit
4 start sending B1
7 B1’s last bit
8 start sending A3
9 A3’s last bit
10 start sending B2
10 B2’s last bit

whole-packet schedule

packet finish at
A1 2
A2 3
B1 7
A3 9
B2 10

actual time

11



full packet and ordering
sending A1 (2 bit), A2 (1 bit), A3 (2 bit), B1 (4 bit), B2 (1 bit)

packet finish at
A1 3
A2 5
B1 8
A3 9
B2 10

bit-by-bit time
step=
1 start sending A1
2 A1’s last bit
3 start sending A2
3 A2’s last bit
4 start sending B1
7 B1’s last bit
8 start sending A3
9 A3’s last bit
10 start sending B2
10 B2’s last bit

whole-packet schedule
packet finish at
A1 2
A2 3
B1 7
A3 9
B2 10

actual time

11



uneven finishing
sending A1 (2 bit), A2 (1 bit), B1 (4 bit), B2 (1 bit), C1 (2 bit)

step —
1 send A1 bit 1
2 send B1 bit 1
3 send C1 bit 1
4 send A1 bit 2
5 send B1 bit 2
6 send C1 bit 2
7 send A2 bit 1
8 send B1 bit 3
9 send B1 bit 4
10 send B2 bit 1

round step —
1 1 send A1 bit 1
1 2 send B1 bit 1
1 3 send C1 bit 1
2 4 send A1 bit 2
2 5 send B1 bit 2
2 6 send C1 bit 2
3 7 send A2 bit 1
3 8 send B1 bit 3
4 9 send B1 bit 4
5 10 send B2 bit 1

packet finish step
A1 4
C1 6
A2 7
B1 9
B2 10

packet finish step finish round
A1 4 2
C1 6 2
A2 7 3
B1 9 4
B2 10 5

12



uneven finishing
sending A1 (2 bit), A2 (1 bit), B1 (4 bit), B2 (1 bit), C1 (2 bit)

step —
1 send A1 bit 1
2 send B1 bit 1
3 send C1 bit 1
4 send A1 bit 2
5 send B1 bit 2
6 send C1 bit 2
7 send A2 bit 1
8 send B1 bit 3
9 send B1 bit 4
10 send B2 bit 1

round step —
1 1 send A1 bit 1
1 2 send B1 bit 1
1 3 send C1 bit 1
2 4 send A1 bit 2
2 5 send B1 bit 2
2 6 send C1 bit 2
3 7 send A2 bit 1
3 8 send B1 bit 3
4 9 send B1 bit 4
5 10 send B2 bit 1

packet finish step
A1 4
C1 6
A2 7
B1 9
B2 10

packet finish step finish round
A1 4 2
C1 6 2
A2 7 3
B1 9 4
B2 10 5

12



rounds / virtual time
alternating bit:

several rounds where we transmit 1 bit from each pending flow

can think of round number as a weird notion of time

“virtual clock” that advances at variable speed

called virtual time

can quickly compute virtual time packet should finish

enough to tell us when to send each packet

13



rounds / virtual time
alternating bit:

several rounds where we transmit 1 bit from each pending flow

can think of round number as a weird notion of time

“virtual clock” that advances at variable speed

called virtual time

can quickly compute virtual time packet should finish

enough to tell us when to send each packet
13



computing virtual time
sending A1 (2 bit), A2 (1 bit), B1 (4 bit), B2 (1 bit), C1 (2 bit)

‘current’ virtual time = 0
packet virtual finish time
A1 2 (= current + size)
A2 3 (= A1’s time + size)
B1 4 (= current + size)
B2 5 (= B1’s time + size)
C1 2 (= current + size)

virtual time = time for packet alone + max {last finish time from
flow, current time}

14



computing virtual time
sending A1 (2 bit), A2 (1 bit), B1 (4 bit), B2 (1 bit), C1 (2 bit)

‘current’ virtual time = 0
packet virtual finish time
A1 2 (= current + size)
A2 3 (= A1’s time + size)
B1 4 (= current + size)
B2 5 (= B1’s time + size)
C1 2 (= current + size)

virtual time = time for packet alone + max {last finish time from
flow, current time}

14



computing virtual time
sending A1 (2 bit), A2 (1 bit), B1 (4 bit), B2 (1 bit), C1 (2 bit)

‘current’ virtual time = 0
packet virtual finish time
A1 2 (= current + size)
A2 3 (= A1’s time + size)
B1 4 (= current + size)
B2 5 (= B1’s time + size)
C1 2 (= current + size)

virtual time = time for packet alone + max {last finish time from
flow, current time}

14



computing virtual time
sending A1 (2 bit), A2 (1 bit), B1 (4 bit), B2 (1 bit), C1 (2 bit)

‘current’ virtual time = 0
packet virtual finish time
A1 2 (= current + size)
A2 3 (= A1’s time + size)
B1 4 (= current + size)
B2 5 (= B1’s time + size)
C1 2 (= current + size)

virtual time = time for packet alone + max {last finish time from
flow, current time}

14



computing virtual time
sending A1 (2 bit), A2 (1 bit), B1 (4 bit), B2 (1 bit), C1 (2 bit)

‘current’ virtual time = 0
packet virtual finish time
A1 2 (= current + size)
A2 3 (= A1’s time + size)
B1 4 (= current + size)
B2 5 (= B1’s time + size)
C1 2 (= current + size)

virtual time = time for packet alone + max {last finish time from
flow, current time}

14



computing virtual time
sending A1 (2 bit), A2 (1 bit), B1 (4 bit), B2 (1 bit), C1 (2 bit)

‘current’ virtual time = 0
packet virtual finish time
A1 2 (= current + size)
A2 3 (= A1’s time + size)
B1 4 (= current + size)
B2 5 (= B1’s time + size)
C1 2 (= current + size)

virtual time = time for packet alone + max {last finish time from
flow, current time}

14



late packets
sending A1 (2 bit), B1 (2 bit), B2 (2 bit)
and A2 (2 bit) but that arrives between steps 5+6:

vtime step —
1 1 send A1 bit 1
1 2 send B1 bit 1
2 3 send A1 bit 2
2 4 send B1 bit 2
3 5 send B2 bit 1 (get A2 here)
4 6 send A2 bit 1
4 7 send B2 bit 1
5 8 send A2 bit 1
6 9 send A2 bit 1

pkt virtual finish time
A1 2 (= current + size)
B1 2 (= current + size)
B2 4 (= B1’s time + size)
A2 6 (= (current AKA 4) + size)

15



late packets
sending A1 (2 bit), B1 (2 bit), B2 (2 bit)
and A2 (2 bit) but that arrives between steps 5+6:

vtime step —
1 1 send A1 bit 1
1 2 send B1 bit 1
2 3 send A1 bit 2
2 4 send B1 bit 2
3 5 send B2 bit 1 (get A2 here)
4 6 send A2 bit 1
4 7 send B2 bit 1
5 8 send A2 bit 1
6 9 send A2 bit 1

pkt virtual finish time
A1 2 (= current + size)
B1 2 (= current + size)
B2 4 (= B1’s time + size)
A2 6 (= (current AKA 4) + size)

15



late packets
sending A1 (2 bit), B1 (2 bit), B2 (2 bit)
and A2 (2 bit) but that arrives between steps 5+6:

vtime step —
1 1 send A1 bit 1
1 2 send B1 bit 1
2 3 send A1 bit 2
2 4 send B1 bit 2
3 5 send B2 bit 1 (get A2 here)
4 6 send A2 bit 1
4 7 send B2 bit 1
5 8 send A2 bit 1
6 9 send A2 bit 1

pkt virtual finish time
A1 2 (= current + size)
B1 2 (= current + size)
B2 4 (= B1’s time + size)
A2 6 (= (current AKA 4) + size)

15



late packets
sending A1 (2 bit), B1 (2 bit), B2 (2 bit)
and A2 (2 bit) but that arrives between steps 5+6:

vtime step —
1 1 send A1 bit 1
1 2 send B1 bit 1
2 3 send A1 bit 2
2 4 send B1 bit 2
3 5 send B2 bit 1 (get A2 here)
4 6 send A2 bit 1
4 7 send B2 bit 1
5 8 send A2 bit 1
6 9 send A2 bit 1

pkt virtual finish time
A1 2 (= current + size)
B1 2 (= current + size)
B2 4 (= B1’s time + size)
A2 6 (= (current AKA 4) + size)

15



late packets
sending A1 (2 bit), B1 (2 bit), B2 (2 bit)
and A2 (2 bit) but that arrives between steps 5+6:

vtime step —
1 1 send A1 bit 1
1 2 send B1 bit 1
2 3 send A1 bit 2
2 4 send B1 bit 2
3 5 send B2 bit 1 (get A2 here)
4 6 send A2 bit 1
4 7 send B2 bit 1
5 8 send A2 bit 1
6 9 send A2 bit 1

pkt virtual finish time
A1 2 (= current + size)
B1 2 (= current + size)
B2 4 (= B1’s time + size)
A2 6 (= (current AKA 4) + size)

15



virtual time algorithm
track:

virtual start time of last sent packet
virtual finish time of last packet for each flow

on receive packet:
compute virtual start time of packet = max of

virtual finish time from last packet in same flow
virtual start time of last sent packet + adjustment for how much sent

compute virtual finish time of packet =
virtual start time + packet size

when sending, send with lowest virtual finish time 16



controlled fairness
fair queuing says with 2 flows, each gets half bandwidth

maybe we have other goals:

flow A gets 80% of bandwidth

flow B gets 20% of bandwidth

instead of 1-bit at a time, imagine:

A sends 4 bits per round, B sends 1 bit per round

17



controlled fairness
fair queuing says with 2 flows, each gets half bandwidth

maybe we have other goals:

flow A gets 80% of bandwidth

flow B gets 20% of bandwidth

instead of 1-bit at a time, imagine:

A sends 4 bits per round, B sends 1 bit per round

17



weighted fair queuing
change fair queuing to add ‘weights’

say N bits takes N/weight rounds to send

virtual finish time = virtual start time + size/weight
instead of just + size

18



upcoming assignment
fixed size packets, but…

part 1: priority queue

part 2: weighted fair queue
one flow gets twice weight of other
current version has fixed size packets (undecided if I’ll change before
out)

19



exercise
suppose A gets 3 shares, B 1 share

get packets:

A1, A2, A3, A4, A5 (each 2000 bits)

B1 (500 bits), B2 (600 bits), B3 (500 bits), B4 (400 bits)

best order?

20



priority queue
assign priorities to flows

drop packet from lowest priority flow possible

on ties, choose other drop strategy

21



priority-based dequeue

22



priority-based dropping

23



priority-based dropping (alt)

24



priority: all or nothing
if flow A has greater priority than flow B

and both can use full available bandwidth

flow A gets full available bandwidth

flow B gets no bandwidth (everything dropped)

25



drop tail — unfair discard
drop tail is “unfair”

flow not responsible for most usage can be dropped

discarded

tail head

26



drop tail — long waits
switch now ‘knows’ flow is going to lose packet

but receiver won’t know until packets in queue are sent first

might’ve been better to drop first packet

discarded

tail head

8 packet times

27



early detection
really want to drop earlier packets

trigger congestion control to reduce send rate faster
should reduce total number of dropped packets

but don’t want to waste queue capacity
(otherwise, just use smaller queue)

so drop ‘some’ packets early

28



random early detection (RED)
compute queue length

drop with probability based on queue length:
P(drop)

1.0

MaxP

MinThresh

AvgLen

MaxThresh

Peterson and Davie, Computer Networks: A Systems Approach, Fig 169 (sec 6.4) 29



random early detection (RED)
compute queue length

drop with probability based on queue length:
P(drop)

1.0

MaxP

MinThresh

AvgLen

MaxThresh

Peterson and Davie, Computer Networks: A Systems Approach, Fig 169 (sec 6.4) 29



measuring queue length
use moving average instead of actual value

reduce sensitivity to short ‘bursts’ of packets

spread packet-dropping ‘signal’ among all active connections

30



early detection results
From Floyd and Jacobson, “Random Early Detection Gateways for Congestion
Avoidance”

31



active queue management
algorithms that go beyond drop-tail, FIFO called
“active queue management”

many variations besides RED, fair queuing

32



changing random early detection?
some things seem suspicious in RED:

moving average of queue length limits response time
how moving average computed can matter
doesn’t choose specific target queue length
choice of drops doesn’t take fairness into account

various proposals to tweak and address these issues

33



selected other possible goals
weighted fair policy for random early detection

specific bandwidth limits
if strict priority/weights not good enough
common algorithm: “token bucket”

34



backup slides

35


	normal policy: FIFO + drop-tail
	queue scheduling
	FIFO: unfair dequeue
	fair dequeue: simple fair queuing
	fair dequeue: weighted fair queuing
	exercise


	priority queuing
	drop-tail: unfair discard
	drop-tail: long wait
	early detection
	some results

	active queue management generally
	backup slides

