
1

changelog
8 Oct 2024 (after lecture): destination unreachable: fix too-big
font size for ping

8 Oct 2024 (after lecture): ‘flooding’: correct extra gateway for
2::3/4::1 router’s table entry for 4::/ route

8 Oct 2024 (after lecture): ‘flooding’: correct first message sent to
specify 2001:db8:4::/40

8 Oct 2024: spanning tree example: fix missing hilite of G-E edge

22 Oct 2024 (after lecture): Pakistan hijack: correct addresses
Youtube advertized so they match Pakistan Telecom’s

2

routing tables
IP addresses gateway iface
2001:0db8:40:f000::/44 --- int1
2001:0db8:40:e000::/44 2001:0db8:40:f000::2 int1
2001:0db8:40:d000::/44 --- int3
3fff:1000:19::/48 --- ext1
… … …
default fe80::17 ext2

IP addresses gateway iface
192.0.2.0/25 --- int1
192.0.2.128/26 192.0.2.1 int1
192.0.2.192/26 192.0.2.2 int1
198.51.100.0/25 192.0.2.1 int1
198.51.100.128/25 --- int2
… … …
default 203.0.113.1 ext

3

filling routing tables
easy part: what networks are you directly connected to

that range of IP addresses, that interface

harder part: other routers on connected router

need to learn:
addresses of other router
which networks can be reached through them directly or indirectly

need to choose between multiple ways of reaching networks

4

problems when forwarding
no entry in routing table

no entry in neighbor table
(after attempting ARP, or neighbor discovery)

packet too big for next network

there’s an infinite loop in the route

5

problems when forwarding
no entry in routing table

no entry in neighbor table
(after attempting ARP, or neighbor discovery)

packet too big for next network

there’s an infinite loop in the route

6

destination host unreachable
$ ping 128.143.67.254
PING 128.143.67.254 (128.143.67.254) 56(84) bytes of data.
From 128.143.63.1 icmp_seq=1 Destination Host Unreachable
From 128.143.63.1 icmp_seq=6 Destination Host Unreachable
^C
--- 128.143.67.254 ping statistics ---
10 packets transmitted, 0 received, +2 errors, 100% packet loss, time 9146ms
pipe 4
—
$ ping6 2606:8e80:7007:ef1a::1
PING 2606:8e80:7007:ef1a::1(2606:8e80:7007:ef1a::1) 56 data bytes
From 2606:8e80:7007:ef1a:cf1f:3948:b5c1:a522 icmp_seq=1

Destination unreachable: Address unreachable
....

7

ICMPv6 destination unreachable messages
IPv6 header with ICMP as next protocol

1 byte type = 1 (destination unreachable)

1 byte code =
examples: address unreachable, administritatively prohibited

most of contents of message causing problem
only most to avoid exceeding max packet size
should let OS figure out which socket to send error to

8

generating destination unreachable
by routers: reached correct network, machine not there

by routers: no route to network at all

by routers: administrator rule prohibits forwarding

by destination host: no program listening to that ‘port’

…

different code values for all cases

machine can also choose to send nothing back
9

ICMPv4 destination unrachable
basically same format as ICMPv6, but…

different type/code integer values

only IPv4 header + 64 bytes of original packet included

10

problems when forwarding
no entry in routing table

no entry in neighbor table
(after attempting ARP, or neighbor discovery)

packet too big for next network

there’s an infinite loop in the route

11

fragmentation
max frame data size on my local network = 1500 bytes, but…
$ ping6 fe80::da07:b6ff:fed9:ae50 -s 4000
PING fe80::da07:b6ff:fed9:ae50 (fe80::da07:b6ff:fed9:ae50) 4000 data bytes
4008 bytes from fe80::da07:b6ff:fed9:ae50%eno1: icmp_seq=1 ttl=64 time=1.17 ms
4008 bytes from fe80::da07:b6ff:fed9:ae50%eno1: icmp_seq=2 ttl=64 time=0.779 ms
4008 bytes from fe80::da07:b6ff:fed9:ae50%eno1: icmp_seq=3 ttl=64 time=0.742 ms
...
$ ping -s 4000 192.168.1.1
PING 192.168.1.1 (192.168.1.1) 4000(4028) bytes of data.
4008 bytes from 192.168.1.1: icmp_seq=1 ttl=64 time=0.891 ms
4008 bytes from 192.168.1.1: icmp_seq=2 ttl=64 time=0.806 ms
4008 bytes from 192.168.1.1: icmp_seq=3 ttl=64 time=0.748 ms

12

fragmentation
original sender or router splits packet into multiple

each part called a fragment

stored temporarily and “reassembled” at receiver
Linux defaults:
max 64 packet gap between fragments per source IP
30 second time limit before discaded
3-4MB buffer of packets

13

IPv6 fragments

14

IPv4 fragments

15

varying frame size support
also called maximum transmission unit (MTU)

typical Ethernet, Wifi — 1500 bytes

Ethernet with “jumbo frames” – 65535 bytes

IPsec ESP VPN over 1500-byte MTU network – ∼1400–1440 bytes

VPN — simulated network link over other network links

16

routers making fragments
option in IPv4 to handle frame size mismatch, but not great:

extra data sent over network (especially if just over max size)
extra copies of main headers on each fragment

extra work at receiver to reconstruct fragments

lose whole packet if one fragment is lost
but other routers likely to still waste time forwarding all other fragments

17

avoiding fragmentation
IPv4 — DF (don’t fragment) flag in packets

if set, routers not allowed to fragment packet

IPv6 — routers never fragment packets
any fragments made at source machine only

when set — ICMP error
ICMPv6: Packet Too Big
ICMPv4: destination unreachable + reason code of fragmentation
needed
(hopefully, bad networks might drop packet instead)

ICMPv6 error tells you maximum supported size
(by first link that got packet rejected — might be more constraining link
later)
info not available in IPv4

18

avoiding fragmentation
IPv4 — DF (don’t fragment) flag in packets

if set, routers not allowed to fragment packet

IPv6 — routers never fragment packets
any fragments made at source machine only

when set — ICMP error
ICMPv6: Packet Too Big
ICMPv4: destination unreachable + reason code of fragmentation
needed
(hopefully, bad networks might drop packet instead)

ICMPv6 error tells you maximum supported size
(by first link that got packet rejected — might be more constraining link
later)
info not available in IPv4

18

exercise: fragmentation perf
assume:

Ethernet header/trailer: 26 bytes
IPv4 header: 20 bytes + 0 bytes of options
TCP header: 20 bytes + 16 bytes of options

suppose local network supports 65535-byte ethernet payloads
and remote network suports 1500-byte ethernet payloads
and fragmentation happens
exericses:

lowest overhead TCP segment size?
overhead for 64000-byte TCP segments?
highest overhead TCP segment size? 19

problems when forwarding
no entry in routing table

no entry in neighbor table
(after attempting ARP, or neighbor discovery)

packet too big for next network

there’s an infinite loop in the route

20

time-to-live (v4) / hop limit (v6)
stored in IP header

when forwarding packet, router will:

subtract one from TTL / hop limit
and recompute checksum accordingly

if TTL/hop limit = 0, drop packet

usually send back ICMP “Time Exceeded” error

21

traceroute
ICMP Time Exceeded messages come from router

→ tells you which routers are involved

traceroute command: deliberately packets with low TTL/hop
limit

print out what time exceeded messages we get back

typically sent with TTL/hop limit = 255 so it doesn’t get lost
(‘backwards’ path might be longer than forwards one)

22

traceroute
ICMP Time Exceeded messages come from router

→ tells you which routers are involved

traceroute command: deliberately packets with low TTL/hop
limit

print out what time exceeded messages we get back

typically sent with TTL/hop limit = 255 so it doesn’t get lost
(‘backwards’ path might be longer than forwards one)

22

traceroute example
traceroute to ripe.net (193.0.11.51), 30 hops max, 60 byte packets
1 128.143.63.1 (128.143.63.1) 6.367 ms 8.562 ms 8.577 ms
2 cr01-gil-ae15-00.net.virginia.edu (128.143.221.17) 0.370 ms 0.334 ms 0.349 ms
3 * * *
4 br01-udc-et-1-2-0.net.virginia.edu (128.143.236.5) 0.502 ms 0.468 ms 0.488 ms
5 i2-vt.net.virginia.edu (192.35.48.34) 3.374 ms 3.448 ms 3.413 ms
6 192.122.175.15 (192.122.175.15) 5.715 ms 5.628 ms 5.590 ms
7 fourhundredge-0-0-0-17.4079.core1.ashb.net.internet2.edu (163.253.1.8) 29.163 ms

fourhundredge-0-0-0-16.4079.core1.ashb.net.internet2.edu (163.253.1.2) 28.880 ms
fourhundredge-0-0-0-17.4079.core1.ashb.net.internet2.edu (163.253.1.8) 28.876 ms

8 fourhundredge-0-0-0-1.4079.core1.clev.net.internet2.edu (163.253.1.123) 29.568 ms
28.667 ms 28.666 ms

9 fourhundredge-0-0-0-0.4079.core2.newy32aoa.net.internet2.edu (163.253.1.239) 29.608 ms
29.476 ms 29.400 ms

10 fourhundredge-0-0-0-19.4079.core1.newy32aoa.net.internet2.edu (163.253.1.40) 28.958 ms
28.999 ms
fourhundredge-0-0-0-21.4079.core1.newy32aoa.net.internet2.edu (163.253.1.44) 29.280 ms

11 e1-3-2-502.asd001b-jnx-06.surf.net (145.145.166.18) 115.822 ms 115.823 ms 115.744 ms
12 lo0-2.asd001b-jnx-01-surfinternet.surf.net (145.145.128.4) 115.988 ms 115.932 ms 115.918 ms
13 gw.amsix.telrtr.ripe.net (80.249.208.71) 121.956 ms 121.968 ms 121.844 ms
14 * * *
15 * * *

23

traceroute sent

24

traceroute received

25

aside: multiple paths
only showing forward path

routing in reverse direction is often different

sometimes multiple forward paths
way we’ve shown routing table so far does not allow this

26

constructing routing/neighbor tables
interesting task: how to fill tables

two general strategies:

routers/switches learn from neighbors
“distributed”

information gathered on single controller machine
which configures routers/switches

“centralized”

27

basic flooding
idea: broadcast message to whole network

where message comes from = way to send back

used this idea in MAC learning

28

flooding one entry
00:11:22:33:44:AA00:11:22:33:44:BB00:11:22:33:44:CC00:11:22:33:44:DD

00:11:22:33:44:EE

00:11:22:33:44:FF

dst MAC addr port
… …
00:11:22:33:44:AA 1

dst MAC addr port
… …
00:11:22:33:44:AA 1

dst MAC addr port
… …
00:11:22:33:44:AA 2

1
from …:AA

2

3

23
4

4
1

from …:AA5

2

from …:AA

29

flooding one entry
00:11:22:33:44:AA00:11:22:33:44:BB00:11:22:33:44:CC00:11:22:33:44:DD

00:11:22:33:44:EE

00:11:22:33:44:FF

dst MAC addr port
… …
00:11:22:33:44:AA 1

dst MAC addr port
… …
00:11:22:33:44:AA 1

dst MAC addr port
… …
00:11:22:33:44:AA 2

1
from …:AA

2

3

23
4

4
1

from …:AA5

2

from …:AA

29

flooding one entry
00:11:22:33:44:AA00:11:22:33:44:BB00:11:22:33:44:CC00:11:22:33:44:DD

00:11:22:33:44:EE

00:11:22:33:44:FF

dst MAC addr port
… …
00:11:22:33:44:AA 1

dst MAC addr port
… …
00:11:22:33:44:AA 1

dst MAC addr port
… …
00:11:22:33:44:AA 2

1
from …:AA

2

3

23
4

4
1

from …:AA5

2

from …:AA

29

flooding one entry
00:11:22:33:44:AA00:11:22:33:44:BB00:11:22:33:44:CC00:11:22:33:44:DD

00:11:22:33:44:EE

00:11:22:33:44:FF

dst MAC addr port
… …
00:11:22:33:44:AA 1

dst MAC addr port
… …
00:11:22:33:44:AA 1

dst MAC addr port
… …
00:11:22:33:44:AA 2

1
from …:AA

2

3

23
4

4
1

from …:AA5

2

from …:AA

29

‘flooding’
(0) 2001:db8:1::1
(1) 2001:db8:f::1

0addresses gateway port
2001:db8:1::/40 --- 0

2001:db8:f::/40 --- 1

(0) 2001:db8:f::2
(1) 2001:db8:2::1

1

0
1addresses gateway port

2001:db8:f::/40 --- 0

2001:db8:2::/40 --- 1

2001:db8:4::/40 2001::db8:2::3 1

2001:db8:1::/40 2001::db8:f::1 0

(0) 2001:db8:2::2
(1) 2001:db8:3::1

0

addresses gateway port
2001:db8:2::/40 --- 0

2001:db8:3::/40 --- 1

2001:db8:4::/40 2001:db8:2::3 0

2001:db8:f::/40 2001:db8:2::1 0

2001:db8:1::/40 2001:db8:2::1 0

(0) 2001:db8:2::3
(1) 2001:db8:4::1

0

addresses gateway port
2001:db8:2::/40 --- 0

2001:db8:4::/40 --- 1

2001:db8:f::/40 2001:db8:2::1 0

2001:db8:1::/40 2001:db8:2::1 0

find out where
we can forward packets
not using port 0via 2001:db8:2::3

2001:db8:4::/40

via 2001:db8:f::1
2001:db8:1::/40 via 2001:db8:2::1

2001::db8:f::/40
2001::db8:1::/40

30

‘flooding’
(0) 2001:db8:1::1
(1) 2001:db8:f::1

0addresses gateway port
2001:db8:1::/40 --- 0

2001:db8:f::/40 --- 1

(0) 2001:db8:f::2
(1) 2001:db8:2::1

1

0
1addresses gateway port

2001:db8:f::/40 --- 0

2001:db8:2::/40 --- 1

2001:db8:4::/40 2001::db8:2::3 1

2001:db8:1::/40 2001::db8:f::1 0

(0) 2001:db8:2::2
(1) 2001:db8:3::1

0

addresses gateway port
2001:db8:2::/40 --- 0

2001:db8:3::/40 --- 1

2001:db8:4::/40 2001:db8:2::3 0

2001:db8:f::/40 2001:db8:2::1 0

2001:db8:1::/40 2001:db8:2::1 0

(0) 2001:db8:2::3
(1) 2001:db8:4::1

0

addresses gateway port
2001:db8:2::/40 --- 0

2001:db8:4::/40 --- 1

2001:db8:f::/40 2001:db8:2::1 0

2001:db8:1::/40 2001:db8:2::1 0

find out where
we can forward packets
not using port 0

via 2001:db8:2::3
2001:db8:4::/40

via 2001:db8:f::1
2001:db8:1::/40 via 2001:db8:2::1

2001::db8:f::/40
2001::db8:1::/40

30

‘flooding’
(0) 2001:db8:1::1
(1) 2001:db8:f::1

0addresses gateway port
2001:db8:1::/40 --- 0

2001:db8:f::/40 --- 1

(0) 2001:db8:f::2
(1) 2001:db8:2::1

1

0
1addresses gateway port

2001:db8:f::/40 --- 0

2001:db8:2::/40 --- 1

2001:db8:4::/40 2001::db8:2::3 1

2001:db8:1::/40 2001::db8:f::1 0

(0) 2001:db8:2::2
(1) 2001:db8:3::1

0

addresses gateway port
2001:db8:2::/40 --- 0

2001:db8:3::/40 --- 1

2001:db8:4::/40 2001:db8:2::3 0

2001:db8:f::/40 2001:db8:2::1 0

2001:db8:1::/40 2001:db8:2::1 0

(0) 2001:db8:2::3
(1) 2001:db8:4::1

0

addresses gateway port
2001:db8:2::/40 --- 0

2001:db8:4::/40 --- 1

2001:db8:f::/40 2001:db8:2::1 0

2001:db8:1::/40 2001:db8:2::1 0

find out where
we can forward packets
not using port 0

via 2001:db8:2::3
2001:db8:4::/40

via 2001:db8:f::1
2001:db8:1::/40 via 2001:db8:2::1

2001::db8:f::/40
2001::db8:1::/40

30

‘flooding’
(0) 2001:db8:1::1
(1) 2001:db8:f::1

0addresses gateway port
2001:db8:1::/40 --- 0

2001:db8:f::/40 --- 1

(0) 2001:db8:f::2
(1) 2001:db8:2::1

1

0
1addresses gateway port

2001:db8:f::/40 --- 0

2001:db8:2::/40 --- 1

2001:db8:4::/40 2001::db8:2::3 1

2001:db8:1::/40 2001::db8:f::1 0

(0) 2001:db8:2::2
(1) 2001:db8:3::1

0

addresses gateway port
2001:db8:2::/40 --- 0

2001:db8:3::/40 --- 1

2001:db8:4::/40 2001:db8:2::3 0

2001:db8:f::/40 2001:db8:2::1 0

2001:db8:1::/40 2001:db8:2::1 0

(0) 2001:db8:2::3
(1) 2001:db8:4::1

0

addresses gateway port
2001:db8:2::/40 --- 0

2001:db8:4::/40 --- 1

2001:db8:f::/40 2001:db8:2::1 0

2001:db8:1::/40 2001:db8:2::1 0

find out where
we can forward packets
not using port 0

via 2001:db8:2::3
2001:db8:4::/40

via 2001:db8:f::1
2001:db8:1::/40 via 2001:db8:2::1

2001::db8:f::/40
2001::db8:1::/40

30

‘flooding’
(0) 2001:db8:1::1
(1) 2001:db8:f::1

0addresses gateway port
2001:db8:1::/40 --- 0

2001:db8:f::/40 --- 1

(0) 2001:db8:f::2
(1) 2001:db8:2::1

1

0
1addresses gateway port

2001:db8:f::/40 --- 0

2001:db8:2::/40 --- 1

2001:db8:4::/40 2001::db8:2::3 1

2001:db8:1::/40 2001::db8:f::1 0

(0) 2001:db8:2::2
(1) 2001:db8:3::1

0

addresses gateway port
2001:db8:2::/40 --- 0

2001:db8:3::/40 --- 1

2001:db8:4::/40 2001:db8:2::3 0

2001:db8:f::/40 2001:db8:2::1 0

2001:db8:1::/40 2001:db8:2::1 0

(0) 2001:db8:2::3
(1) 2001:db8:4::1

0

addresses gateway port
2001:db8:2::/40 --- 0

2001:db8:4::/40 --- 1

2001:db8:f::/40 2001:db8:2::1 0

2001:db8:1::/40 2001:db8:2::1 0

find out where
we can forward packets
not using port 0via 2001:db8:2::3

2001:db8:4::/40

via 2001:db8:f::1
2001:db8:1::/40

via 2001:db8:2::1
2001::db8:f::/40
2001::db8:1::/40

30

‘flooding’
(0) 2001:db8:1::1
(1) 2001:db8:f::1

0addresses gateway port
2001:db8:1::/40 --- 0

2001:db8:f::/40 --- 1

(0) 2001:db8:f::2
(1) 2001:db8:2::1

1

0
1addresses gateway port

2001:db8:f::/40 --- 0

2001:db8:2::/40 --- 1

2001:db8:4::/40 2001::db8:2::3 1

2001:db8:1::/40 2001::db8:f::1 0

(0) 2001:db8:2::2
(1) 2001:db8:3::1

0

addresses gateway port
2001:db8:2::/40 --- 0

2001:db8:3::/40 --- 1

2001:db8:4::/40 2001:db8:2::3 0

2001:db8:f::/40 2001:db8:2::1 0

2001:db8:1::/40 2001:db8:2::1 0

(0) 2001:db8:2::3
(1) 2001:db8:4::1

0

addresses gateway port
2001:db8:2::/40 --- 0

2001:db8:4::/40 --- 1

2001:db8:f::/40 2001:db8:2::1 0

2001:db8:1::/40 2001:db8:2::1 0

find out where
we can forward packets
not using port 0via 2001:db8:2::3

2001:db8:4::/40

via 2001:db8:f::1
2001:db8:1::/40

via 2001:db8:2::1
2001::db8:f::/40
2001::db8:1::/40

30

eventual convergence
‘flooding’ algorithm:

periodically send on each network:
list of routes you have that don’t double-back to same network

when receiving routes sent on network:
add routing table entry for each route

not handled: multiple paths?

31

eventual convergence
‘flooding’ algorithm:

periodically send on each network:
list of routes you have that don’t double-back to same network

when receiving routes sent on network:
add routing table entry for each route

not handled: multiple paths?

31

only one path?
only one path on network means:

if a link fails, bad news

network forms a tree

32

routing like this?
for IP routing, generally want to have multiple paths

…but this is basically how MAC learning works

but it requires a network that is a tree

what if we don’t start with one?

33

spanning tree
given a general network, only activate subset of links

…such that network is tree
that is only one path between each node

allows us to do flooding strategy

makes simple MAC learning/broadcast just work

34

centralized spanning tree?
one algorithm you might learn in DSA2:

mark one node called the root as ‘in the tree’

repeatedly:
add the ‘first’ link that goes to a node not in the tree
mark newly connected node as ‘in the tree’

result = spanning tree

35

centralized spanning tree?
one algorithm you might learn in DSA2:

mark one node called the root as ‘in the tree’

repeatedly:
add the ‘first’ link that goes to a node not in the tree
mark newly connected node as ‘in the tree’

result = spanning tree

35

a careful ordering
algorithm works with any idea of which link/node is first

we’ll choose a particular ordering (for reasons you’ll see later)

root (first node) is one with earliest ‘name’

links closer to the root before further links

links from nodes with earlier names before later ones

36

spanning tree example
A

BG

D

E

F

first prioritysecond priority

no new nodes

first priority
second priority

37

spanning tree example
A

BG

D

E

F

first prioritysecond priority

no new nodes

first priority
second priority

37

spanning tree example
A

BG

D

E

F

first prioritysecond priority

no new nodes

first priority
second priority

37

spanning tree example
A

BG

D

E

F

first prioritysecond priority

no new nodes

first priority
second priority

37

spanning tree example
A

BG

D

E

F

first prioritysecond priority

no new nodes

first priority
second priority

37

spanning tree example
A

BG

D

E

F

first prioritysecond priority

no new nodes

first priority
second priority

37

spanning tree example
A

BG

D

E

F

first prioritysecond priority

no new nodes

first priority
second priority

37

spanning tree example
A

BG

D

E

F

first prioritysecond priority

no new nodes

first priority
second priority

37

detecting ‘mistakes’
this method: consistent results every time

but assumes we start from scratch

we’re going to want a way of doing this dynamically

let’s say we find a wrong configuration —

can we fix it?

38

fixing wrong links
A

BG

D

E

F

A–G beats B–G: closer to root

D–F and F–E:
same distance from root, but
D before F, so D–E beats F–E

G–E and D–E:
G–E closer to root
so G–E beats D–E

39

fixing wrong links
A

BG

D

E

F A–G beats B–G: closer to root

D–F and F–E:
same distance from root, but
D before F, so D–E beats F–E

G–E and D–E:
G–E closer to root
so G–E beats D–E

39

fixing wrong links
A

BG

D

E

F

A–G beats B–G: closer to root

D–F and F–E:
same distance from root, but
D before F, so D–E beats F–E

G–E and D–E:
G–E closer to root
so G–E beats D–E

39

fixing wrong links
A

BG

D

E

F

A–G beats B–G: closer to root

D–F and F–E:
same distance from root, but
D before F, so D–E beats F–E

G–E and D–E:
G–E closer to root
so G–E beats D–E

39

fixing wrong links
A

BG

D

E

F

A–G beats B–G: closer to root

D–F and F–E:
same distance from root, but
D before F, so D–E beats F–E

G–E and D–E:
G–E closer to root
so G–E beats D–E

39

spanning tree protocol
each node tracks:

what it believes is root of tree
its link toward root of tree
its distance to root of tree
which other nodes think it’s closer to root of tree

periodically sends information to neighbors

when receiving information, update:
root to lower ID number (if possible)
link to lower-distance link (if possible)
link to lower-ID, same-distance link (if possible)
which other nodes think it is closer

40

some example updates
A

BG

D

E

F

r=G,d=0,no link

r=E,d=0,no link

r=F,d=0,no link

r=D,d=0,no link

r=B,d=0,no linkr=E,d=1,G–E

r=E,d=0,no link

r=E,d=1,F–E

r=D,d=0,no link
(D < E, so no update)

r=B,d=0,no linkr=E,d=1,G–E

r=E,d=0,no link

r=E,d=1,F–E

r=D,d=0,no link

r=B,d=0,no linkr=E,d=1,G–E

r=D,d=1,E–D

r=E,d=0,F–E

r=D,d=0,no link

r=B,d=0,no link
(B < D, no update)

41

some example updates
A

BG

D

E

F

r=G,d=0,no link

r=E,d=0,no link

r=F,d=0,no link

r=D,d=0,no link

r=B,d=0,no link

r=E,d=1,G–E

r=E,d=0,no link

r=E,d=1,F–E

r=D,d=0,no link
(D < E, so no update)

r=B,d=0,no linkr=E,d=1,G–E

r=E,d=0,no link

r=E,d=1,F–E

r=D,d=0,no link

r=B,d=0,no linkr=E,d=1,G–E

r=D,d=1,E–D

r=E,d=0,F–E

r=D,d=0,no link

r=B,d=0,no link
(B < D, no update)

41

some example updates
A

BG

D

E

F

r=G,d=0,no link

r=E,d=0,no link

r=F,d=0,no link

r=D,d=0,no link

r=B,d=0,no link

r=E,d=1,G–E

r=E,d=0,no link

r=E,d=1,F–E

r=D,d=0,no link
(D < E, so no update)

r=B,d=0,no link

r=E,d=1,G–E

r=E,d=0,no link

r=E,d=1,F–E

r=D,d=0,no link

r=B,d=0,no linkr=E,d=1,G–E

r=D,d=1,E–D

r=E,d=0,F–E

r=D,d=0,no link

r=B,d=0,no link
(B < D, no update)

41

some example updates
A

BG

D

E

F

r=G,d=0,no link

r=E,d=0,no link

r=F,d=0,no link

r=D,d=0,no link

r=B,d=0,no linkr=E,d=1,G–E

r=E,d=0,no link

r=E,d=1,F–E

r=D,d=0,no link
(D < E, so no update)

r=B,d=0,no link

r=E,d=1,G–E

r=E,d=0,no link

r=E,d=1,F–E

r=D,d=0,no link

r=B,d=0,no link

r=E,d=1,G–E

r=D,d=1,E–D

r=E,d=0,F–E

r=D,d=0,no link

r=B,d=0,no link
(B < D, no update)

41

some example updates
A

BG

D

E

F

r=G,d=0,no link

r=E,d=0,no link

r=F,d=0,no link

r=D,d=0,no link

r=B,d=0,no linkr=E,d=1,G–E

r=E,d=0,no link

r=E,d=1,F–E

r=D,d=0,no link
(D < E, so no update)

r=B,d=0,no linkr=E,d=1,G–E

r=E,d=0,no link

r=E,d=1,F–E

r=D,d=0,no link

r=B,d=0,no link

r=E,d=1,G–E

r=D,d=1,E–D

r=E,d=0,F–E

r=D,d=0,no link

r=B,d=0,no link
(B < D, no update)

41

spanning trees in practice (1)
commonly used on Ethernet for switches

links not in spanning tree are ‘blocked’
not used for normal traffic
assumption: would cause loop → infinite packets

delay before activating port
avoid temporary routing loops while figuring out tree

periodically send updates to all neighbors
order of seconds

42

spanning tree in practice (2)
real protocol supports variable ‘cost’ for links

so ‘distance to root’ might be lower for faster links

modern variant (Rapid Spanning Tree Protocol) selects “backup”
port to root

goal: faster switchover on failure

43

exercise: best routes?
A

BG

D

E

F

1Mbit, 10ms10Mbit, 20ms
11Mbit, 20ms 5Mbit, 100ms

6M
bit
, 5
ms 8Mbit, 10ms

2Mbit, 20
ms

100Mbit, 10ms

A to B? B to E? F to G?
44

routing metrics
want some way of saying how ‘good’ link is
typically “cost”/“distance” value (so lower is better)
in practice, most commonly

constant
bandwidth

could also try to:
take financial costs into account
take lantency into account
take reliability into account
spread flows out among more links 45

all-pairs Bellman-Ford
one algorithm to find all shortest paths in graph (network)

d(A, B) = best distance from A to B
p(A, B) = next node on path from A to B
initially d(X, X) =∞ for all nodes X

repeatedly* do the following:

for each link from A to B, distance c:
for each node X:
if c + d(B, X) < d(A, X),
then d(A, X)← c + d(B, X), p(A, X) = B 46

running Bellman-Ford
A

BC

D

2
4

1
2

2

2
4
5

1
2

A B C D
A 0/A ∞/— ∞/— ∞/—
B ∞/— 0/B ∞/— ∞/—
C ∞/— ∞/— 0/C ∞/—
D ∞/— ∞/— ∞/— 0/D

A B C D
A 0/A 2/B 1/C 3/B
B 4/A 0/B 2/C 1/D
C 2/A 2/B 0/C 4/D
D 6/B 2/B 4/B 0/D

47

running Bellman-Ford
A

BC

D

2
4

1
2

2

2
4
5

1
2

A B C D
A 0/A 2/B ∞/— ∞/—
B ∞/— 0/B ∞/— ∞/—
C ∞/— ∞/— 0/C ∞/—
D ∞/— ∞/— ∞/— 0/D

A B C D
A 0/A 2/B 1/C 3/B
B 4/A 0/B 2/C 1/D
C 2/A 2/B 0/C 4/D
D 6/B 2/B 4/B 0/D

47

running Bellman-Ford
A

BC

D

2
4

1
2

2

2
4
5

1
2

A B C D
A 0/A 2/B ∞/— ∞/—
B 4/A 0/B ∞/— ∞/—
C ∞/— ∞/— 0/C ∞/—
D ∞/— ∞/— ∞/— 0/D

A B C D
A 0/A 2/B 1/C 3/B
B 4/A 0/B 2/C 1/D
C 2/A 2/B 0/C 4/D
D 6/B 2/B 4/B 0/D

47

running Bellman-Ford
A

BC

D

2
4

1
2

2

2
4
5

1
2

A B C D
A 0/A 2/B ∞/— ∞/—
B 4/A 0/B 2/C ∞/—
C ∞/— ∞/— 0/C ∞/—
D ∞/— ∞/— ∞/— 0/D

A B C D
A 0/A 2/B 1/C 3/B
B 4/A 0/B 2/C 1/D
C 2/A 2/B 0/C 4/D
D 6/B 2/B 4/B 0/D

47

running Bellman-Ford
A

BC

D

2
4

1
2

2

2
4
5

1
2

A B C D
A 0/A 2/B ∞/— ∞/—
B 4/A 0/B 2/C ∞/—
C 6/B 2/B 0/C ∞/—
D ∞/— ∞/— ∞/— 0/D

A B C D
A 0/A 2/B 1/C 3/B
B 4/A 0/B 2/C 1/D
C 2/A 2/B 0/C 4/D
D 6/B 2/B 4/B 0/D

47

running Bellman-Ford
A

BC

D

2
4

1
2

2

2
4
5

1
2

A B C D
A 0/A 2/B ∞/— ∞/—
B 4/A 0/B 2/C ∞/—
C 6/B 2/B 0/C 4/D
D ∞/— ∞/— ∞/— 0/D

A B C D
A 0/A 2/B 1/C 3/B
B 4/A 0/B 2/C 1/D
C 2/A 2/B 0/C 4/D
D 6/B 2/B 4/B 0/D

47

running Bellman-Ford
A

BC

D

2
4

1
2

2

2
4
5

1
2

A B C D
A 0/A 2/B 1/C 5/D
B 4/A 0/B 2/C ∞/—
C 6/B 2/B 0/C 4/D
D ∞/— ∞/— ∞/— 0/D

A B C D
A 0/A 2/B 1/C 3/B
B 4/A 0/B 2/C 1/D
C 2/A 2/B 0/C 4/D
D 6/B 2/B 4/B 0/D

47

running Bellman-Ford
A

BC

D

2
4

1
2

2

2
4
5

1
2

A B C D
A 0/A 2/B 1/C 5/D
B 4/A 0/B 2/C 9/A
C 6/B 2/B 0/C 4/D
D ∞/— ∞/— ∞/— 0/D

A B C D
A 0/A 2/B 1/C 3/B
B 4/A 0/B 2/C 1/D
C 2/A 2/B 0/C 4/D
D 6/B 2/B 4/B 0/D

47

running Bellman-Ford
A

BC

D

2
4

1
2

2

2
4
5

1
2

A B C D
A 0/A 2/B 1/C 5/D
B 4/A 0/B 2/C 9/A
C 6/B 2/B 0/C 4/D
D ∞/— ∞/— ∞/— 0/D

A B C D
A 0/A 2/B 1/C 3/B
B 4/A 0/B 2/C 1/D
C 2/A 2/B 0/C 4/D
D 6/B 2/B 4/B 0/D

47

running Bellman-Ford
A

BC

D

2
4

1
2

2

2
4
5

1
2

A B C D
A 0/A 2/B 1/C 5/D
B 4/A 0/B 2/C 9/A
C 6/B 2/B 0/C 4/D
D ∞/— ∞/— ∞/— 0/D

A B C D
A 0/A 2/B 1/C 3/B
B 4/A 0/B 2/C 1/D
C 2/A 2/B 0/C 4/D
D 6/B 2/B 4/B 0/D

47

distributing Bellman-Ford

A

BC

D

2
4

1
2

2

2
4
5

1
2

A B C D
A 0/A ∞/— ∞/— ∞/—
B ∞/— 0/B ∞/— ∞/—
C ∞/— ∞/— 0/C ∞/—
D ∞/— ∞/— ∞/— 0/D

store table row = “distance vector” on each node

A B C D
A/0 ∞/— ∞/— ∞/—

A B C D
∞/— B/0 ∞/— ∞/—

A B C D
∞/— ∞/— C/0 ∞/—

A B C D
∞/— ∞/— ∞/— D/0

I’m C, costs: C=0
I’m D, costs: D=0,C=5

I’m C, costs: C=0

I’m C, costs: C=0

“split horizon” optimization
don’t echo back routes where they come from

I’m D, costs: D=0,C=∞

48

distributing Bellman-Ford

A

BC

D

2
4

1
2

2

2
4
5

1
2

A B C D
A 0/A ∞/— ∞/— ∞/—
B ∞/— 0/B ∞/— ∞/—
C ∞/— ∞/— 0/C ∞/—
D ∞/— ∞/— ∞/— 0/Dstore table row = “distance vector” on each node

A B C D
A/0 ∞/— ∞/— ∞/—

A B C D
∞/— B/0 ∞/— ∞/—

A B C D
∞/— ∞/— C/0 ∞/—

A B C D
∞/— ∞/— ∞/— D/0

I’m C, costs: C=0
I’m D, costs: D=0,C=5

I’m C, costs: C=0

I’m C, costs: C=0

“split horizon” optimization
don’t echo back routes where they come from

I’m D, costs: D=0,C=∞

48

distributing Bellman-Ford

A

BC

D

2
4

1
2

2

2
4
5

1
2

A B C D
A 0/A ∞/— ∞/— ∞/—
B ∞/— 0/B ∞/— ∞/—
C ∞/— ∞/— 0/C ∞/—
D ∞/— ∞/— ∞/— 0/Dstore table row = “distance vector” on each node

A B C D
A/0 ∞/— ∞/— ∞/—

A B C D
∞/— B/0 ∞/— ∞/—

A B C D
∞/— ∞/— C/0 ∞/—

A B C D
∞/— ∞/— ∞/— D/0

I’m C, costs: C=0

I’m D, costs: D=0,C=5

I’m C, costs: C=0

I’m C, costs: C=0

“split horizon” optimization
don’t echo back routes where they come from

I’m D, costs: D=0,C=∞

48

distributing Bellman-Ford

A

BC

D

2
4

1
2

2

2
4
5

1
2

A B C D
A 0/A ∞/— ∞/— ∞/—
B ∞/— 0/B ∞/— ∞/—
C ∞/— ∞/— 0/C ∞/—
D ∞/— ∞/— ∞/— 0/Dstore table row = “distance vector” on each node

A B C D
A/0 ∞/— ∞/— ∞/—

A B C D
∞/— B/0 ∞/— ∞/—

A B C D
∞/— ∞/— C/0 ∞/—

A B C D
∞/— ∞/— 5/C D/0

I’m C, costs: C=0

I’m D, costs: D=0,C=5

I’m C, costs: C=0

I’m C, costs: C=0

“split horizon” optimization
don’t echo back routes where they come from

I’m D, costs: D=0,C=∞

48

distributing Bellman-Ford

A

BC

D

2
4

1
2

2

2
4
5

1
2

A B C D
A 0/A ∞/— ∞/— ∞/—
B ∞/— 0/B ∞/— ∞/—
C ∞/— ∞/— 0/C ∞/—
D ∞/— ∞/— ∞/— 0/Dstore table row = “distance vector” on each node

A B C D
A/0 ∞/— ∞/— ∞/—

A B C D
∞/— B/0 ∞/— ∞/—

A B C D
∞/— ∞/— C/0 ∞/—

A B C D
∞/— ∞/— 5/C D/0

I’m C, costs: C=0

I’m D, costs: D=0,C=5

I’m C, costs: C=0

I’m C, costs: C=0

“split horizon” optimization
don’t echo back routes where they come from

I’m D, costs: D=0,C=∞

48

distributing Bellman-Ford

A

BC

D

2
4

1
2

2

2
4
5

1
2

A B C D
A 0/A ∞/— ∞/— ∞/—
B ∞/— 0/B ∞/— ∞/—
C ∞/— ∞/— 0/C ∞/—
D ∞/— ∞/— ∞/— 0/Dstore table row = “distance vector” on each node

A B C D
A/0 ∞/— ∞/— ∞/—

A B C D
∞/— B/0 D/6 1/D

A B C D
∞/— ∞/— C/0 ∞/—

A B C D
∞/— ∞/— 5/C D/0

I’m C, costs: C=0

I’m D, costs: D=0,C=5

I’m C, costs: C=0

I’m C, costs: C=0

“split horizon” optimization
don’t echo back routes where they come from

I’m D, costs: D=0,C=∞

48

distributing Bellman-Ford

A

BC

D

2
4

1
2

2

2
4
5

1
2

A B C D
A 0/A ∞/— ∞/— ∞/—
B ∞/— 0/B ∞/— ∞/—
C ∞/— ∞/— 0/C ∞/—
D ∞/— ∞/— ∞/— 0/Dstore table row = “distance vector” on each node

A B C D
A/0 ∞/— ∞/— ∞/—

A B C D
∞/— B/0 D/6 1/D

A B C D
∞/— ∞/— C/0 ∞/—

A B C D
∞/— ∞/— 5/C D/0

I’m C, costs: C=0
I’m D, costs: D=0,C=5

I’m C, costs: C=0

I’m C, costs: C=0

“split horizon” optimization
don’t echo back routes where they come from

I’m D, costs: D=0,C=∞

48

distributing Bellman-Ford

A

BC

D

2
4

1
2

2

2
4
5

1
2

A B C D
A 0/A ∞/— ∞/— ∞/—
B ∞/— 0/B ∞/— ∞/—
C ∞/— ∞/— 0/C ∞/—
D ∞/— ∞/— ∞/— 0/Dstore table row = “distance vector” on each node

A B C D
A/0 ∞/— C/1 ∞/—

A B C D
∞/— B/0 C/2 1/D

A B C D
∞/— ∞/— C/0 ∞/—

A B C D
∞/— ∞/— 5/C D/0

I’m C, costs: C=0
I’m D, costs: D=0,C=5

I’m C, costs: C=0

I’m C, costs: C=0

“split horizon” optimization
don’t echo back routes where they come from

I’m D, costs: D=0,C=∞

48

distributing Bellman-Ford

A

BC

D

2
4

1
2

2

2
4
5

1
2

A B C D
A 0/A ∞/— ∞/— ∞/—
B ∞/— 0/B ∞/— ∞/—
C ∞/— ∞/— 0/C ∞/—
D ∞/— ∞/— ∞/— 0/Dstore table row = “distance vector” on each node

A B C D
A/0 ∞/— C/1 ∞/—

A B C D
∞/— B/0 C/2 1/D

A B C D
∞/— ∞/— C/0 ∞/—

A B C D
∞/— ∞/— 5/C D/0

I’m C, costs: C=0
I’m D, costs: D=0,C=5

I’m C, costs: C=0

I’m C, costs: C=0

“split horizon” optimization
don’t echo back routes where they come from

I’m D, costs: D=0,C=∞

48

distributing Bellman-Ford

A

BC

D

2
4

1
2

2

2
4
5

1
2

A B C D
A 0/A ∞/— ∞/— ∞/—
B ∞/— 0/B ∞/— ∞/—
C ∞/— ∞/— 0/C ∞/—
D ∞/— ∞/— ∞/— 0/Dstore table row = “distance vector” on each node

A B C D
A/0 ∞/— C/1 ∞/—

A B C D
∞/— B/0 C/2 1/D

A B C D
∞/— ∞/— C/0 C/4

A B C D
∞/— ∞/— 5/C D/0

I’m C, costs: C=0
I’m D, costs: D=0,C=5

I’m C, costs: C=0

I’m C, costs: C=0

“split horizon” optimization
don’t echo back routes where they come from

I’m D, costs: D=0,C=∞

48

distributing Bellman-Ford (2)

A

BC

D

2
4

1
2

2

2
4
5

1
2

A B C D
0/A 2/B 1/C 5/D

A B C D
∞/— ∞/— ∞/— 0/D

A B C D
1/A 2/B 0/C 4/D

A B C D
4/A 0/B 2/C 6/C

I’m C, costs: A=1,B=2,C=0,D=5I’m B, costs: A=4,B=0,C=2,D=5

exercise: what should change from update?

49

distributing Bellman-Ford (2)

A

BC

D

2
4

1
2

2

2
4
5

1
2

A B C D
0/A 2/B 1/C 5/D

A B C D
∞/— ∞/— ∞/— 0/D

A B C D
1/A 2/B 0/C 4/D

A B C D
4/A 0/B 2/C 6/C

I’m C, costs: A=1,B=2,C=0,D=5I’m B, costs: A=4,B=0,C=2,D=5

exercise: what should change from update?

49

distributing Bellman-Ford (2)

A

BC

D

2
4

1
2

2

2
4
5

1
2

A B C D
0/A 2/B 1/C 5/D

A B C D
∞/— ∞/— ∞/— 0/D

A B C D
1/A 2/B 0/C 4/D

A B C D
4/A 0/B 2/C 6/C

I’m C, costs: A=1,B=2,C=0,D=5

I’m B, costs: A=4,B=0,C=2,D=5

exercise: what should change from update?

49

distributing Bellman-Ford (2)

A

BC

D

2
4

1
2

2

2
4
5

1
2

A B C D
0/A 2/B 1/C 5/D

A B C D
6/C 7/C 5/C 0/D

A B C D
1/A 2/B 0/C 4/D

A B C D
4/A 0/B 2/C 6/C

I’m C, costs: A=1,B=2,C=0,D=5

I’m B, costs: A=4,B=0,C=2,D=5

exercise: what should change from update?

49

distributing Bellman-Ford (2)

A

BC

D

2
4

1
2

2

2
4
5

1
2

A B C D
0/A 2/B 1/C 5/D

A B C D
6/C 7/C 5/C 0/D

A B C D
1/A 2/B 0/C 4/D

A B C D
4/A 0/B 2/C 6/C

I’m C, costs: A=1,B=2,C=0,D=5

I’m B, costs: A=4,B=0,C=2,D=5

exercise: what should change from update?

49

distributing Bellman-Ford (2)

A

BC

D

2
4

1
2

2

2
4
5

1
2

A B C D
0/A 2/B 1/C 5/D

A B C D
6/C 2/B 5/C 0/D

A B C D
1/A 2/B 0/C 4/D

A B C D
4/A 0/B 2/C 6/C

I’m C, costs: A=1,B=2,C=0,D=5I’m B, costs: A=4,B=0,C=2,D=5

exercise: what should change from update?

49

networks v routers (DV)
imprecision on graphs — acting as if we want distance to routers

but really want distance to networks

distance vectors will track distance to networks

but next hops will be routers

50

networks v routers (DV)

R1

R2

R3 R4

N1 N2

N3 N4

R1 R2

R3 R4

N1 N2 N3 N4
1/R1 ∞/— 1/R1 ∞/—

N1 N2 N3 N4
1/R2 1/R2 ∞/— 1/R2

N1 N2 N3 N4
∞/— 1/R3 1/R3

N1 N2 N3 N4
∞/— 1/R4 ∞/— 1/R4

N1=1,N2=∞,
N3=1,N4=∞

N1=2,N2=∞,
N3=1,N4=1

51

networks v routers (DV)

R1

R2

R3 R4

N1 N2

N3 N4

R1 R2

R3 R4

N1 N2 N3 N4
1/R1 ∞/— 1/R1 ∞/—

N1 N2 N3 N4
1/R2 1/R2 ∞/— 1/R2

N1 N2 N3 N4
∞/— 1/R3 1/R3

N1 N2 N3 N4
∞/— 1/R4 ∞/— 1/R4

N1=1,N2=∞,
N3=1,N4=∞

N1=2,N2=∞,
N3=1,N4=1

51

networks v routers (DV)

R1

R2

R3 R4

N1 N2

N3 N4

R1 R2

R3 R4

N1 N2 N3 N4
1/R1 ∞/— 1/R1 ∞/—

N1 N2 N3 N4
1/R2 1/R2 ∞/— 1/R2

N1 N2 N3 N4
∞/— 1/R3 1/R3

N1 N2 N3 N4
∞/— 1/R4 ∞/— 1/R4

N1=1,N2=∞,
N3=1,N4=∞

N1=2,N2=∞,
N3=1,N4=1

51

networks v routers (DV)

R1

R2

R3 R4

N1 N2

N3 N4

R1 R2

R3 R4

N1 N2 N3 N4
1/R1 ∞/— 1/R1 ∞/—

N1 N2 N3 N4
1/R2 1/R2 ∞/— 1/R2

N1 N2 N3 N4
∞/— ∞/— 1/R3 1/R3

N1 N2 N3 N4
∞/— 1/R4 ∞/— 1/R4

N1=1,N2=∞,
N3=1,N4=∞

N1=2,N2=∞,
N3=1,N4=1

51

networks v routers (DV)

R1

R2

R3 R4

N1 N2

N3 N4

R1 R2

R3 R4

N1 N2 N3 N4
1/R1 ∞/— 1/R1 ∞/—

N1 N2 N3 N4
1/R2 1/R2 ∞/— 1/R2

N1 N2 N3 N4
2/R1 ∞/— 1/R3 1/R3

N1 N2 N3 N4
∞/— 1/R4 ∞/— 1/R4

N1=1,N2=∞,
N3=1,N4=∞

N1=2,N2=∞,
N3=1,N4=1

51

networks v routers (DV)

R1

R2

R3 R4

N1 N2

N3 N4

R1 R2

R3 R4

N1 N2 N3 N4
1/R1 ∞/— 1/R1 ∞/—

N1 N2 N3 N4
1/R2 1/R2 ∞/— 1/R2

N1 N2 N3 N4
2/R1 ∞/— 1/R3 1/R3

N1 N2 N3 N4
∞/— 1/R4 ∞/— 1/R4

N1=1,N2=∞,
N3=1,N4=∞

N1=2,N2=∞,
N3=1,N4=1

51

distance vector routing
each node keeps distance vector

distance to each other node (network)
also which neighbor to go through to get that distance

periodically send distance vector to all neighbors

when receiving distance vector from X, check

“would going through X give me a better distance?”
if so, update distance + which neighbor

52

Routing Information Protocol
router broadcast on networks it’s connected to packet containing
list of:

networks it can reach (example: 1.2.3.0/24)
its next hop to that network
its metric (distance) to reach that network

each router on that network processes that packet

on receiving distances, routers see if they can update their routes
routes will be to networks (1.2.3.0/24, etc.), not routers

53

local information
routers need to track themselves:

which networks they can reach directly
(which networks is it connected to)

the ‘distance’ it needs to reach those networks
(probably based on its bandwidth to that network?)

54

RIP — when to update
policy: every approx. 30 seconds always AND

immediately on changes (“triggered”)

means that connecting new router should better routes quickly

55

links going down
problem with our update rule:

assumes routes only get better

reality: sometimes links go down

need to find different route

56

updating for removal (1)
let’s say I’m A and my distance vector is:

A=0 via A, B=4 via B, C=5 via D, D=4 via D

if my link to D goes down, new distance vector should be?

A=0 via A, B=4 via B, C=∞ via no one, D=∞ via no one

later updates might fix ∞s

57

updating for removal (1)
let’s say I’m A and my distance vector is:

A=0 via A, B=4 via B, C=5 via D, D=4 via D

if my link to D goes down, new distance vector should be?
A=0 via A, B=4 via B, C=∞ via no one, D=∞ via no one

later updates might fix ∞s

57

updating for removal (2)
let’s say I’m A and my distance vector is:

B=4 via B, C=5 via D, D=4 via D

and D tells me its distance vector is
B=8 via A, C=∞ via no one, D=0 via D

then my (A)’s new distance vector should be?

B=4 via B, C=∞ via no one, D=4 via D

58

updating for removal (2)
let’s say I’m A and my distance vector is:

B=4 via B, C=5 via D, D=4 via D

and D tells me its distance vector is
B=8 via A, C=∞ via no one, D=0 via D

then my (A)’s new distance vector should be?
B=4 via B, C=∞ via no one, D=4 via D

58

updating for removal (3)
let’s say I’m A and my distance vector is:

B=4 via B, C=5 via D, D=4 via D

and D tells me its distance vector is
B=8 via A, C=5 via A, D=0 via D

then my (A)’s new distance vector should be?

B=4 via B, C=∞ via no one, D=4 via D

59

updating for removal (3)
let’s say I’m A and my distance vector is:

B=4 via B, C=5 via D, D=4 via D

and D tells me its distance vector is
B=8 via A, C=5 via A, D=0 via D

then my (A)’s new distance vector should be?
B=4 via B, C=∞ via no one, D=4 via D

59

updating for removal (4)
let’s say I’m A and my distance vector is:

B=4 via B, C=5 via D, D=4 via D

and D tells me its distance vector is
B=3 via B, C=8 via B, D=0 via D

then my (A)’s new distance vector should be?

B=4 via B, C=12 via D, D=4 via D

probably later update from B will overwrite route to C

60

updating for removal (4)
let’s say I’m A and my distance vector is:

B=4 via B, C=5 via D, D=4 via D

and D tells me its distance vector is
B=3 via B, C=8 via B, D=0 via D

then my (A)’s new distance vector should be?
B=4 via B, C=12 via D, D=4 via D

probably later update from B will overwrite route to C

60

removal?

A

BC

D

2
4

1
2

2

2
4
5

1
2

A B C D
0/A 2/B 4/C 3/B

A B C D
6/B∞/—2/B∞/—4/B∞/—0/D

A B C D
2/A 2/B 0/C 4/D

A B C D
4/A 0/B 2/C 1/D∞/—

61

removal?

A

BC

D

2
4

1
2

2

2
4
5

1
2

A B C D
0/A 2/B 4/C 3/B

A B C D
∞/— ∞/— ∞/— 0/D

A B C D
2/A 2/B 0/C 4/D

A B C D
4/A 0/B 2/C ∞/—

61

split horizon with poison reverse
when sending distance vectors, ‘posion’ routes to same node

make sure other node won’t go back to us…
only to have us go back to them

example, if I’m A and routes are:
A: 0 via A; B: 2 via B; C: 4 via C; D: 6 via B

when sending to B send:
A: 0; B: 2; C: 4; D: ∞

62

without split horizon?
can create routing loop

example: if D unreachable from B, then B goes to A and A goes to
B

called “count-to-infinity” problem
because A, B will keep updating distance higher and higher

63

avoided count-to-infinity

A

BC

D

2
4

1
2

2

2
4
5

1
2

A B C D
0/A 2/B 4/C 3/B

A B C D
∞/— ∞/— ∞/— 0/D

A B C D
2/A 2/B 0/C ∞/—

A B C D
4/A 0/B 2/C ∞/—

I’m A: A=0,B=2,C=4,D=3I’m B: A=4,B=0,C=2,D=7I’m A: A=4,B=0,C=2,D=7

64

avoided count-to-infinity

A

BC

D

2
4

1
2

2

2
4
5

1
2

A B C D
0/A 2/B 4/C 3/B

A B C D
∞/— ∞/— ∞/— 0/D

A B C D
2/A 2/B 0/C ∞/—

A B C D
4/A 0/B 2/C 7/A

I’m A: A=0,B=2,C=4,D=3

I’m B: A=4,B=0,C=2,D=7I’m A: A=4,B=0,C=2,D=7

64

avoided count-to-infinity

A

BC

D

2
4

1
2

2

2
4
5

1
2

A B C D
0/A 2/B 4/C 9/B

A B C D
∞/— ∞/— ∞/— 0/D

A B C D
2/A 2/B 0/C ∞/—

A B C D
4/A 0/B 2/C 7/A

I’m A: A=0,B=2,C=4,D=3

I’m B: A=4,B=0,C=2,D=7

I’m A: A=4,B=0,C=2,D=7

64

avoided count-to-infinity

A

BC

D

2
4

1
2

2

2
4
5

1
2

A B C D
0/A 2/B 4/C 9/B

A B C D
∞/— ∞/— ∞/— 0/D

A B C D
2/A 2/B 0/C ∞/—

A B C D
4/A 0/B 2/C 13/A

I’m A: A=0,B=2,C=4,D=3I’m B: A=4,B=0,C=2,D=7

I’m A: A=4,B=0,C=2,D=7

64

trivial loop
oops: A to B to A to B to A to B to …

this case: relatively easy to avoid

65

split horizon incomplete solution
split horizon prevents trivial loops, but…

doesn’t actually solve the count-to-infinty problem

in well-connected network, there will be longer loops

66

count-to-infinity (v2)

A

BC

D

2
4

1
2

2

2
4
5

1
2

A B C D
0/A 2/B 4/C 3/B

A B C D
∞/— ∞/— ∞/— 0/D

A B C D
2/A 2/B 0/C ∞/—

A B C D
4/A 0/B 2/C ∞/—

67

count-to-infinity (v2)

A

BC

D

2
4

1
2

2

2
4
5

1
2

A B C D
0/A 2/B 4/C 3/B

A B C D
∞/— ∞/— ∞/— 0/D

A B C D
2/A 2/B 0/C 4/A

A B C D
4/A 0/B 2/C ∞/—

67

count-to-infinity (v2)

A

BC

D

2
4

1
2

2

2
4
5

1
2

A B C D
0/A 2/B 4/C 3/B

A B C D
∞/— ∞/— ∞/— 0/D

A B C D
2/A 2/B 0/C 4/A

A B C D
4/A 0/B 2/C 6/C

67

count-to-infinity (v2)

A

BC

D

2
4

1
2

2

2
4
5

1
2

A B C D
0/A 2/B 4/C 8/B

A B C D
∞/— ∞/— ∞/— 0/D

A B C D
2/A 2/B 0/C 4/A

A B C D
4/A 0/B 2/C 6/C

67

count-to-infinity
when node becomes unreachable, can have ‘phantom’ routes

keep propogating in loop, incrementing metric forever

RIP solution: maximum metric is 15 (hops)

68

better count-to-infinity solutions?
can share information about more than just neighbors

we’ll see two examples:

link-state routing protocols (example: OSPF)
every router learns full map of network

border gateway protocol (BGP)
(basically) track list of hops alongside distances
eliminate potential routes that would create duplicate hops (loops)

69

link-state routing
will keep idea of sharing state with neighbors…

but weren’t sharing enough state!

other routing idea:

routers collect complete map of network

example protocol for this: OSPF
Open Shortest Path First

70

OSPF link-state advertisements (router)
age options type

ID

advertising router

sequence number

checksum length

depends on LSA type

71

OSPF LSA sequences/ages
sequence number for getting correction version of LSAs

some tricky rules to handle routers restarting (losing track of sequence
number) and sequence number wraparound

maximum ‘age’ for link-state advertisements
typically minutes
too-old LSAs not used for routing
deliberately setting age = MaxAge used to invalidate LSAs

72

OSPF LSA types
‘router’:

list of links for router
links = connect to other router or network
links refer to ID numbers of network/router LSAs
metrics for each link

‘network’:
list of routers for network
different version of external and internal networks

(later) ‘summary’:
part of support for areas
used when sysadmin doesn’t want all routers processing whole network
map

73

link-state database
whole collection of advertisements

every router, network, link between router+network

all the metrics for those

74

reliable flooding (picture)
Peterson and Davie, Computer Networks: A Systems Approach, Figure 88

X A

C B D

(b)

X A

C B D

(c)
X A

C B D

(d)

(a)
X A

C B D

75

missing from the picture
in picture: seems like each router directly connected to each other

often we have multiple routers connected to local network

can/will share link state packets by broadcasting on local network

76

reliable flooding in OSPF — setup
for each subnetwork:

choose a designated and backup router
make sure backup becomes designated on failure

designated router will take care of propogating updates to everyone
on network

…including waiting for acknowledgments, etc.

77

reliable flooding in OSPF
then, when receiving/generating link state packet:

send to every designed+backup router of subnetwork that
you are connected to, and
you are not designated/backup router for, and
you did not receive the packet from

send to every router on every subnetwork that
you are designated router for

send = send + resend if no ACK

78

finding shortest paths
given full picture of network

want to find all shortest paths from self
shortest ‘distance’ = lowest sum of metric

only need next hop, but will compute whole path to find that

assumption: everyone using shortest path

usual solution: Dijkstra’s algorithm

79

Dijkstra’s algorithm example 1

21

2

1

2

5
1

65

1

10

3

A

C

D

B

F

E

G

dist prev path
A 0 — A
B ∞ — —
C ∞ — —
D ∞ — —
E ∞ — —
F ∞ — —
G ∞ — —

D is adjacent —
but not a shorter path

F updated from distance 7 (via D)
to distance 4 (via C)

80

Dijkstra’s algorithm example 1

21

2

1

2

5
1

65

1

10

3
A

C

D

B

F

E

G

dist prev path
A 0 — A
B ∞ — —
C 2 A A→C
D 1 A A→D
E ∞ — —
F ∞ — —
G ∞ — —

D is adjacent —
but not a shorter path

F updated from distance 7 (via D)
to distance 4 (via C)

80

Dijkstra’s algorithm example 1

21

2

1

2

5
1

65

1

10

3

A

C

D

B

F

E

G

dist prev path
A 0 — A
B 6 D A→D→B
C 2 A A→C
D 1 A A→D
E 2 D A→D→E
F 7 D A→D→F
G 6 D A→D→G

D is adjacent —
but not a shorter path

F updated from distance 7 (via D)
to distance 4 (via C)

80

Dijkstra’s algorithm example 1

21

2

1

2

5
1

65

1

10

3

A

C
D

B

F

E

G

dist prev path
A 0 — A
B 6 D A→D→B
C 2 A A→C
D 1 A A→D
E 2 D A→D→E
F 4 C A→C→F
G 6 D A→D→G

D is adjacent —
but not a shorter path

F updated from distance 7 (via D)
to distance 4 (via C)

80

Dijkstra’s algorithm example 1

21

2

1

2

5
1

65

1

10

3

A

C

D

B

F

E

G

dist prev path
A 0 — A
B 3 E A→D→E→B
C 2 A A→C
D 1 A A→D
E 2 D A→D→E
F 4 C A→C→F
G 6 D A→D→G

D is adjacent —
but not a shorter path

F updated from distance 7 (via D)
to distance 4 (via C)

80

Dijkstra’s algorithm example 1

21

2

1

2

5
1

65

1

10

3

A

C

D

B

F

E

G

dist prev path
A 0 — A
B 3 E A→D→E→B
C 2 A A→C
D 1 A A→D
E 2 D A→D→E
F 4 C A→C→F
G 6 D A→D→G

D is adjacent —
but not a shorter path

F updated from distance 7 (via D)
to distance 4 (via C)

80

Dijkstra’s algorithm example 1

21

2

1

2

5
1

65

1

10

3

A

C

D

B

F

E

G

dist prev path
A 0 — A
B 3 E A→D→E→B
C 2 A A→C
D 1 A A→D
E 2 D A→D→E
F 4 C A→C→F
G 6 D A→D→G

D is adjacent —
but not a shorter path

F updated from distance 7 (via D)
to distance 4 (via C)

80

Dijkstra’s algorithm example 1

21

2

1

2

5
1

65

1

10

3

A

C

D

B

F

E

G

dist prev path
A 0 — A
B 3 E A→D→E→B
C 2 A A→C
D 1 A A→D
E 2 D A→D→E
F 4 C A→C→F
G 6 D A→D→G

D is adjacent —
but not a shorter path

F updated from distance 7 (via D)
to distance 4 (via C)

80

Dijkstra’s algorithm example 2

7
9

14

10

15

11

2

6

9
A

B

C

G

D

E

dist prev path
A 0 — A
B ∞ — —
C ∞ — —
D ∞ — —
E ∞ — —
G ∞ — —

81

Dijkstra’s algorithm example 2

7
9

14

10

15

11

2

6

9
A

B

C

G

D

E

dist prev path
A 0 — A
B 7 A A→B
C 9 A A→C
D ∞ — —
E ∞ — —
G 14 A A→G

81

Dijkstra’s algorithm example 2

7
9

14

10

15

11

2

6

9
A

B

C

G

D

E

dist prev path
A 0 — A
B 7 A A→B
C 9 A A→C
D 22 B A→B→D
E ∞ — —
G 14 A A→G

81

Dijkstra’s algorithm example 2

7
9

14

10

15

11

2

6

9
A

B

C

G

D

E

dist prev path
A 0 — A
B 7 A A→B
C 9 A A→C
D 20 C A→C→D
E ∞ — —
G 11 C A→C→G

81

Dijkstra’s algorithm example 2

7
9

14

10

15

11

2

6

9
A

B

C

G

D

E

dist prev path
A 0 — A
B 7 A A→B
C 9 A A→C
D 20 C A→C→D
E 20 G A→C→G→E
G 11 C A→C→G

81

Dijkstra’s algorithm example 2

7
9

14

10

15

11

2

6

9
A

B

C

G

D

E

dist prev path
A 0 — A
B 7 A A→B
C 9 A A→C
D 20 C A→C→D
E 20 G A→C→G→E
G 11 C A→C→G

81

Dijkstra’s algorithm example 2

7
9

14

10

15

11

2

6

9
A

B

C

G

D

E

dist prev path
A 0 — A
B 7 A A→B
C 9 A A→C
D 20 C A→C→D
E 20 G A→C→G→E
G 11 C A→C→G

81

consistency

A B C

if A sends packet for C to B, how does A know B won’t send it
back?

hope: if A thought shortest path to C was through B, then B
should agree
problem: not always true

82

inconsistency

A B C
X

B thinks best route to C: through A
A thinks best route to C: through B

83

inconsistency

A B C
X

B thinks best route to C: through A
A thinks best route to C: through B

83

temporary bad routes
while waiting for link state updates to propogate

can have too-slow routes

can have routing loops

hope: this is only a few seconds at most
and routing loop doesn’t cause huge explosion of traffic

84

convergence time
A B C

DEF

exercise: how many steps to fix A’s next hop for B, C, D, etc.…
with distance vector?
with link state?

85

convergence time
A B C

DEF

exercise: how many steps to fix A’s next hop for B, C, D, etc.…
with distance vector?
with link state?

85

networks v routers (LS)

R1

R2

R3 R4

N1 N2

N3 N4

R1

N1

R2

N2

R3

N3 N4

R4

graph has nodes for routers+networkscan have direct router-router link

86

networks v routers (LS)

R1

R2

R3 R4

N1 N2

N3 N4

R1

N1

R2

N2

R3

N3 N4

R4

graph has nodes for routers+networkscan have direct router-router link

86

networks v routers (LS)

R1

R2

R3 R4

N1 N2

N3 N4

R1

N1

R2

N2

R3

N3 N4

R4

graph has nodes for routers+networks

can have direct router-router link

86

networks v routers (LS)

R1

R2

R3 R4

N1 N2

N3 N4

R1

N1

R2

N2

R3

N3 N4

R4

graph has nodes for routers+networks

can have direct router-router link
86

two good choices?

A

B D F

C E G

H

87

splitting packets
naïve idea: send every other packet on bottom link

problem: bottom and top link will have different latencies
(even if only temporarily from queuing)

=⇒ packets will be reordered a lot
this is pretty bad for TCP
(and many other things)

88

equal cost multipath (ECMP)
split packets by flow

goal:
each TCP connection chooses one of the N links
…but don’t want to track list of TCP connections

solution:
take a hash of the connection info in header
use link index

⌊
hash value×N

max hash value

⌋

89

a big network

… …

this router
only cares about
small part of network

divide network into “areas”“border” routers
only send summaries
about other areas

router sees simpler
summary of network
→ hopefully
faster routing

90

a big network

… …

this router
only cares about
small part of network

divide network into “areas”“border” routers
only send summaries
about other areas

router sees simpler
summary of network
→ hopefully
faster routing

90

a big network

… …

this router
only cares about
small part of network

divide network into “areas”

“border” routers
only send summaries
about other areas

router sees simpler
summary of network
→ hopefully
faster routing

90

a big network

… …

this router
only cares about
small part of network

divide network into “areas”

“border” routers
only send summaries
about other areas

router sees simpler
summary of network
→ hopefully
faster routing

90

a big network

… …

this router
only cares about
small part of network

divide network into “areas”“border” routers
only send summaries
about other areas

router sees simpler
summary of network
→ hopefully
faster routing

90

distance vector in link state?
summaries are distance vectors!

area border routers just saying which networks + metric

idea: mix simpler distance vectors with more flexible link-state

91

but distance vector problems?
recall: count-to-infinity

let’s say areas A, B, C, D all connected to each other…

…and area D goes offline:

could packet for D loop area A to B to C to A to B to C to …

OSPF solution: disallow this network configuration

92

but distance vector problems?
recall: count-to-infinity

let’s say areas A, B, C, D all connected to each other…

…and area D goes offline:

could packet for D loop area A to B to C to A to B to C to …

OSPF solution: disallow this network configuration

92

backbone
OSPF area 0 is called “backbone”

border routers only summarize routes sent to backbone or not
obtained from other area border routers

means routing between areas must either:
go through the backbone, or
only go through one border router

makes loops not possible

93

backbone limits

backbone

site A site B

X

org with two sites —
can configure as areas
three border routers

if B’s link to
backbone fails,
B should
use building A’s

but disallowed by
anti-loop rule

could fix this
by connecting A/B
border router
to backbone…
solution:
“virtual links”

94

backbone limits

backbone

site A site B

X
org with two sites —
can configure as areas
three border routers

if B’s link to
backbone fails,
B should
use building A’s

but disallowed by
anti-loop rule

could fix this
by connecting A/B
border router
to backbone…
solution:
“virtual links”

94

backbone limits

backbone

site A site B

X

org with two sites —
can configure as areas
three border routers

if B’s link to
backbone fails,
B should
use building A’s

but disallowed by
anti-loop rule

could fix this
by connecting A/B
border router
to backbone…
solution:
“virtual links”

94

backbone limits

backbone

site A site B

X

org with two sites —
can configure as areas
three border routers

if B’s link to
backbone fails,
B should
use building A’s

but disallowed by
anti-loop rule

could fix this
by connecting A/B
border router
to backbone…
solution:
“virtual links”

94

OSPF virtual links
“tunnel” backbone through another area

route as if ‘direct’ connection between two border routers
but connection implemented by going through area
both ends considered part of backbone

metric for virtaul link = metric of route through area

configured explicitly by administrator

95

interdomain routing
so far: routing within one organization

lots of trust/sharing:

okay to send packets through (essentially) every router

okay for any router to ‘announce’ any address

okay to share (almost) full map of network

not what we want for interdomain routing

96

some business considerations

ISP A ISP B ISP C ISP D

webhost office school

$ $ $ $

$

exercise: does this route make sense?exercise: does this route make sense?exercise: does this route make sense?exercise: does this route make sense?exercise: does this route make sense?exercise: does this route make sense?

97

some business considerations

ISP A ISP B ISP C ISP D

webhost office school

$ $ $ $

$

exercise: does this route make sense?

exercise: does this route make sense?exercise: does this route make sense?exercise: does this route make sense?exercise: does this route make sense?exercise: does this route make sense?

97

some business considerations

ISP A ISP B ISP C ISP D

webhost office school

$ $ $ $

$

exercise: does this route make sense?

exercise: does this route make sense?

exercise: does this route make sense?exercise: does this route make sense?exercise: does this route make sense?exercise: does this route make sense?

97

some business considerations

ISP A ISP B ISP C ISP D

webhost office school

$ $ $ $

$

exercise: does this route make sense?exercise: does this route make sense?

exercise: does this route make sense?

exercise: does this route make sense?exercise: does this route make sense?exercise: does this route make sense?

97

some business considerations

ISP A ISP B ISP C ISP D

webhost office school

$ $ $ $

$

exercise: does this route make sense?exercise: does this route make sense?exercise: does this route make sense?

exercise: does this route make sense?

exercise: does this route make sense?exercise: does this route make sense?

97

some business considerations

ISP A ISP B ISP C ISP D

webhost office school

$ $ $ $

$

exercise: does this route make sense?exercise: does this route make sense?exercise: does this route make sense?exercise: does this route make sense?

exercise: does this route make sense?

exercise: does this route make sense?

97

some business considerations

ISP A ISP B ISP C ISP D

webhost office school

$ $ $ $

$

exercise: does this route make sense?exercise: does this route make sense?exercise: does this route make sense?exercise: does this route make sense?exercise: does this route make sense?

exercise: does this route make sense?
97

autonomous system
autonomous system (AS) — one “routing domain”

typically = set of networks administrated by one organization
decides what routing to use internally
should be fully connected internally

scope of OSPF instance = one AS

each AS can connect to other ASes
well-defined protocol for sending routes to other ASes

98

AS numbers
for Internet routing, ASes are assigned numbers

assigned by IANA and RIRs (similar to IP addresses)

originally 16-bit, now extended to 32-bit

some private use / special AS numbers

99

relationship types
provider/customer

typically: customer pays provider
provider connects customers everywhere it can (customer paid for it)
customer does not provide paths through its network

peer/peer
often: no payment (‘settlement-free’)
if A peers with B…
A gets connected to B’s customers (customers paid B for this)
A does not get connected to B’s other peers (no one paid B for this)
A does not get connected to B’s providers (no one paid B for this)

100

connecting big networks?
some options:

(which are basically the same as connecting parts of big network)

run a fiber between two buildings
permitting and construction needed

pay for direct access to fiber someone else ran (“dark fiber”)
burying one fiber costs similar to burying bundle, so spares

pay a telecom for a site-to-site connection
“gaurenteed” bandwidth+latency between two sites
may or may not use series of dedicated fibers

get space in common datacenter, pay datacenter operator for
connection

101

going the distance

ISP A/Tokyo

ISP B/Tokyo

ISP A/Los Angeles

ISP B/Los Anegles

ISP A/NoVA

ISP B/NoVA

does ISP A or ISP B help packets cross the Pacific?

102

going the distance

ISP A/Tokyo

ISP B/Tokyo

ISP A/Los Angeles

ISP B/Los Anegles

ISP A/NoVA

ISP B/NoVA

does ISP A or ISP B help packets cross the Pacific?

102

distance preferences
ISP B→ISP A across the Pacific:

for ISP B:
cheaper to hand-off packet to ISP A as soon as possible
more control over performance if handing off as late as possible

for ISP A:
cheaper to require ISP B to hand-off packet as late as possible
more control over performance if B sends as soon as possible

maybe part of ISP A and ISP B peering agreement

103

Border Gateway Protocol
protocol for sending routes between networks

used whereever routers from different ASes connect
“EBGP”

used within AS to share routes out of AS internally
“IBGP”

each router constructs list of routes to offer

each router receives list of routes, exports to OSPF/etc.

104

BGP connections
BGP (TCP) connections made between routers

each router keeps track of set routes advertised by other

command sent to add or withdraw specific routes

not like distance vector where we kept resending everything

105

BGP prefixes
routes sent via BGP called ‘prefixes’

said to be “announced” from one router to another

because the network (e.g. 10.0.1.0/24) is the important part

(and the next hop is implied by where prefix comes from)

106

BGP route
adjacent routers share list of routes with:

IP prefix (CIDR-style, basically)

AS path — list of autonomous system the route goes through

next hop router (IP address)

multi-exit discriminator
low value = this entrance to AS is better than others for these IPs

local preference (internal-only)

107

AS path
used to detect routing loops

append your AS when sending route externally

always ignore external routes with your AS in their AS path already

108

external BGP
ISP A

…
AS64901

ISP B
…

AS64895

ISP C
…

AS64755

ISP D
…

AS64600

webhost
3fff:1::/32
AS64501

office
3fff:2::/32
AS64502

school
3ff:7:ab::/40

webhost→A:
3fff:1::/32 ()

A→webhost:
… …

webhost→B:
3fff:1::/32 ()

B→webhost:
3fff::2::/32 (AS64502)
…

webhost→C:
3fff:1::/32 ()

C→webhost:
3fff::2::/32 (AS64502 AS64000)
3fff::7:ab::/40 (AS64000)
…
C→D:

3fff:1::/32 (AS64501)
…

D→C:
3fff:2::/32 (AS64501)
3fff:7:ab::/32 ()
…

109

external BGP
ISP A

…
AS64901

ISP B
…

AS64895

ISP C
…

AS64755

ISP D
…

AS64600

webhost
3fff:1::/32
AS64501

office
3fff:2::/32
AS64502

school
3ff:7:ab::/40

webhost→A:
3fff:1::/32 ()

A→webhost:
… …

webhost→B:
3fff:1::/32 ()

B→webhost:
3fff::2::/32 (AS64502)
…

webhost→C:
3fff:1::/32 ()

C→webhost:
3fff::2::/32 (AS64502 AS64000)
3fff::7:ab::/40 (AS64000)
…
C→D:

3fff:1::/32 (AS64501)
…

D→C:
3fff:2::/32 (AS64501)
3fff:7:ab::/32 ()
…

109

external BGP
ISP A

…
AS64901

ISP B
…

AS64895

ISP C
…

AS64755

ISP D
…

AS64600

webhost
3fff:1::/32
AS64501

office
3fff:2::/32
AS64502

school
3ff:7:ab::/40

webhost→A:
3fff:1::/32 ()

A→webhost:
… …

webhost→B:
3fff:1::/32 ()

B→webhost:
3fff::2::/32 (AS64502)
…

webhost→C:
3fff:1::/32 ()

C→webhost:
3fff::2::/32 (AS64502 AS64000)
3fff::7:ab::/40 (AS64000)
…
C→D:

3fff:1::/32 (AS64501)
…

D→C:
3fff:2::/32 (AS64501)
3fff:7:ab::/32 ()
…

109

external BGP
ISP A

…
AS64901

ISP B
…

AS64895

ISP C
…

AS64755

ISP D
…

AS64600

webhost
3fff:1::/32
AS64501

office
3fff:2::/32
AS64502

school
3ff:7:ab::/40

webhost→A:
3fff:1::/32 ()

A→webhost:
… …

webhost→B:
3fff:1::/32 ()

B→webhost:
3fff::2::/32 (AS64502)
…

webhost→C:
3fff:1::/32 ()

C→webhost:
3fff::2::/32 (AS64502 AS64000)
3fff::7:ab::/40 (AS64000)
…

C→D:
3fff:1::/32 (AS64501)
…

D→C:
3fff:2::/32 (AS64501)
3fff:7:ab::/32 ()
…

109

external BGP
ISP A

…
AS64901

ISP B
…

AS64895

ISP C
…

AS64755

ISP D
…

AS64600

webhost
3fff:1::/32
AS64501

office
3fff:2::/32
AS64502

school
3ff:7:ab::/40

webhost→A:
3fff:1::/32 ()

A→webhost:
… …

webhost→B:
3fff:1::/32 ()

B→webhost:
3fff::2::/32 (AS64502)
…

webhost→C:
3fff:1::/32 ()

C→webhost:
3fff::2::/32 (AS64502 AS64000)
3fff::7:ab::/40 (AS64000)
…

C→D:
3fff:1::/32 (AS64501)
…

D→C:
3fff:2::/32 (AS64501)
3fff:7:ab::/32 ()
…

109

external BGP
ISP A

…
AS64901

ISP B
…

AS64895

ISP C
…

AS64755

ISP D
…

AS64600

webhost
3fff:1::/32
AS64501

office
3fff:2::/32
AS64502

school
3ff:7:ab::/40

webhost→A:
3fff:1::/32 ()

A→webhost:
… …

webhost→B:
3fff:1::/32 ()

B→webhost:
3fff::2::/32 (AS64502)
…

webhost→C:
3fff:1::/32 ()

C→webhost:
3fff::2::/32 (AS64502 AS64000)
3fff::7:ab::/40 (AS64000)
…
C→D:

3fff:1::/32 (AS64501)
…

D→C:
3fff:2::/32 (AS64501)
3fff:7:ab::/32 ()
…

109

multiple BGP sessions

ISP A

company B

…
… …

…

…

…

…

…
…

A→B:
2601:db8:33::/40, MED=10 ()
3fff:1234:99::/40, MED=10 (AS65432)
3fff:1234:abc::/40, MED=20 (AS65323)
…

B→A:
3fff:3230:10::/40, MED=20 ()
3fff:3230:20::/40, MED=10 ()
…

A→B:
2601:db8:33::/40, MED=30 ()
3fff:1234:99::/40, MED=20 (AS65432)
3fff:1234:abc::/40, MED=10 (AS65823)
…

B→A:
3fff:3230:10::/40, MED=10 ()
3fff:3230:20::/40, MED=20 ()
…

exchange possible routes
over each pair of routers

typically same routes for
each connection to AS
but maybe different attributes

left router→all:
via 3ff:3230:10::3, 3fff:3230:10::/40, MED=10 (AS64992)
via 3ff:3230:10::3, 3fff:3230:20::/40, MED=20 (AS64992)
…

right router→all:
via 3ff:3230:20::5, 3fff:3230:10::/40, MED=10 (AS64992)
via 3ff:3230:20::5, 3fff:3230:20::/40, MED=20 (AS64992)
…

…… …
…

within ISP, use internal BGP (IBGP)
share everything learned via BGP
with all BGP routers

110

multiple BGP sessions

ISP A

company B

…
… …

…

…

…

…

…
…

A→B:
2601:db8:33::/40, MED=10 ()
3fff:1234:99::/40, MED=10 (AS65432)
3fff:1234:abc::/40, MED=20 (AS65323)
…

B→A:
3fff:3230:10::/40, MED=20 ()
3fff:3230:20::/40, MED=10 ()
…

A→B:
2601:db8:33::/40, MED=30 ()
3fff:1234:99::/40, MED=20 (AS65432)
3fff:1234:abc::/40, MED=10 (AS65823)
…

B→A:
3fff:3230:10::/40, MED=10 ()
3fff:3230:20::/40, MED=20 ()
…

exchange possible routes
over each pair of routers

typically same routes for
each connection to AS
but maybe different attributes

left router→all:
via 3ff:3230:10::3, 3fff:3230:10::/40, MED=10 (AS64992)
via 3ff:3230:10::3, 3fff:3230:20::/40, MED=20 (AS64992)
…

right router→all:
via 3ff:3230:20::5, 3fff:3230:10::/40, MED=10 (AS64992)
via 3ff:3230:20::5, 3fff:3230:20::/40, MED=20 (AS64992)
…

…… …
…

within ISP, use internal BGP (IBGP)
share everything learned via BGP
with all BGP routers

110

multiple BGP sessions

ISP A

company B

…
… …

…

…

…

…

…
…

A→B:
2601:db8:33::/40, MED=10 ()
3fff:1234:99::/40, MED=10 (AS65432)
3fff:1234:abc::/40, MED=20 (AS65323)
…

B→A:
3fff:3230:10::/40, MED=20 ()
3fff:3230:20::/40, MED=10 ()
…

A→B:
2601:db8:33::/40, MED=30 ()
3fff:1234:99::/40, MED=20 (AS65432)
3fff:1234:abc::/40, MED=10 (AS65823)
…

B→A:
3fff:3230:10::/40, MED=10 ()
3fff:3230:20::/40, MED=20 ()
…

exchange possible routes
over each pair of routers

typically same routes for
each connection to AS
but maybe different attributes

left router→all:
via 3ff:3230:10::3, 3fff:3230:10::/40, MED=10 (AS64992)
via 3ff:3230:10::3, 3fff:3230:20::/40, MED=20 (AS64992)
…

right router→all:
via 3ff:3230:20::5, 3fff:3230:10::/40, MED=10 (AS64992)
via 3ff:3230:20::5, 3fff:3230:20::/40, MED=20 (AS64992)
…

…… …
…

within ISP, use internal BGP (IBGP)
share everything learned via BGP
with all BGP routers

110

multiple BGP sessions

ISP A

company B

…
… …

…

…

…

…

…
…

A→B:
2601:db8:33::/40, MED=10 ()
3fff:1234:99::/40, MED=10 (AS65432)
3fff:1234:abc::/40, MED=20 (AS65323)
…

B→A:
3fff:3230:10::/40, MED=20 ()
3fff:3230:20::/40, MED=10 ()
…

A→B:
2601:db8:33::/40, MED=30 ()
3fff:1234:99::/40, MED=20 (AS65432)
3fff:1234:abc::/40, MED=10 (AS65823)
…

B→A:
3fff:3230:10::/40, MED=10 ()
3fff:3230:20::/40, MED=20 ()
…

exchange possible routes
over each pair of routers

typically same routes for
each connection to AS
but maybe different attributes

left router→all:
via 3ff:3230:10::3, 3fff:3230:10::/40, MED=10 (AS64992)
via 3ff:3230:10::3, 3fff:3230:20::/40, MED=20 (AS64992)
…

right router→all:
via 3ff:3230:20::5, 3fff:3230:10::/40, MED=10 (AS64992)
via 3ff:3230:20::5, 3fff:3230:20::/40, MED=20 (AS64992)
…

…… …
…

within ISP, use internal BGP (IBGP)
share everything learned via BGP
with all BGP routers

110

preference between routes
if multiple choices, most common strategy:…
should use most specific route

use 2001:db8:1234::/40 over 2001:db8:1234::/39 if both apply
(but usually reject very small address ranges (e.g. /31 for IPv4, /60 for
IPv6))

then (if tie) local policy applies
then shortest AS path
then lower AS number
then (sometimes) lower MED (multiple exit discriminator)
then best route within current AS 111

multi-exit discriminator

2001:db8:1::/40

3fff:3:4::/40

ISP A/Tokyo

ISP B/Tokyo

ISP A/Los Angeles

ISP B/Los Anegles

ISP A/NoVA

ISP B/NoVA

to 2001:db8:1::/40, MED=1
to 2001:db8:1::/40, MED=2

to 2001:db8:1::/40, MED=3

112

getting your preference
to affect how people route you, can…

prepend to AS path sent to make it longer
typically add serveral copies of your AS number

only announce network from certain of your routers
problem: won’t have all ‘backup’ paths available

announce a large network in more specific pieces
3fff:1234::/32 as 3fff:1234::/33 and 3fff:1234:8000::/33

get other networks to change how they forward your routes
often enabled through ‘BGP communities’

113

https://bgp.he.net/super-lg/

https://bgp.he.net/super-lg/#128.143.0.0/16?
tob=none&mt=include&ma=6939&els=exact

https://lg.ring.nlnog.net/prefix?q=128.143.0.
0/16&match=exact&peer=all

114

https://bgp.he.net/super-lg/
https://bgp.he.net/super-lg/#128.143.0.0/16?tob=none&mt=include&ma=6939&els=exact
https://bgp.he.net/super-lg/#128.143.0.0/16?tob=none&mt=include&ma=6939&els=exact
https://lg.ring.nlnog.net/prefix?q=128.143.0.0/16&match=exact&peer=all
https://lg.ring.nlnog.net/prefix?q=128.143.0.0/16&match=exact&peer=all

https://bgp.he.net/AS225 (University of Virginia)

115

https://bgp.he.net/AS225

AS40220

116

117

AS3356

118

AS3356 is a backup (8x AS prepending)

119

peeringdb
https://peeringdb.com — commonly used database of
ASes and how to peer with them

there is also – “whois” records (from RIRs) for ASes, IP blocks
with contact info

120

https://peeringdb.com

internet exchanges and route servers
internet exchange

local network (typically within metro area) for connecting networks
often run at and/or by ‘carrier-neutral’ datacenter
typically high bandwidth (10-100Gbps ports to network)
provides connections when

route servers
BGP servers run by internet exchange
consolidates routes from participants
goal: only need O(n) BGP connections, not O(n2)

121

BGP communities
routes sent via BGP can have ‘communities’

extra information tagged on routes sent via BGP

large ISPs have lists of communities their customers/peers can use

…and these affect how those routes are used

122

aside: Internet2
non-profit networking consortium

operations major US University-focused network

also makes eduroam work across different Universities

one of MARIA’s major sources of connectivity (and indirectly one
of UVA’s major sources of connectivity)

has lots of peering relationships (incl. with big Internet companies)
(but not general Internet provider)

123

selected Internet2 BGP communities

https://noc.net.internet2.edu/knowledge/policy-statements/

internet2-bgp-communities.html

124

https://noc.net.internet2.edu/knowledge/policy-statements/internet2-bgp-communities.html
https://noc.net.internet2.edu/knowledge/policy-statements/internet2-bgp-communities.html

community options from prev slide
setting local-pref:

you can decide how preferred your route is by Internet2
maybe to make one primary, another secondary?

blocking route from being sent to specific place

prepending Internet2’s AS before forwarding prefix
hopefully make that route less preferred by others

prepending Internet2’s AS before forwarding prefix to specific place
hopefully make that route less preferred by that place

125

other things with communities
Internet2 also uses communities to mark…

what location routes were learned from

what type of organization routes were learned from

whether Internet2 is only allowed to use the route
non-commerically or not

…

126

AS7007
https://seclists.org/nanog/1997/Apr/444

127

https://seclists.org/nanog/1997/Apr/444

2008 Pakistan Youtube
Pakistan Telecom recieved gov’t order to block youtube

implemented by inserting route for YouTube’s IP in internal
network

misconfiguration meant route was advertised on BGP

was more specific than YouTube’s route, so made YouTube
unreachablej

128

timeline from RIPE NCC
https://www.ripe.net/about-us/news/youtube-hijacking-a-ripe-ncc-ris-case-study/

Youtube is announcing 208.65.152.0/22
18:47Z: Pakistan Telecom starts announcing 208.65.153.0/24
20:07Z: Youtube starts announcing 208.65.153.0/24
20:18Z: Youtube starts announcing 208.65.153.0/25 and
208.65.153.128/25
20:51Z: Pakistan Telecom’s ISP forwards their announcements with
additional copy of Pakistan Telecom’s AS number
21:01Z: Pakistan Telecom’s ISP withdraws routes initiated by
Pakistan Telecom (but not Pakistan Telecom’s customers) 129

https://www.ripe.net/about-us/news/youtube-hijacking-a-ripe-ncc-ris-case-study/

BGP Hijacking targeted cryptocurrency stuff
KLAYswap (Feb 2022), Celer Bridge (Sep 2022)

attackers intentionally redirected traffic to malicious version of
services

…and stole money

both probably spoofed the final AS number in AS path

sometimes involved adding attacked IP range to routing registry

130

nation-states?

131

route security
historically, no verification routes announced by “owner” of IP
addresses

Internet Routing Registries — database of AS to IP address
used automatically to filter out mistakes
(not really designed to resist malicious attacks)

some verify which IPs they should have with RIRs
“letter of agency/authority” to delegate

effort to deploy RPKI — public-key based scheme to verify routes
checks that routes originated at correct AS
doesn’t verify intermediate ASes will forward correctly

132

133

partial tables
dealing with full Internet routing table is expensive

common shortcut if you have a couple ISPs:
keep ‘short’ routes (example: short AS path)

to one of your “primary” ISPs
maybe using ECMP

have default route for other cases
special route for 0.0.0.0/0, ::/0
to one of your ISPs

take advantage of more specific routes beating less specific
typically also true in OSPF, RIP, etc.

134

backup slides

135

	routing problem
	actions on forwarding
	unreachable
	fragmentation, MTUs
	exercise

	time-to-live

	traceroute
	centralized versus distributed
	basic flooding / MAC learning
	spanning trees
	preview: better routing
	aside: metrics
	Bellman-Ford
	distance vector routing
	distributing Bellman-Ford
	aside: networks and routers
	algorithm
	RIP
	handling removal
	count-to-infinity

	link state
	idea
	link state advertisements
	link state database
	reliable flooding
	shortest path first
	shortest path algorithm
	shortest path consistency
	convergence
	networks versus routers

	multipath/load balancing
	scalability: OSPF areas
	motivation / basic idea
	areas are DV
	always route through backbone

	interdomain routing
	terminology: autonomous system
	relationship types
	aside: connecting big networks
	local/remote preferences
	sharing routes: BGP
	BGP route format
	sharing routes: picture
	sharing routes: multiple connections
	BGP route preference order

	UVa, in practice
	in practice?
	internet exchanges, peeringdb
	BGP communities
	BGP hijacking/fat fingers
	validating routes / sBGP
	aside: partial tables

	backup slides

