
1

changelog
6 Sep 2024: add explicit note re: ACK up to X being inclusive first
time it appears

10 Sep 2024: be more clear that ACK number is 1+last byte
sequence number

10 Sep 2024: correct discussion of window size variation to discuss
burstiness, which means that the maximum possible latency may
not be where the throughput collapse happens

2

dealing with network message lost

machine
A

machine
B

“The meeting is at 12pm.”

machine
A

machine
B

“The meeting is at 12pm.”

3

handling lost message: acknowledgements

machine
A

machine
B

“The meeting is at 12pm.”

ACK!

4

handling lost message

machine
A

machine
B

“The meeting is at 12pm.”

“timeout”
A doesn’t get reply
after waiting too long

“The meeting is at 12pm.”

ACK!

5

handling lost message

machine
A

machine
B

“The meeting is at 12pm.”

“timeout”
A doesn’t get reply
after waiting too long

“The meeting is at 12pm.”

ACK!

5

handling lost message

machine
A

machine
B

“The meeting is at 12pm.”

“timeout”
A doesn’t get reply
after waiting too long

“The meeting is at 12pm.”

ACK!

5

protocol so far
on sender: until ACK received:

(re)send frame of data
wait fixed amount of time for ACK

on receiver: continuously:
wait for frame of data
send ACK back

6

problem
really want to send multiple frames

example: data split in multiple pieces

7

splitting messages: try 1

machine
A

machine
B

“The meeting”

ACK“ is at 12pm.”

ACK

reconstructed message:
The meeting is at 12pm. 8

splitting messages: try 1 — problem 1

machine
A

machine
B

“The meeting”

ACK“The meeting”

ACK“ is at 12pm.”

ACK

reconstructed message:
The meetingThe meeting is at 12pm.

9

splitting messages: try 1 — problem 1

machine
A

machine
B

“The meeting”

ACK“The meeting”

ACK“ is at 12pm.”

ACK

reconstructed message:
The meetingThe meeting is at 12pm. 9

exercise: other problems?
sending ‘The meeting’, ‘is at 12pm’

what would be received for each of these scenarios?
1. message (instead of acknowledgment) is lost
2. first message from machine A is delayed a long time by network
3. acknowledgment of second message lost instead of first

10

aside: message delays
long message delays not possible with direct link

but are possible with:
multiple paths from A to B
doing this kind of acknowledgment + resending hop-by-hop

11

splitting messages: try 2

machine
A

machine
B

part 0: “The meeting”

ACKpart 1: “ is at 12pm.”

ACK

reconstructed message:
The meeting is at 12pm.

12

splitting messages: try 2 — missed ack

machine
A

machine
B

part 0: “The meeting”

ACKpart 0: “The meeting”

ACKpart 1: “ is at 12pm.”

ACK

reconstructed message:
The meeting is at 12pm. 13

splitting messages: try 2 — problem

machine
A

machine
B

part 0: “The meeting”

ACK
part 0: “The meeting”

ACKpart 1: “ is at 12pm.”

A thinks: part 0 + part 1 acknowleged!
14

splitting messages: version 3

machine
A

machine
B

part 0: “The meeting”

ACK part 0part 0: “The meeting”

ACK part 0

part 1: “ is at 12pm.”

timeout
for part 1

part 1: “ is at 12pm.”

ACK part 1

15

sequence numbers
call the ‘part’ label sequence number

for now: sequence number = message (or segment) number
in TCP: sequence number = byte number

important question: how large can they get?

if we never reuse them — infinite!

so really want to reuse them

16

1-bit sequence number

machine
A

machine
B

0: “The ”

ACK 0

1: “meeting”

ACK 1
0: “ is at ”

ACK 01: “12pm.” 17

‘stop and wait’
machine A is only sending one thing at a time

never start sending next thing until after sending previous thing

18

stop-and-wait exercise (receive, 1)
machine B receives 0: X

machine B sends ACK 0

machine B receives 0: X

what should machine B do now?
A. send ACK 0 B. send ACK 1 C. send nothing

19

stop-and-wait exercise (receive, 2)
machine B receives 0: X

machine B sends ACK 0

machine B receives 1: X

what should machine B do now?
A. send ACK 0 B. send ACK 1 C. send nothing

20

stop-and-wait exercise (receive, 3)
machine B receives 0: X

machine B sends ACK 0

machine B receives 1: Y

machine B sends ACK 1

machine B receives 0: X

what should machine B do now?
A. send ACK 0 B. send ACK 1 C. send nothing

21

stop-and-wait exercise (send, 1)
A trying to send ‘X’, then ‘Y’, then ‘Z’
machine A sends 0: X

machine A sends 0: X

machine A receives ACK 0

machine A sends 1: Y

machine A receives ACK 0

what should machine A do now?
A. send 0: X again B. send 1: Y again
C. send 0: Z D. something else 22

stop-and-wait exercise (send, 2)
A trying to send ‘X’, then ‘Y’, then ‘Z’
machine A sends 0: X

machine A sends 0: X

machine A receives ACK 0

machine A sends 1: Y

machine A receives ACK 1

what should machine A do now?
A. send 0: X again B. send 1: Y again
C. send 0: Z D. something else 23

stop-and-wait issues
two issues with stop-and-wait:

doesn’t use close to full capacity of network

not clear how to set timeouts

24

looking at metrics
several important metrics we’ll care about

(both for this and future topics)

throughput and bandwidth (∼ how much capacity used/available)

latency and round-trip time (RTT) (∼ what timeouts needed)

jitter (∼ safety margin for timeouts)

25

looking at metrics
several important metrics we’ll care about

(both for this and future topics)

throughput and bandwidth (∼ how much capacity used/available)

latency and round-trip time (RTT) (∼ what timeouts needed)

jitter (∼ safety margin for timeouts)

25

bandwidth / throughput
bandwidth / data rate: maximum rate we can send per unit time

most commonly measuring the speed of a link

1 gigabit/second = transmit 1 bit / nanosecond

throughput: acheived rate per unit time
often lower than total bandwidth because of losses
(we’ll give several examples throughout the semester)

26

latency (1)
latency: time for message: SOURCE → DEST
example: 1000 bit message from S to D:

S D
50 Mbit, 500 meters of copper

one bit sent each 1/50M second = 0.02 µs
1000 bits take 0.02× 1000 = 20 µs to sent

“transmission delay”

+ 2.2 microseconds for bit to go down cable (2.3× 108 m/s)
“propogation delay”

total latency of about 22.2 µs

27

latency (1)
latency: time for message: SOURCE → DEST
example: 1000 bit message from S to D:

S D
50 Mbit, 500 meters of copper

one bit sent each 1/50M second = 0.02 µs
1000 bits take 0.02× 1000 = 20 µs to sent

“transmission delay”

+ 2.2 microseconds for bit to go down cable (2.3× 108 m/s)
“propogation delay”

total latency of about 22.2 µs

27

latency (1)
latency: time for message: SOURCE → DEST
example: 1000 bit message from S to D:

S D
50 Mbit, 500 meters of copper

one bit sent each 1/50M second = 0.02 µs
1000 bits take 0.02× 1000 = 20 µs to sent

“transmission delay”

+ 2.2 microseconds for bit to go down cable (2.3× 108 m/s)
“propogation delay”

total latency of about 22.2 µs

27

latency (1)
latency: time for message: SOURCE → DEST
example: 1000 bit message from S to D:

S D
50 Mbit, 500 meters of copper

one bit sent each 1/50M second = 0.02 µs
1000 bits take 0.02× 1000 = 20 µs to sent

“transmission delay”

+ 2.2 microseconds for bit to go down cable (2.3× 108 m/s)
“propogation delay”

total latency of about 22.2 µs
27

latency (1, ex)
S D

1 Gbit, 10 kilometers of fibre

exercise: latency for 20000 bit message from S to D
assume speed of signal through fiber of 2.0× 108 m/s

28

latency (1, ex)
S D

1 Gbit, 10 kilometers of fibre

exercise: latency for 20000 bit message from S to D
assume speed of signal through fiber of 2.0× 108 m/s

28

latency (1, ex)
S D

1 Gbit, 10 kilometers of fibre

exercise: latency for 20000 bit message from S to D
assume speed of signal through fiber of 2.0× 108 m/s

28

latency (2)
example: 1000 bit packet from S to D
assume when message is received:

5 other 1000-bit packets in queue; no extra bits between packets
no other switch processing time

S D
50 Mbit, 500 meters of copper 50 Mbit, 500 meters of copper

S to switch, switch to D: 22.2 µs (transmit+propogate delay)

within switch: wait 20× 5 = 100 µs for 5 other packets (20µs = 1
packet transmit delay)

“queueing delay”

total latency: 22.2 + 100 + 22.2 = 144.4 microseconds
29

latency (2)
example: 1000 bit packet from S to D
assume when message is received:

5 other 1000-bit packets in queue; no extra bits between packets
no other switch processing time

S D
50 Mbit, 500 meters of copper 50 Mbit, 500 meters of copper

S to switch, switch to D: 22.2 µs (transmit+propogate delay)

within switch: wait 20× 5 = 100 µs for 5 other packets (20µs = 1
packet transmit delay)

“queueing delay”

total latency: 22.2 + 100 + 22.2 = 144.4 microseconds
29

latency (2)
example: 1000 bit packet from S to D
assume when message is received:

5 other 1000-bit packets in queue; no extra bits between packets
no other switch processing time

S D
50 Mbit, 500 meters of copper 50 Mbit, 500 meters of copper

S to switch, switch to D: 22.2 µs (transmit+propogate delay)

within switch: wait 20× 5 = 100 µs for 5 other packets (20µs = 1
packet transmit delay)

“queueing delay”

total latency: 22.2 + 100 + 22.2 = 144.4 microseconds
29

latency (2)
example: 1000 bit packet from S to D
assume when message is received:

5 other 1000-bit packets in queue; no extra bits between packets
no other switch processing time

‘host’

S
‘host’

D
50 Mbit, 500 meters of copper 50 Mbit, 500 meters of copper

S to switch, switch to D: 22.2 µs (transmit+propogate delay)

within switch: wait 20× 5 = 100 µs for 5 other packets (20µs = 1
packet transmit delay)

“queueing delay”

total latency: 22.2 + 100 + 22.2 = 144.4 microseconds
29

round trip time
round-trip-time (RTT): time for message:
SOURCE → DEST → SOURCE

much easier to measure than one-way latency

typically how we’ll set latency

30

jitter
variation in latency

most commonly from changing queuing delays
Interpacket gap

}

4 3 2 1 4 3 2 1
Packet

source

Packet

sink
Network

Figure 20 from Section 1.5 of Computer Networks: A Systems Approach (6th ed) (Peterson and Davie) 31

measuring round-trip time (1a)
charles@reisst14$ ping 1.1.1.1
PING 1.1.1.1 (1.1.1.1) 56(84) bytes of data.
64 bytes from 1.1.1.1: icmp_seq=1 ttl=52 time=13.8 ms
64 bytes from 1.1.1.1: icmp_seq=2 ttl=52 time=15.0 ms
64 bytes from 1.1.1.1: icmp_seq=3 ttl=52 time=12.5 ms
64 bytes from 1.1.1.1: icmp_seq=4 ttl=52 time=12.3 ms
64 bytes from 1.1.1.1: icmp_seq=5 ttl=52 time=13.5 ms
64 bytes from 1.1.1.1: icmp_seq=6 ttl=52 time=12.5 ms
64 bytes from 1.1.1.1: icmp_seq=7 ttl=52 time=13.3 ms
64 bytes from 1.1.1.1: icmp_seq=8 ttl=52 time=13.2 ms
64 bytes from 1.1.1.1: icmp_seq=9 ttl=52 time=13.3 ms
64 bytes from 1.1.1.1: icmp_seq=10 ttl=52 time=14.1 ms
^C
--- 1.1.1.1 ping statistics ---
10 packets transmitted, 10 received, 0% packet loss, time 9014ms
rtt min/avg/max/mdev = 12.273/13.343/15.024/0.786 ms

32

measuring round-trip-time (1b)

33

measuring round-trip-time (1c)

34

non-ICMP pings (1)
HPING www (enp0s31f6 128.143.67.8): NO FLAGS are set, 40 headers + 0 data bytes
len=46 ip=128.143.67.8 ttl=63 DF id=0 sport=0 flags=RA seq=0 win=0 rtt=3.5 ms
len=46 ip=128.143.67.8 ttl=63 DF id=0 sport=0 flags=RA seq=1 win=0 rtt=3.2 ms
len=46 ip=128.143.67.8 ttl=63 DF id=0 sport=0 flags=RA seq=2 win=0 rtt=7.1 ms
len=46 ip=128.143.67.8 ttl=63 DF id=0 sport=0 flags=RA seq=3 win=0 rtt=6.8 ms
len=46 ip=128.143.67.8 ttl=63 DF id=0 sport=0 flags=RA seq=4 win=0 rtt=6.5 ms
len=46 ip=128.143.67.8 ttl=63 DF id=0 sport=0 flags=RA seq=5 win=0 rtt=6.2 ms
len=46 ip=128.143.67.8 ttl=63 DF id=0 sport=0 flags=RA seq=6 win=0 rtt=5.8 ms
len=46 ip=128.143.67.8 ttl=63 DF id=0 sport=0 flags=RA seq=7 win=0 rtt=5.4 ms
len=46 ip=128.143.67.8 ttl=63 DF id=0 sport=0 flags=RA seq=8 win=0 rtt=5.0 ms
len=46 ip=128.143.67.8 ttl=63 DF id=0 sport=0 flags=RA seq=9 win=0 rtt=4.7 ms
^C
--- www hping statistic ---
10 packets transmitted, 10 packets received, 0% packet loss
round-trip min/avg/max = 3.2/5.4/7.1 ms

35

non-ICMP pings (2)

36

measuring throughput?
$ scp test.dat portal.cs.virginia.edu:test.dat
test.dat 100% 32MB 23.0MB/s 00:01
$ scp portal.cs.virginia.edu:test.dat .
test.dat 100% 32MB 28.2MB/s 00:01

(but might be measuring disk speed instead)

also more specialized tools like iperf
require program to run on both ends

37

measuring throughput
$ iperf -s
--
Server listening on TCP port 5001
TCP window size: 128 KByte (default)
--
[1] local 128.143.71.87 port 5001 connected with 128.143.71.27 port 54760
[ID] Interval Transfer Bandwidth
[1] 0.0000-10.0147 sec 1.09 GBytes 934 Mbits/sec

—
$ iperf -c kytos02 | tee iperf.out
--
Client connecting to kytos02, TCP port 5001
TCP window size: 85.0 KByte (default)
--
[1] local 128.143.71.27 port 54760 connected with 128.143.71.87 port 5001
[ID] Interval Transfer Bandwidth
[1] 0.0000-10.0256 sec 1.09 GBytes 933 Mbits/sec

38

measuring transmission delay?
PING www.cs.virginia.edu (128.143.67.8) 1400(1428) bytes of data.
--- www.cs.virginia.edu ping statistics ---
1000 packets transmitted, 1000 received, 0% packet loss, time 50638ms
rtt min/avg/max/mdev = 0.319/0.461/1.222/0.039 ms
$ ping -s 16 www -i 0.05 -c 1000 -q
PING www.cs.virginia.edu (128.143.67.8) 16(44) bytes of data.
--- www.cs.virginia.edu ping statistics ---
1000 packets transmitted, 1000 received, 0% packet loss, time 50995ms
rtt min/avg/max/mdev = 0.156/0.345/1.539/0.068 ms

approx. 0.461− 0.345 = 0.116 ms delay for 1400− 16 extra bytes
with two links in each direction = approx 0.116

4 = 0.029 ms/link
1400− 16byte

0.029ms ≈ 50 Mbit/sec (does not match Gigabit ethernet)
probably other processing time besides sending on links, though

39

stop-and-wait performance
stop-and-wait protocol

assuming no packets lost/corrupted

about one packet per round-trip time

40

example: local ethernet
my home wired network: 0.6 ms round trip time

typical packet has about 1400 bytes = 11200 bits of data

throughput with stop-and-wait:
11200b/0.6ms ≈ 19000b/ms = 19 000 000b/s = 19Mbit/s

available bandwidth is about 1 Gbit/s

41

example: local ethernet
my home wired network: 0.6 ms round trip time

typical packet has about 1400 bytes = 11200 bits of data

throughput with stop-and-wait:
11200b/0.6ms ≈ 19000b/ms = 19 000 000b/s = 19Mbit/s

available bandwidth is about 1 Gbit/s

41

sending two at a time

machine
A

machine
B

0: “The ”

ACK up to 0

1: “meeting”

ACK up to 1
2: “ is at ”

ACK up to 2

3: “12pm.”

ACK up to 3

(ACK up to X = ACK X and everything before it)
key idea: always have two in flight
send next when previous ack’d

42

timeouts per message

machine
A

machine
B

0: “The ”

ACK up to 0

1: “meeting”

2: “ is at ”

ACK up to 0

timeout for 1

1: “meeting”

ACK 1
3: “ 12pm ”

timeout for 2

2: “ is at ”

43

sending three at a time

machine
A

machine
B

0: “The ”

ACK up to 0

1: “meeting”

ACK up to 1

2: “ is at ”

ACK up to 23: “12pm.”

ACK up to 3

4: “Please ”

ACK up to 4

5: “be ”

ACK up to 5

choose “window size” to have in flight
send when previous acknowledged 44

lost ACKs?

machine
A

machine
B

0: “The ”

ACK up to 0

1: “meeting”

ACK up to 1

2: “ is at ”

ACK up to 23: “12pm.”

ACK up to 3
4: “Please ”

ACK up to 4
5: “be ”

ACK up to 5

45

missing messages?

machine
A

machine
B

0: “The ”

ACK up to 0

1: “meeting”

2: “ is at ”

question: what should receiver do with sequence number 2?

one idea: ignore it?

better idea: send something back to sender

46

missing messages?

machine
A

machine
B

0: “The ”

ACK up to 0

1: “meeting”

2: “ is at ”

question: what should receiver do with sequence number 2?

one idea: ignore it?

better idea: send something back to sender

46

missing messages?

machine
A

machine
B

0: “The ”

ACK up to 0

1: “meeting”

2: “ is at ”

question: what should receiver do with sequence number 2?

one idea: ignore it?

better idea: send something back to sender
47

better idea: always ACK

machine
A

machine
B

0: “The ”

ACK up to 0

1: “meeting”

2: “ is at ”

ACK up to 0

only ACK x if everything up to and including x received

intuition: ACK tells sender where to start sending more

48

better idea: always ACK

machine
A

machine
B

0: “The ”

ACK up to 0

1: “meeting”

2: “ is at ”

ACK up to 0

only ACK x if everything up to and including x received

intuition: ACK tells sender where to start sending more
48

fast retransmit
if large window + data packet 2 is lost, then sender will see

ACK 0, ACK 1, ACK 1, ACK 1, ACK 1, ACK 1

duplicate ACKs indicate missing packet 2

shouldn’t wait for timeout

→ TCP heuristic: retransmit immediately after ∼3 duplicate ACKs
not 1 duplicate ACK to tolerate some reordering
also some other details (we’ll talk later)

49

fast retransmit
if large window + data packet 2 is lost, then sender will see

ACK 0, ACK 1, ACK 1, ACK 1, ACK 1, ACK 1

duplicate ACKs indicate missing packet 2

shouldn’t wait for timeout

→ TCP heuristic: retransmit immediately after ∼3 duplicate ACKs
not 1 duplicate ACK to tolerate some reordering
also some other details (we’ll talk later)

49

multiple missing

machine
A

machine
B

0: “The ”

ACK up to 0

1: “meeting”
2: “is”
3: “at”

4: “12pm”
ACK up to 0

ACK up to 0

duplicate ACK heuristic will quickly resend 1, but not 3

would like to supply better information
50

multiple missing

machine
A

machine
B

0: “The ”

ACK up to 0

1: “meeting”
2: “is”
3: “at”

4: “12pm”
ACK up to 0

ACK up to 0

duplicate ACK heuristic will quickly resend 1, but not 3

would like to supply better information
50

selective acknowledgments

machine
A

machine
B

0: “The ”

ACK up to 0

1: “meeting”
2: “is”
3: “at”

4: “12pm”
ACK up to 0 plus 2

ACK up to 0 plus 2 and 4

51

selective acknowledgments

machine
A

machine
B

0: “The ”

ACK up to 0

1: “meeting”
2: “is”
3: “at”

4: “12pm”
ACK up to 0 plus 2

ACK up to 0 plus 2 and 4

51

selective acknowledgments in TCP
optional feature (“extension”) described in RFC 2018

send list of ranges received

typically room for 3 ranges

if more than 3 ranges to report, then:
include range with most recently received frame
include other ranges until sent three times

52

sender window tracking

… …

= frame of data with sequeunce number X

X

12 13 14 15 16 17 18 19 20 21

(LAR)
last ACK recv’d

(LFS)
last frame sent

verified received
can discard

might need to resend
potentially “in flight”

at most the
Send Window Size

(SWS)

yet to be sent

53

sender window tracking

… …

= frame of data with sequeunce number X

X

12 13 14 15 16 17 18 19 20 21

(LAR)
last ACK recv’d

(LFS)
last frame sent

verified received
can discard

might need to resend
potentially “in flight”

at most the
Send Window Size

(SWS)

yet to be sent

53

sender window tracking

… …

= frame of data with sequeunce number X

X

12 13 14 15 16 17 18 19 20 21

(LAR)
last ACK recv’d

(LFS)
last frame sent

verified received
can discard

might need to resend
potentially “in flight”

at most the
Send Window Size

(SWS)

yet to be sent

53

sender window tracking

… …

= frame of data with sequeunce number X

X

12 13 14 15 16 17 18 19 20 21

(LAR)
last ACK recv’d

(LFS)
last frame sent

verified received
can discard

might need to resend
potentially “in flight”

at most the
Send Window Size

(SWS)

yet to be sent

53

sender window tracking

… …

= frame of data with sequeunce number X

X

12 13 14 15 16 17 18 19 20 21

(LAR)
last ACK recv’d

(LFS)
last frame sent

verified received
can discard

might need to resend
potentially “in flight”

at most the
Send Window Size

(SWS)

yet to be sent

53

exercise 1: out-of-bounds ACK
last ACK recv’d (LAR) 10
last frame sent (LFS) 15
send window size (SWS) 5
what probably happened if we receive an ACK for…

9? 10? 13? 16?
A. only possible if network reorders frames
B. only possible from undetected frame corruption
C. lost ACK for frame ≤ 10
D. lost ACK for frame > 10
E. lost frame 11
F. resent frame from timeout

54

exercise 2: sender logic
last ACK recv’d (LAR) 10
last frame sent (LFS) 15
send window size (SWS) 5
In this case, there’s a timeout that will trigger frame 13 to be
resent. If still active, this timeout should be cancelled upon …
A. receiving ACK 12 B. receiving ACK 13
C. receiving ACK 14 D. sending frame 16

55

exercise 3a: new data
last ACK recv’d (LAR) 4
last frame sent (LFS) 6
send window size (SWS) 5
if we compute a new frame of data with sequence number 7 to
eventually send, we should
A. send it now, advancing LFS
B. wait until we get an ACK for 5 or 6 to send it
C. wait until we get an ACK for 6 to send it
D. wait until the frame with sequence number 6 is resent to send it D. something else

56

exercise 3b: new data
last ACK recv’d (LAR) 4
last frame sent (LFS) 8
send window size (SWS) 4
if we compute a new frame of data with sequence number 9 to
eventually send, we should
A. send it now, advancing LFS
B. wait until we get an ACK for 5 or 6 to send it
C. wait until we get an ACK for 6 to send it
D. decline to accept the data because we will never be able to send it
E. something else

57

sender logic summarized
track variables:

LFS (last frame sent)
LAR (last ACK recv’d)
SWS (send window size)

when receiving ACK LAR < X ≤ LFS:
LAR ← X
clear any timers to resend frames ≤ X

whenever SWS [send window size] > LFS - LAR and
data for frame LFS + 1 is available:

send frame LFS + 1
set timer to resend frame LFS + 1
LFS ← LFS + 1

58

receiver window tracking

… …

= frame of data with sequeunce number X

X

12 13 14 15 16 17 18 19 20 21

(LFR)
last frame recv’d*

(LAF)
last accepted frame

already received not
recv’d

accepted
possibly recv’d

at most the
Receive Window Size

(RWS)

will discard
too far ahead

59

receiver window tracking

… …

= frame of data with sequeunce number X

X

12 13 14 15 16 17 18 19 20 21

(LFR)
last frame recv’d*

(LAF)
last accepted frame

already received

not
recv’d

accepted
possibly recv’d

at most the
Receive Window Size

(RWS)

will discard
too far ahead

59

receiver window tracking

… …

= frame of data with sequeunce number X

X

12 13 14 15 16 17 18 19 20 21

(LFR)
last frame recv’d*

(LAF)
last accepted frame

already received not
recv’d

accepted
possibly recv’d

at most the
Receive Window Size

(RWS)

will discard
too far ahead

59

receiver window tracking

… …

= frame of data with sequeunce number X

X

12 13 14 15 16 17 18 19 20 21

(LFR)
last frame recv’d*

(LAF)
last accepted frame

already received not
recv’d

accepted
possibly recv’d

at most the
Receive Window Size

(RWS)

will discard
too far ahead

59

receiver window tracking

… …

= frame of data with sequeunce number X

X

12 13 14 15 16 17 18 19 20 21

(LFR)
last frame recv’d*

(LAF)
last accepted frame

already received not
recv’d

accepted
possibly recv’d

at most the
Receive Window Size

(RWS)

will discard
too far ahead

59

receiver logic summarized
track variables:

LFR (last frame recv’d) — excludes frames after a missing frame
LAF (last accepted frame)
RWS (receive window size)

when receiving frame LFR < X ≤ LAF :

LFR ← (first missing frame after LFR) - 1
only advances if X = LFR
could advance by more than one if frames previously out of order

LAS ← LFR + RWS
only advances if X = LFR

60

simple network model

sender
loss when full

queue
capacity 20

receiver10 data frames/time unit
1 time unit delay

receiver
loss when full

queue
capacity 20

sender 100 ACK frames/time unit
1 time unit delay

simulator from upcoming assignment
command line --delay 1 --bandwidth-forward 10
--bandwidth-backward 100 --buffer 30 61

exercise: forward latency

sender
loss when full

queue
capacity 10

receiver
10 frames/time unit
1 time unit delay
(from transmit start)

minimum latency = 1 time unit

exercise: maximum latency?
A. 1 time unit B. 1.1 time unit C. 1.2 time unit
C. 1.4 time unit D. 1.9 time unit E. 2.0 time unit
F. 2.1 time unit G. something else

62

throughput and window size

0 2 4 6 8 10 12 14 16 18 20 22 240

5

10

send window sizeth
ro
ug

hp
ut

(fr
am

es
/t
im

e
un

it)

63

packet transit time

sender
loss when full

queue
capacity 20

receiver10 data frames/time unit
1 time unit delay

data

1 time unit (sender to receiver)

receiver
loss when full

queue
capacity 20

sender 100 ACK frames/time unit
1 time unit delay

a
c
k

+ 1 time unit (receiver to sender)

takes 1 + 1 time units to send message + receive ack
goal: keep sending stuff while waiting

64

packet transit time

sender
loss when full

queue
capacity 20

receiver10 data frames/time unit
1 time unit delay

data

1 time unit (sender to receiver)

receiver
loss when full

queue
capacity 20

sender 100 ACK frames/time unit
1 time unit delay

a
c
k+ 1 time unit (receiver to sender)

takes 1 + 1 time units to send message + receive ack
goal: keep sending stuff while waiting

64

packet transit time

sender
loss when full

queue
capacity 20

receiver10 data frames/time unit
1 time unit delay

data

1 time unit (sender to receiver)

receiver
loss when full

queue
capacity 20

sender 100 ACK frames/time unit
1 time unit delay

a
c
k+ 1 time unit (receiver to sender)

takes 1 + 1 time units to send message + receive ack
goal: keep sending stuff while waiting

64

filling the pipe
round-trip time of 2 time units

from send data to receive ACK (assuming no queuing delay)

can send 10 data frames per time unit

= can send 20 data frames while waiting for ACK

“bandwidth-delay product”
10/time unit (banwidth) times 2 time unit (RTT = delay)

65

filling the pipe
round-trip time of 2 time units

from send data to receive ACK (assuming no queuing delay)

can send 10 data frames per time unit

= can send 20 data frames while waiting for ACK

“bandwidth-delay product”
10/time unit (banwidth) times 2 time unit (RTT = delay)

65

throughput and window size (detail)

17 18 19 20 21 22 23 240

5

10

send window sizeth
ro
ug

hp
ut

(fr
am

es
/t
im

e
un

it) (no(?) queuing delay) (max useful queuing delay)

bandwidth-delay product
w/o queuing delay

66

filling the pipe

sender
loss when full

queue
capacity 20

receiver10 data frames/time unit
1 time unit delay

data data data data data data data data data data

0.1 time unit

receiver
loss when full

queue
capacity 20

sender 100 ACK frames/time unit
1 time unit delay

a
c
k

a
c
k

a
c
k

a
c
k

a
c
k

a
c
k

a
c
k

a
c
k

a
c
k

a
c
k

67

filling the pipe

sender
loss when full

queue
capacity 20

receiver10 data frames/time unit
1 time unit delay

data data data data data data data data data data

0.1 time unit

receiver
loss when full

queue
capacity 20

sender 100 ACK frames/time unit
1 time unit delay

a
c
k

a
c
k

a
c
k

a
c
k

a
c
k

a
c
k

a
c
k

a
c
k

a
c
k

a
c
k

67

filling the pipe

sender
loss when full

queue
capacity 20

receiver10 data frames/time unit
1 time unit delay

data data data data data data data data data data

0.1 time unit

receiver
loss when full

queue
capacity 20

sender 100 ACK frames/time unit
1 time unit delay

a
c
k

a
c
k

a
c
k

a
c
k

a
c
k

a
c
k

a
c
k

a
c
k

a
c
k

a
c
k

67

on bursts
max possible queuing delay suggests window size of 30

approx. 3 time units times 10

problem: “bursts” temporarily exceed queue size

achievable average queue size not that high

sender could moderate by “pacing” packets

68

sliding windows used to solve…
flow control

keep sender from getting too far ahead of receiver
…by having window sizes set correctly
how? receiver tells sender what window size is okay

congestion control
keep network from being overloaded
(while making good use of available bandwidth)
…by having window sizes set correctly
how? it’s complicated — big topic later

69

sequence number wraparound
protocol so far requires arbitrarily large sequence numbers

doing < and > checks on sequence number, so they need to increase

would like to use smaller sequence numbers
think: transferring multi-gigabyte file

question: what goes wrong when we reuse sequeunce numbers?

70

sender/receiver desync: missing ACKs

… …sender

(LAR)
last ACK recv’d

(LFS)
last frame sent

… …receiver

(LFR)
last frame recv’d*

(LAF)
last accepted frame

resent if
ACK lost

expected if
ACK not lost

need unique
numbers for all these

4 5 6 7 0 1 2 3 4 5 6 7

71

sender/receiver desync: missing ACKs

… …sender

(LAR)
last ACK recv’d

(LFS)
last frame sent

… …receiver

(LFR)
last frame recv’d*

(LAF)
last accepted frame

resent if
ACK lost

expected if
ACK not lost

need unique
numbers for all these

4 5 6 7 0 1 2 3 4 5 6 7

71

sender/receiver desync: missing ACKs

… …sender

(LAR)
last ACK recv’d

(LFS)
last frame sent

… …receiver

(LFR)
last frame recv’d*

(LAF)
last accepted frame

resent if
ACK lost

expected if
ACK not lost

need unique
numbers for all these

4 5 6 7 0 1 2 3 4 5 6 7

71

wraparound

machine
A

machine
B

0: “The ”

got up to 0

1: “meeting”

got up to 1
2: “is”

got up to 2
3: “at”

got up to 3
0: “12pm”

got up to 0

72

loss and resend?

machine
A

machine
B

0: “The ”1: “meeting”

got up to 1

0: “The ”

got up to 0

1: “meeting”

got up to 1
2: “is”

got up to 2
3: “at”

got up to 30: “12pm”

got up to 0

73

very bad reordering

machine
A

machine
B

0: “The ” 1: “meeting”

got up to 1

0: “The ”

got up to 0

1: “meeting”

got up to 1
2: “is”

got up to 2
3: “at”

got up to 30: “12pm”
got up to 0

74

possible reason

0: “The ”

0: “12pm”

75

sequence numbers in practice
TCP tries to assume 120 second “maximum segment lifetime”

segment = TCP’s name for a packet

original TCP used 32-bit sequence number identifying byte number
(not segment number)

problem: means wraparound happens on modern (Gigibit+) links
in seconds!

workaround: add additional 32-bit timestamp field
used to detect/discard duplicates
can also be used to set timeouts and/or window sizes

76

sequence numbers in practice
TCP tries to assume 120 second “maximum segment lifetime”

segment = TCP’s name for a packet

original TCP used 32-bit sequence number identifying byte number
(not segment number)

problem: means wraparound happens on modern (Gigibit+) links
in seconds!

workaround: add additional 32-bit timestamp field
used to detect/discard duplicates
can also be used to set timeouts and/or window sizes

76

TCP
transmission control protocol (TCP)

implements reliable streams of bytes

similar mechanism to what we’ve described

77

TCP extras/differences
bidirectional —

separate sequence numbers in each direction
can combine data (from A to B) with acknowledgment (from B to A)

sequence numbers are byte numbers —
can retransmit data in different sized packets
sequence numbers = index of first byte sent
acknowledgment numbers = 1 + index of last byte acknowledged

dynamic/variable window sizes
we’ll discuss strategies later

offical name for packets = segments
78

TCP segment format
(lower layer header)

source port (16b) destination port (16b)

sequence number (32b)

acknowledgment number (32b)
data offset

(4b)
C
W
R

E
C
E

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

window size (16b)

checksum (16b) urgent pointer (16b)

options (variable)

(data)

ports identify program/socket on machines
(we’ll talk more when we cover sockets)

machines identified in lower layer headers

byte number for first byte of data in this packetack number = 1 + byte number of largest byte acknowledged
only meaningful if ACK ‘flag’ is 1

window size is receive window size
tells sender how much receiver will accept
sender window could/often will be different

(and not directly visible in packets)

some fields related to ‘urgent data’ mechanism
almost never used today

PSH (push) ‘flag’ is hint that sender does not have
more data to send right away

RST (reset), SYN (synchornize), FIN flags
used for connnection management

(we’ll talk more when we cover sockets)

CWR (congestion window reduced) and
ECE (explicit congestion notification echo) flags
sometimes used as part of setting window size
to match network conditions (later topic for us)

header can have variable number of “options”
technically optional, almost always used today

size of header indicated by data offset
(data offset is units of 32-bit words, not bytes)

79

TCP segment format
(lower layer header)

source port (16b) destination port (16b)

sequence number (32b)

acknowledgment number (32b)
data offset

(4b)
C
W
R

E
C
E

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

window size (16b)

checksum (16b) urgent pointer (16b)

options (variable)

(data)

ports identify program/socket on machines
(we’ll talk more when we cover sockets)

machines identified in lower layer headers

byte number for first byte of data in this packetack number = 1 + byte number of largest byte acknowledged
only meaningful if ACK ‘flag’ is 1

window size is receive window size
tells sender how much receiver will accept
sender window could/often will be different

(and not directly visible in packets)

some fields related to ‘urgent data’ mechanism
almost never used today

PSH (push) ‘flag’ is hint that sender does not have
more data to send right away

RST (reset), SYN (synchornize), FIN flags
used for connnection management

(we’ll talk more when we cover sockets)

CWR (congestion window reduced) and
ECE (explicit congestion notification echo) flags
sometimes used as part of setting window size
to match network conditions (later topic for us)

header can have variable number of “options”
technically optional, almost always used today

size of header indicated by data offset
(data offset is units of 32-bit words, not bytes)

79

TCP segment format
(lower layer header)

source port (16b) destination port (16b)

sequence number (32b)

acknowledgment number (32b)
data offset

(4b)
C
W
R

E
C
E

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

window size (16b)

checksum (16b) urgent pointer (16b)

options (variable)

(data)

ports identify program/socket on machines
(we’ll talk more when we cover sockets)

machines identified in lower layer headers

byte number for first byte of data in this packet

ack number = 1 + byte number of largest byte acknowledged
only meaningful if ACK ‘flag’ is 1

window size is receive window size
tells sender how much receiver will accept
sender window could/often will be different

(and not directly visible in packets)

some fields related to ‘urgent data’ mechanism
almost never used today

PSH (push) ‘flag’ is hint that sender does not have
more data to send right away

RST (reset), SYN (synchornize), FIN flags
used for connnection management

(we’ll talk more when we cover sockets)

CWR (congestion window reduced) and
ECE (explicit congestion notification echo) flags
sometimes used as part of setting window size
to match network conditions (later topic for us)

header can have variable number of “options”
technically optional, almost always used today

size of header indicated by data offset
(data offset is units of 32-bit words, not bytes)

79

TCP segment format
(lower layer header)

source port (16b) destination port (16b)

sequence number (32b)

acknowledgment number (32b)
data offset

(4b)
C
W
R

E
C
E

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

window size (16b)

checksum (16b) urgent pointer (16b)

options (variable)

(data)

ports identify program/socket on machines
(we’ll talk more when we cover sockets)

machines identified in lower layer headers

byte number for first byte of data in this packet

ack number = 1 + byte number of largest byte acknowledged
only meaningful if ACK ‘flag’ is 1

window size is receive window size
tells sender how much receiver will accept
sender window could/often will be different

(and not directly visible in packets)

some fields related to ‘urgent data’ mechanism
almost never used today

PSH (push) ‘flag’ is hint that sender does not have
more data to send right away

RST (reset), SYN (synchornize), FIN flags
used for connnection management

(we’ll talk more when we cover sockets)

CWR (congestion window reduced) and
ECE (explicit congestion notification echo) flags
sometimes used as part of setting window size
to match network conditions (later topic for us)

header can have variable number of “options”
technically optional, almost always used today

size of header indicated by data offset
(data offset is units of 32-bit words, not bytes)

79

TCP segment format
(lower layer header)

source port (16b) destination port (16b)

sequence number (32b)

acknowledgment number (32b)
data offset

(4b)
C
W
R

E
C
E

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

window size (16b)

checksum (16b) urgent pointer (16b)

options (variable)

(data)

ports identify program/socket on machines
(we’ll talk more when we cover sockets)

machines identified in lower layer headers

byte number for first byte of data in this packetack number = 1 + byte number of largest byte acknowledged
only meaningful if ACK ‘flag’ is 1

window size is receive window size
tells sender how much receiver will accept
sender window could/often will be different

(and not directly visible in packets)

some fields related to ‘urgent data’ mechanism
almost never used today

PSH (push) ‘flag’ is hint that sender does not have
more data to send right away

RST (reset), SYN (synchornize), FIN flags
used for connnection management

(we’ll talk more when we cover sockets)

CWR (congestion window reduced) and
ECE (explicit congestion notification echo) flags
sometimes used as part of setting window size
to match network conditions (later topic for us)

header can have variable number of “options”
technically optional, almost always used today

size of header indicated by data offset
(data offset is units of 32-bit words, not bytes)

79

TCP segment format
(lower layer header)

source port (16b) destination port (16b)

sequence number (32b)

acknowledgment number (32b)
data offset

(4b)
C
W
R

E
C
E

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

window size (16b)

checksum (16b) urgent pointer (16b)

options (variable)

(data)

ports identify program/socket on machines
(we’ll talk more when we cover sockets)

machines identified in lower layer headers

byte number for first byte of data in this packetack number = 1 + byte number of largest byte acknowledged
only meaningful if ACK ‘flag’ is 1

window size is receive window size
tells sender how much receiver will accept
sender window could/often will be different

(and not directly visible in packets)

some fields related to ‘urgent data’ mechanism
almost never used today

PSH (push) ‘flag’ is hint that sender does not have
more data to send right away

RST (reset), SYN (synchornize), FIN flags
used for connnection management

(we’ll talk more when we cover sockets)

CWR (congestion window reduced) and
ECE (explicit congestion notification echo) flags
sometimes used as part of setting window size
to match network conditions (later topic for us)

header can have variable number of “options”
technically optional, almost always used today

size of header indicated by data offset
(data offset is units of 32-bit words, not bytes)

79

TCP segment format
(lower layer header)

source port (16b) destination port (16b)

sequence number (32b)

acknowledgment number (32b)
data offset

(4b)
C
W
R

E
C
E

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

window size (16b)

checksum (16b) urgent pointer (16b)

options (variable)

(data)

ports identify program/socket on machines
(we’ll talk more when we cover sockets)

machines identified in lower layer headers

byte number for first byte of data in this packetack number = 1 + byte number of largest byte acknowledged
only meaningful if ACK ‘flag’ is 1

window size is receive window size
tells sender how much receiver will accept
sender window could/often will be different

(and not directly visible in packets)

some fields related to ‘urgent data’ mechanism
almost never used today

PSH (push) ‘flag’ is hint that sender does not have
more data to send right away

RST (reset), SYN (synchornize), FIN flags
used for connnection management

(we’ll talk more when we cover sockets)

CWR (congestion window reduced) and
ECE (explicit congestion notification echo) flags
sometimes used as part of setting window size
to match network conditions (later topic for us)

header can have variable number of “options”
technically optional, almost always used today

size of header indicated by data offset
(data offset is units of 32-bit words, not bytes)

79

TCP segment format
(lower layer header)

source port (16b) destination port (16b)

sequence number (32b)

acknowledgment number (32b)
data offset

(4b)
C
W
R

E
C
E

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

window size (16b)

checksum (16b) urgent pointer (16b)

options (variable)

(data)

ports identify program/socket on machines
(we’ll talk more when we cover sockets)

machines identified in lower layer headers

byte number for first byte of data in this packetack number = 1 + byte number of largest byte acknowledged
only meaningful if ACK ‘flag’ is 1

window size is receive window size
tells sender how much receiver will accept
sender window could/often will be different

(and not directly visible in packets)

some fields related to ‘urgent data’ mechanism
almost never used today

PSH (push) ‘flag’ is hint that sender does not have
more data to send right away

RST (reset), SYN (synchornize), FIN flags
used for connnection management

(we’ll talk more when we cover sockets)

CWR (congestion window reduced) and
ECE (explicit congestion notification echo) flags
sometimes used as part of setting window size
to match network conditions (later topic for us)

header can have variable number of “options”
technically optional, almost always used today

size of header indicated by data offset
(data offset is units of 32-bit words, not bytes)

79

TCP segment format
(lower layer header)

source port (16b) destination port (16b)

sequence number (32b)

acknowledgment number (32b)
data offset

(4b)
C
W
R

E
C
E

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

window size (16b)

checksum (16b) urgent pointer (16b)

options (variable)

(data)

ports identify program/socket on machines
(we’ll talk more when we cover sockets)

machines identified in lower layer headers

byte number for first byte of data in this packetack number = 1 + byte number of largest byte acknowledged
only meaningful if ACK ‘flag’ is 1

window size is receive window size
tells sender how much receiver will accept
sender window could/often will be different

(and not directly visible in packets)

some fields related to ‘urgent data’ mechanism
almost never used today

PSH (push) ‘flag’ is hint that sender does not have
more data to send right away

RST (reset), SYN (synchornize), FIN flags
used for connnection management

(we’ll talk more when we cover sockets)

CWR (congestion window reduced) and
ECE (explicit congestion notification echo) flags
sometimes used as part of setting window size
to match network conditions (later topic for us)

header can have variable number of “options”
technically optional, almost always used today

size of header indicated by data offset
(data offset is units of 32-bit words, not bytes)

79

TCP segment format
(lower layer header)

source port (16b) destination port (16b)

sequence number (32b)

acknowledgment number (32b)
data offset

(4b)
C
W
R

E
C
E

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

window size (16b)

checksum (16b) urgent pointer (16b)

options (variable)

(data)

ports identify program/socket on machines
(we’ll talk more when we cover sockets)

machines identified in lower layer headers

byte number for first byte of data in this packetack number = 1 + byte number of largest byte acknowledged
only meaningful if ACK ‘flag’ is 1

window size is receive window size
tells sender how much receiver will accept
sender window could/often will be different

(and not directly visible in packets)

some fields related to ‘urgent data’ mechanism
almost never used today

PSH (push) ‘flag’ is hint that sender does not have
more data to send right away

RST (reset), SYN (synchornize), FIN flags
used for connnection management

(we’ll talk more when we cover sockets)

CWR (congestion window reduced) and
ECE (explicit congestion notification echo) flags
sometimes used as part of setting window size
to match network conditions (later topic for us)

header can have variable number of “options”
technically optional, almost always used today

size of header indicated by data offset
(data offset is units of 32-bit words, not bytes)

79

exercise: maximum throughput
let’s say we have a receiver window size of 65535 bytes

and a round-trip time of 100 ms

if we want to avoid sending data the receiver will reject as outside
its window, maximum throughput?
A. around 32kbyte/sec B. around 64kbyte/sec
C. around 128kbyte/sec D. around 320kbyte/sec
E. around 640kbyte/sec F. around 1280kbyte/sec
G. something else

80

selected TCP options
window size scale factor

allow receiver window sizes greater than 64k
needed to get reasonable bandwidth on modern networks

timestamps
allow figuring out round trip time to estimate timeout
extend 32-bit sequence number, which is too small for multi-gigabit
networks

selective acknowledgements
allow providing information about ‘holes’ in received data
example: I got bytes 1–5000, 6000–7000, 8000–9000
without it would only say 5000

81

selected TCP option formats
kind (8b) length (8b) option data

window scale option:
3 3 shift count

timestamps:
8 10 sender TS

echoed TS

length field permits skipping unrecognized options
unique kind codes for each option

list of valid codes maintained by IANA
(Internet Assigned Numbers Authority)

sent only in connection setup
only takes effect if both sides send it

sets amount to left-shift
all window size fields by

echoed timestamp —
only valid in ACK messages

copy of timestamp sent in message ACK’d
allows computing round-trip-time

82

selected TCP option formats
kind (8b) length (8b) option data

window scale option:
3 3 shift count

timestamps:
8 10 sender TS

echoed TS
length field permits skipping unrecognized options

unique kind codes for each option
list of valid codes maintained by IANA
(Internet Assigned Numbers Authority)

sent only in connection setup
only takes effect if both sides send it

sets amount to left-shift
all window size fields by

echoed timestamp —
only valid in ACK messages

copy of timestamp sent in message ACK’d
allows computing round-trip-time

82

selected TCP option formats
kind (8b) length (8b) option data

window scale option:
3 3 shift count

timestamps:
8 10 sender TS

echoed TS

length field permits skipping unrecognized options

unique kind codes for each option
list of valid codes maintained by IANA
(Internet Assigned Numbers Authority)

sent only in connection setup
only takes effect if both sides send it

sets amount to left-shift
all window size fields by

echoed timestamp —
only valid in ACK messages

copy of timestamp sent in message ACK’d
allows computing round-trip-time

82

selected TCP option formats
kind (8b) length (8b) option data

window scale option:
3 3 shift count

timestamps:
8 10 sender TS

echoed TS

length field permits skipping unrecognized options
unique kind codes for each option

list of valid codes maintained by IANA
(Internet Assigned Numbers Authority)

sent only in connection setup
only takes effect if both sides send it

sets amount to left-shift
all window size fields by

echoed timestamp —
only valid in ACK messages

copy of timestamp sent in message ACK’d
allows computing round-trip-time

82

selected TCP option formats
kind (8b) length (8b) option data

window scale option:
3 3 shift count

timestamps:
8 10 sender TS

echoed TS

length field permits skipping unrecognized options
unique kind codes for each option

list of valid codes maintained by IANA
(Internet Assigned Numbers Authority)

sent only in connection setup
only takes effect if both sides send it

sets amount to left-shift
all window size fields by

echoed timestamp —
only valid in ACK messages

copy of timestamp sent in message ACK’d
allows computing round-trip-time

82

selected TCP option formats
kind (8b) length (8b) option data

window scale option:
3 3 shift count

timestamps:
8 10 sender TS

echoed TS

length field permits skipping unrecognized options
unique kind codes for each option

list of valid codes maintained by IANA
(Internet Assigned Numbers Authority)

sent only in connection setup
only takes effect if both sides send it

sets amount to left-shift
all window size fields by

echoed timestamp —
only valid in ACK messages

copy of timestamp sent in message ACK’d
allows computing round-trip-time

82

a TCP connection

connection setup, no data transferred

server+client sequence numbers
advance by 1 to indicate where in setup

connection is bidirectional
from now, using olive color to show ‘backwards’ packets

data packet with
client bytes 1–60

acknowledgement of
client bytes up to 60

118 ms

jumps from server byte 0 to server byte 28
with no data sent
wireshark IDs as missing packet

83

a TCP connection

connection setup, no data transferred

server+client sequence numbers
advance by 1 to indicate where in setup

connection is bidirectional
from now, using olive color to show ‘backwards’ packets

data packet with
client bytes 1–60

acknowledgement of
client bytes up to 60

118 ms

jumps from server byte 0 to server byte 28
with no data sent
wireshark IDs as missing packet

83

a TCP connection

connection setup, no data transferred

server+client sequence numbers
advance by 1 to indicate where in setup

connection is bidirectional
from now, using olive color to show ‘backwards’ packets

data packet with
client bytes 1–60

acknowledgement of
client bytes up to 60

118 ms

jumps from server byte 0 to server byte 28
with no data sent
wireshark IDs as missing packet

connection setup, no data transferred

server+client sequence numbers
advance by 1 to indicate where in setup

connection is bidirectional
from now, using olive color to show ‘backwards’ packets

data packet with
client bytes 1–60

acknowledgement of
client bytes up to 60

118 ms

jumps from server byte 0 to server byte 28
with no data sent
wireshark IDs as missing packet

83

a TCP connection

connection setup, no data transferred

server+client sequence numbers
advance by 1 to indicate where in setup

connection is bidirectional
from now, using olive color to show ‘backwards’ packets

data packet with
client bytes 1–60

acknowledgement of
client bytes up to 60

118 ms

jumps from server byte 0 to server byte 28
with no data sent
wireshark IDs as missing packet

83

a TCP connection

connection setup, no data transferred

server+client sequence numbers
advance by 1 to indicate where in setup

connection is bidirectional
from now, using olive color to show ‘backwards’ packets

data packet with
client bytes 1–60

acknowledgement of
client bytes up to 60

118 ms

jumps from server byte 0 to server byte 28
with no data sent
wireshark IDs as missing packet

connection setup, no data transferred

server+client sequence numbers
advance by 1 to indicate where in setup

connection is bidirectional
from now, using olive color to show ‘backwards’ packets

data packet with
client bytes 1–60

acknowledgement of
client bytes up to 60

118 ms

jumps from server byte 0 to server byte 28
with no data sent
wireshark IDs as missing packetconnection setup, no data transferred

server+client sequence numbers
advance by 1 to indicate where in setup

connection is bidirectional
from now, using olive color to show ‘backwards’ packets

data packet with
client bytes 1–60

acknowledgement of
client bytes up to 60

118 ms

jumps from server byte 0 to server byte 28
with no data sent
wireshark IDs as missing packet

83

a TCP connection

connection setup, no data transferred

server+client sequence numbers
advance by 1 to indicate where in setup

connection is bidirectional
from now, using olive color to show ‘backwards’ packets

data packet with
client bytes 1–60

acknowledgement of
client bytes up to 60

118 ms

jumps from server byte 0 to server byte 28
with no data sent
wireshark IDs as missing packet

connection setup, no data transferred

server+client sequence numbers
advance by 1 to indicate where in setup

connection is bidirectional
from now, using olive color to show ‘backwards’ packets

data packet with
client bytes 1–60

acknowledgement of
client bytes up to 60

118 ms

jumps from server byte 0 to server byte 28
with no data sent
wireshark IDs as missing packetconnection setup, no data transferred

server+client sequence numbers
advance by 1 to indicate where in setup

connection is bidirectional
from now, using olive color to show ‘backwards’ packets

data packet with
client bytes 1–60

acknowledgement of
client bytes up to 60

118 ms

jumps from server byte 0 to server byte 28
with no data sent
wireshark IDs as missing packet

83

a TCP connection

connection setup, no data transferred

server+client sequence numbers
advance by 1 to indicate where in setup

connection is bidirectional
from now, using olive color to show ‘backwards’ packets

data packet with
client bytes 1–60

acknowledgement of
client bytes up to 60

118 ms

jumps from server byte 0 to server byte 28
with no data sent
wireshark IDs as missing packet

connection setup, no data transferred

server+client sequence numbers
advance by 1 to indicate where in setup

connection is bidirectional
from now, using olive color to show ‘backwards’ packets

data packet with
client bytes 1–60

acknowledgement of
client bytes up to 60

118 ms

jumps from server byte 0 to server byte 28
with no data sent
wireshark IDs as missing packet

83

a TCP connection

scrolling down reveals retransmission later

wireshark knows it’s retransmission because
sequence number sent by server went backwards

scrolling down reveals retransmission later

wireshark knows it’s retransmission because
sequence number sent by server went backwards

84

first data packet

not actually part of header
computed using length from lower layer

sequence numbers in header don’t start at 0
wireshark converts to 0-based indicessequence number is first byte being sent
need to use segment length to know last byte’s number
(= what to ACK if receiving this)
ack number indicates received start-of-connection stuff
and nothing else (in case server sent something)PSH = no more data right now
ACK = acknowledgment number is valid

window scaling option in use
(scaling factor only sent in connection setup)

no-operation options used to make TCP header size multiple of 4

85

first data packet

not actually part of header
computed using length from lower layer

sequence numbers in header don’t start at 0
wireshark converts to 0-based indicessequence number is first byte being sent
need to use segment length to know last byte’s number
(= what to ACK if receiving this)
ack number indicates received start-of-connection stuff
and nothing else (in case server sent something)PSH = no more data right now
ACK = acknowledgment number is valid

window scaling option in use
(scaling factor only sent in connection setup)

no-operation options used to make TCP header size multiple of 4

85

first data packet

not actually part of header
computed using length from lower layer

sequence numbers in header don’t start at 0
wireshark converts to 0-based indices

sequence number is first byte being sent
need to use segment length to know last byte’s number
(= what to ACK if receiving this)
ack number indicates received start-of-connection stuff
and nothing else (in case server sent something)PSH = no more data right now
ACK = acknowledgment number is valid

window scaling option in use
(scaling factor only sent in connection setup)

no-operation options used to make TCP header size multiple of 4

85

first data packet

not actually part of header
computed using length from lower layer

sequence numbers in header don’t start at 0
wireshark converts to 0-based indices

sequence number is first byte being sent
need to use segment length to know last byte’s number
(= what to ACK if receiving this)

ack number indicates received start-of-connection stuff
and nothing else (in case server sent something)PSH = no more data right now
ACK = acknowledgment number is valid

window scaling option in use
(scaling factor only sent in connection setup)

no-operation options used to make TCP header size multiple of 4

85

first data packet

not actually part of header
computed using length from lower layer

sequence numbers in header don’t start at 0
wireshark converts to 0-based indicessequence number is first byte being sent
need to use segment length to know last byte’s number
(= what to ACK if receiving this)

ack number indicates received start-of-connection stuff
and nothing else (in case server sent something)

PSH = no more data right now
ACK = acknowledgment number is valid

window scaling option in use
(scaling factor only sent in connection setup)

no-operation options used to make TCP header size multiple of 4

85

first data packet

not actually part of header
computed using length from lower layer

sequence numbers in header don’t start at 0
wireshark converts to 0-based indicessequence number is first byte being sent
need to use segment length to know last byte’s number
(= what to ACK if receiving this)
ack number indicates received start-of-connection stuff
and nothing else (in case server sent something)

PSH = no more data right now
ACK = acknowledgment number is valid

window scaling option in use
(scaling factor only sent in connection setup)

no-operation options used to make TCP header size multiple of 4

85

first data packet

not actually part of header
computed using length from lower layer

sequence numbers in header don’t start at 0
wireshark converts to 0-based indicessequence number is first byte being sent
need to use segment length to know last byte’s number
(= what to ACK if receiving this)
ack number indicates received start-of-connection stuff
and nothing else (in case server sent something)PSH = no more data right now
ACK = acknowledgment number is valid

window scaling option in use
(scaling factor only sent in connection setup)

no-operation options used to make TCP header size multiple of 4

85

first data packet

not actually part of header
computed using length from lower layer

sequence numbers in header don’t start at 0
wireshark converts to 0-based indicessequence number is first byte being sent
need to use segment length to know last byte’s number
(= what to ACK if receiving this)
ack number indicates received start-of-connection stuff
and nothing else (in case server sent something)PSH = no more data right now
ACK = acknowledgment number is valid

window scaling option in use
(scaling factor only sent in connection setup)

no-operation options used to make TCP header size multiple of 4

85

sequence numbers graph
tcp-only-from-2.pcap

Sequence	Numbers	(tcptrace)	for	10.0.1.2:42732	→	10.0.1.1:5001

4 4.2 4.4 4.6 4.8
Time	(s)

300000

320000

340000

360000

380000

Se
qu

en
ce
	N
um

be
r	(
B)

86

reading thigs graph
bottom line = last ack number

notches on bottom line = duplicate acks

red lines = selective ACK info

87

diff. timing in opposite direction
tcp-only-from-1.pcap

Sequence	Numbers	(tcptrace)	for	10.0.1.2:42732	→	10.0.1.1:5001

4 4.2 4.4 4.6 4.8
Time	(s)

300000

320000

340000

360000

380000

Se
qu

en
ce
	N
um

be
r	(
B)

88

backup slides

89

	simple reliablity
	adding acknowledgments
	sequence numbers
	how many sequence numbers do we need?

	interlude: metrics
	bandwidth / throughput
	latency / round trip time
	jitter
	aside: measuring empirically

	stop-and-wait performance
	sliding windows
	sending two at a time
	timeouts for EACH send
	more than two at a time
	lost ACKs
	duplicate ACKs happen
	duplicate ACK optimization
	optimization: selective ACKs
	window tracking – sender
	window tracking – receiver
	choosing a window size
	problems solved
	sequence number wraparound

	TCP example
	TCP segment format
	TCP connection example

	backup slides

