
1

recall: multi-access media

Ali at gwc.org.uk / Alistair1978 via Wikimedia commons / CC-BY-SA 2.5

2

recall: multi-access media

Ali at gwc.org.uk / Alistair1978 via Wikimedia commons / CC-BY-SA 2.5

2

recall: multi-access media

Ali at gwc.org.uk / Alistair1978 via Wikimedia commons / CC-BY-SA 2.5

2

recall: switched network

‘switch’

‘switch’

‘switch’

3

recall: switched network

3

recall: switched network

3

recall: switched network

3

hubs and switches
HubSwitch

difference is hidden inside
hub: electrically connects hosts — as if shared wires
switch: decides what to send on each output 4

history: multi-access to switched
a lot of early networking technology was multi-access

wireless (wifi, cellular) and most home broadband still is

most wired networks are switched
frames mostly directed to correct machine

5

switching versus routing
switches — forward frames for common network

routers — forward packets between networks

basically same functionality

differences:
extra layer for internetwork packets
different mechanism to decide where to forward
switch forwarding typically simpler

will start with simpler switching

6

typically sent on Ethernet
preamble + start marker

source MAC address destination MAC address

type
data (for next layer)

sometimes extra stuff (“tags”)

checksum ‘interpacket gap’

explicit start marker
end indicated by ‘gap’ between signals

type field indicates which next layer in use
often varies on frame-by-frame basisactually type/length for historical reasons

but most commonly used for type these daysdestination address indicates who frame is for
present regardless of whether switching is in use

each host filters out frames for ‘wrong’ destination address

since destination address always present
as last resort, switches can send every frame to everyone

will still work, just much less efficient

who the frame came from
gives ‘return address’ for sending replies

will also be used by switches

7

typically sent on Ethernet
preamble + start marker

source MAC address destination MAC address

type
data (for next layer)

sometimes extra stuff (“tags”)

checksum ‘interpacket gap’

explicit start marker
end indicated by ‘gap’ between signals

type field indicates which next layer in use
often varies on frame-by-frame basisactually type/length for historical reasons

but most commonly used for type these daysdestination address indicates who frame is for
present regardless of whether switching is in use

each host filters out frames for ‘wrong’ destination address

since destination address always present
as last resort, switches can send every frame to everyone

will still work, just much less efficient

who the frame came from
gives ‘return address’ for sending replies

will also be used by switches

7

typically sent on Ethernet
preamble + start marker

source MAC address destination MAC address

type
data (for next layer)

sometimes extra stuff (“tags”)

checksum ‘interpacket gap’

explicit start marker
end indicated by ‘gap’ between signals

type field indicates which next layer in use
often varies on frame-by-frame basis

actually type/length for historical reasons
but most commonly used for type these daysdestination address indicates who frame is for

present regardless of whether switching is in use

each host filters out frames for ‘wrong’ destination address

since destination address always present
as last resort, switches can send every frame to everyone

will still work, just much less efficient

who the frame came from
gives ‘return address’ for sending replies

will also be used by switches

7

typically sent on Ethernet
preamble + start marker

source MAC address destination MAC address

type
data (for next layer)

sometimes extra stuff (“tags”)

checksum ‘interpacket gap’

explicit start marker
end indicated by ‘gap’ between signals

type field indicates which next layer in use
often varies on frame-by-frame basis

actually type/length for historical reasons
but most commonly used for type these days

destination address indicates who frame is for
present regardless of whether switching is in use

each host filters out frames for ‘wrong’ destination address

since destination address always present
as last resort, switches can send every frame to everyone

will still work, just much less efficient

who the frame came from
gives ‘return address’ for sending replies

will also be used by switches

7

typically sent on Ethernet
preamble + start marker

source MAC address destination MAC address

type
data (for next layer)

sometimes extra stuff (“tags”)

checksum ‘interpacket gap’

explicit start marker
end indicated by ‘gap’ between signals

type field indicates which next layer in use
often varies on frame-by-frame basisactually type/length for historical reasons

but most commonly used for type these days

destination address indicates who frame is for
present regardless of whether switching is in use

each host filters out frames for ‘wrong’ destination address

since destination address always present
as last resort, switches can send every frame to everyone

will still work, just much less efficient

who the frame came from
gives ‘return address’ for sending replies

will also be used by switches

7

typically sent on Ethernet
preamble + start marker

source MAC address destination MAC address

type
data (for next layer)

sometimes extra stuff (“tags”)

checksum ‘interpacket gap’

explicit start marker
end indicated by ‘gap’ between signals

type field indicates which next layer in use
often varies on frame-by-frame basisactually type/length for historical reasons

but most commonly used for type these daysdestination address indicates who frame is for
present regardless of whether switching is in use

each host filters out frames for ‘wrong’ destination address

since destination address always present
as last resort, switches can send every frame to everyone

will still work, just much less efficient

who the frame came from
gives ‘return address’ for sending replies

will also be used by switches

7

typically sent on Ethernet
preamble + start marker

source MAC address destination MAC address

type
data (for next layer)

sometimes extra stuff (“tags”)

checksum ‘interpacket gap’

explicit start marker
end indicated by ‘gap’ between signals

type field indicates which next layer in use
often varies on frame-by-frame basisactually type/length for historical reasons

but most commonly used for type these daysdestination address indicates who frame is for
present regardless of whether switching is in use

each host filters out frames for ‘wrong’ destination address

since destination address always present
as last resort, switches can send every frame to everyone

will still work, just much less efficient

who the frame came from
gives ‘return address’ for sending replies

will also be used by switches

7

typically sent on Ethernet
preamble + start marker

source MAC address destination MAC address

type
data (for next layer)

sometimes extra stuff (“tags”)

checksum ‘interpacket gap’

explicit start marker
end indicated by ‘gap’ between signals

type field indicates which next layer in use
often varies on frame-by-frame basisactually type/length for historical reasons

but most commonly used for type these daysdestination address indicates who frame is for
present regardless of whether switching is in use

each host filters out frames for ‘wrong’ destination address

since destination address always present
as last resort, switches can send every frame to everyone

will still work, just much less efficient

who the frame came from
gives ‘return address’ for sending replies

will also be used by switches

7

MAC addresses
MAC [media access control] addresses

used by Ethernet, Wifi, and lots of other protocols
48-bit number written in hex: 01:23:45:67:89:AB

(sometimes seperated with - instead of :)

assigned by IEEE to networking manufacturers in blocks
Institution of Electrical and Electronics Engineers
example: 00:02:B3:…, 00:03:47:…, (and many more) for Intel

individual addresses hard-coded in networking hardware
uniquely identify port/device

8

special MAC addresses
00:00:00:00:00:00 (all zeroes)

FF:FF:FF:FF:FF:FF (all ones), FF:…
special destination meaning “send to everyone” (on this network)
called broadcast

01:80:C2:…, 33:33:…, (and some more)
special destinations representing multiple receivers
example: ‘all IPv6 routers on this network’ (33:33:00:00:00:02)
called multicast

9

larger MAC addresses
IEEE now calls MAC address EUI-48 (48-bit Extended Unique
Identifier)

also created EUI-64, with 64-bit addresses
way of mapping EUI-48s to EUI-64s
turns out 48 bits might have been low

I’m not sure what status is on switching to 64-bit addresses
IEEE 802.15.4 (used in ZigBee, 6LoWPAN, some others) uses EUI-64
I don’t know other local network protocols that do

10

datagram idea
can always send something to anyone on network

just put destination MAC in frame

no need for reservations/‘connections’/etc.
not like the interface you’ve seen with [TCP] sockets

not the only model for networks (and internetworks)

11

virtual circuit
other model: virtual circuit

two machines setup a ‘circuit’
some sort of ‘special’ messages to do this

switches/routers reserve resources for circuit
“gaurenteed” bandwidth

transmitted data must be part of estabished circuit

example: ATM (Asynchronous Transfer Mode)
used (?historically?) by some telephone networks

12

an annoyance
traditionally, switches/routers have been ‘fixed function’ specialized
hardware

special hardware needed for multigigabit performance

limited configuration options
usually non-automated configuration

login to each managed switch/router to change settings
no standardization for configuration across vendors

little visibility into internal design
even though switches/routers often running complicated programs

13

the historical situation
let’s say I want to design a new extension to Ethernet

historical options if want to test/deploy it…
implement it in slow/low-capacity software/FPGA switch

convince switch HW company to implement it

contort extension to fit with features not intended for use case
example: using VPN support to change path of frames on network

14

software defined networking (SDN)
movement toward programmable networks

“software-defined”
rules about how network works defined in “normal” software

15

control plane and data plane
control plane

decides how to handle traffic
“slow path”, where complicated decisions are

data plane
actually implements the decisions made by the control plane
“fast path”, implementing simple rules

probably what switches did internally before SDN was a thing

16

separate control/data plane
one SDN key idea: separate control and data plane

allow new vendor-neutral implementations of control plane
requires standard interface for programming data plane
most prominent example: OpenFlow

easily allows for central ‘control plane’ server
instead of separate control plane running on each switch/router

17

separate control/data plane
one SDN key idea: separate control and data plane

allow new vendor-neutral implementations of control plane
requires standard interface for programming data plane
most prominent example: OpenFlow

easily allows for central ‘control plane’ server
instead of separate control plane running on each switch/router

17

P4
P4 — programming langauge for data planes

intended to be compiled to run on fast switches

includes ‘runtime’ defining how control plane configures data plane

18

future P4 assignment
given:

simple P4 switch that doesn’t know where to direct frames
simpler controller (in Python) that configures switch
simulated 4-machine network in VM

your task will be:
have controller write static configuration to direct to right place
modify data plane to send information to control plane
have controller change configuration based on info from data plane

(we’ll discuss more details later)

19

P4 switch architecture

IN→ →OUT

IN→ →OUT

IN→ →OUT

IN→ →OUT

parser ingress deparser parser egress deparser

queues of frames to be processed
if needed, hold packets in between processing steps

ingress and egress pipelinesingress pipeline: processes every input frame
primary job: decide where to forward frame (if anywhere)

egress pipeline: process every output frame
run one time for each copy output

parser: decode frame fields into temporary storagedeparser: converted decoded fields back into bytes for network“match/action pipelines”
do series of table lookups based on parsed fields
each table lookup specifies next action

20

P4 switch architecture

IN→ →OUT

IN→ →OUT

IN→ →OUT

IN→ →OUT

parser ingress deparser parser egress deparser

queues of frames to be processed
if needed, hold packets in between processing steps

ingress and egress pipelinesingress pipeline: processes every input frame
primary job: decide where to forward frame (if anywhere)

egress pipeline: process every output frame
run one time for each copy output

parser: decode frame fields into temporary storagedeparser: converted decoded fields back into bytes for network“match/action pipelines”
do series of table lookups based on parsed fields
each table lookup specifies next action

20

P4 switch architecture

IN→ →OUT

IN→ →OUT

IN→ →OUT

IN→ →OUT

parser ingress deparser parser egress deparser

queues of frames to be processed
if needed, hold packets in between processing steps

ingress and egress pipelines

ingress pipeline: processes every input frame
primary job: decide where to forward frame (if anywhere)

egress pipeline: process every output frame
run one time for each copy output

parser: decode frame fields into temporary storagedeparser: converted decoded fields back into bytes for network“match/action pipelines”
do series of table lookups based on parsed fields
each table lookup specifies next action

20

P4 switch architecture

IN→ →OUT

IN→ →OUT

IN→ →OUT

IN→ →OUT

parser ingress deparser parser egress deparser

queues of frames to be processed
if needed, hold packets in between processing steps

ingress and egress pipelines

ingress pipeline: processes every input frame
primary job: decide where to forward frame (if anywhere)

egress pipeline: process every output frame
run one time for each copy output

parser: decode frame fields into temporary storagedeparser: converted decoded fields back into bytes for network“match/action pipelines”
do series of table lookups based on parsed fields
each table lookup specifies next action

20

P4 switch architecture

IN→ →OUT

IN→ →OUT

IN→ →OUT

IN→ →OUT

parser ingress deparser parser egress deparser

queues of frames to be processed
if needed, hold packets in between processing steps

ingress and egress pipelinesingress pipeline: processes every input frame
primary job: decide where to forward frame (if anywhere)

egress pipeline: process every output frame
run one time for each copy output

parser: decode frame fields into temporary storagedeparser: converted decoded fields back into bytes for network“match/action pipelines”
do series of table lookups based on parsed fields
each table lookup specifies next action

20

P4 switch architecture

IN→ →OUT

IN→ →OUT

IN→ →OUT

IN→ →OUT

parser ingress deparser parser egress deparser

queues of frames to be processed
if needed, hold packets in between processing steps

ingress and egress pipelinesingress pipeline: processes every input frame
primary job: decide where to forward frame (if anywhere)

egress pipeline: process every output frame
run one time for each copy output

parser: decode frame fields into temporary storage

deparser: converted decoded fields back into bytes for network“match/action pipelines”
do series of table lookups based on parsed fields
each table lookup specifies next action

20

P4 switch architecture

IN→ →OUT

IN→ →OUT

IN→ →OUT

IN→ →OUT

parser ingress deparser parser egress deparser

queues of frames to be processed
if needed, hold packets in between processing steps

ingress and egress pipelinesingress pipeline: processes every input frame
primary job: decide where to forward frame (if anywhere)

egress pipeline: process every output frame
run one time for each copy output

parser: decode frame fields into temporary storage

deparser: converted decoded fields back into bytes for network

“match/action pipelines”
do series of table lookups based on parsed fields
each table lookup specifies next action

20

P4 switch architecture

IN→ →OUT

IN→ →OUT

IN→ →OUT

IN→ →OUT

parser ingress deparser parser egress deparser

queues of frames to be processed
if needed, hold packets in between processing steps

ingress and egress pipelinesingress pipeline: processes every input frame
primary job: decide where to forward frame (if anywhere)

egress pipeline: process every output frame
run one time for each copy output

parser: decode frame fields into temporary storagedeparser: converted decoded fields back into bytes for network

“match/action pipelines”
do series of table lookups based on parsed fields
each table lookup specifies next action

20

P4: switch parts
V1Switch(
MyParser(),
MyVerifyChecksum(),
MyIngress(),
MyEgress(),
MyComputeChecksum(),
MyDeparser()
) main;
code to declare instance of dataplane from functions for each part
will look at most of these components

won’t have reason to change verify/compute checksum
21

P4: declaring headers (1)
typedef bit<48> macAddr_t;
header ethernet_t {

macAddr_t srcAddr;
macAddr_T dstAddr;
bit<16> etherType;

}

kinda like typedef struct { ... } ethernet_t;

order needs to exactly match what’s sent on network
switch will do bit-by-bit copy into this struct

22

P4: declaring headers (1)
typedef bit<48> macAddr_t;
header ethernet_t {

macAddr_t srcAddr;
macAddr_T dstAddr;
bit<16> etherType;

}

kinda like typedef struct { ... } ethernet_t;

order needs to exactly match what’s sent on network
switch will do bit-by-bit copy into this struct

22

P4: declaring headers (1)
typedef bit<48> macAddr_t;
header ethernet_t {

macAddr_t srcAddr;
macAddr_T dstAddr;
bit<16> etherType;

}

kinda like typedef struct { ... } ethernet_t;

order needs to exactly match what’s sent on network
switch will do bit-by-bit copy into this struct

22

P4: declaring headers (2)
struct headers {

ethernet_t ethernet;
ipv4_t ipv4;
ipv6_t ipv6;

}

struct of all possible headers
from all layers the switch/router handles
not all frames will use all of them, some may be mutually exclusive
order does not need to match frame storage (will write code to handle
that)

references header types defined previously

23

P4: declaring headers (2)
struct headers {

ethernet_t ethernet;
ipv4_t ipv4;
ipv6_t ipv6;

}

struct of all possible headers
from all layers the switch/router handles
not all frames will use all of them, some may be mutually exclusive
order does not need to match frame storage (will write code to handle
that)

references header types defined previously

23

P4: declaring headers (2)
struct headers {

ethernet_t ethernet;
ipv4_t ipv4;
ipv6_t ipv6;

}

struct of all possible headers
from all layers the switch/router handles
not all frames will use all of them, some may be mutually exclusive
order does not need to match frame storage (will write code to handle
that)

references header types defined previously

23

P4: parsing
parser MyParser(

packet_in packet,
out headers hdr,
inout metadata meta,
inout standard_metadata_t standard_metadata) {

function modifies ‘out’ parameters instead of returning
parser function — takes parameters:

packet — the input frame
headers — extracted headers (struct headers)
meta — program’s local variables about frame (struct metadata)
standard_metadata — info for system about frame

where frame came from, where it should go, etc.
24

P4: parsing
parser MyParser(...) {

state start {
transition parse_ethernet;

}
state parse_ethernet {

packet.extract(hdr.ethernet);
transition select(hdr.ethernet.etherType) {

TYPE_IPV4: parse_ipv4;
TYPE_IPV6: parse_ipv6
default: accept;

}
}
....

}

functions written as state machine
exectuion starts in state start
follows instructions in each statetransition statements say which state to go to next

can be conditional using switch-statement-like syntaxextract operation copies from packet
into specific header object

25

P4: parsing
parser MyParser(...) {

state start {
transition parse_ethernet;

}
state parse_ethernet {

packet.extract(hdr.ethernet);
transition select(hdr.ethernet.etherType) {

TYPE_IPV4: parse_ipv4;
TYPE_IPV6: parse_ipv6
default: accept;

}
}
....

}

functions written as state machine
exectuion starts in state start
follows instructions in each state

transition statements say which state to go to next
can be conditional using switch-statement-like syntaxextract operation copies from packet

into specific header object

25

P4: parsing
parser MyParser(...) {

state start {
transition parse_ethernet;

}
state parse_ethernet {

packet.extract(hdr.ethernet);
transition select(hdr.ethernet.etherType) {

TYPE_IPV4: parse_ipv4;
TYPE_IPV6: parse_ipv6
default: accept;

}
}
....

}

functions written as state machine
exectuion starts in state start
follows instructions in each state

transition statements say which state to go to next
can be conditional using switch-statement-like syntax

extract operation copies from packet
into specific header object

25

P4: parsing
parser MyParser(...) {

state start {
transition parse_ethernet;

}
state parse_ethernet {

packet.extract(hdr.ethernet);
transition select(hdr.ethernet.etherType) {

TYPE_IPV4: parse_ipv4;
TYPE_IPV6: parse_ipv6
default: accept;

}
}
....

}

functions written as state machine
exectuion starts in state start
follows instructions in each state

transition statements say which state to go to next
can be conditional using switch-statement-like syntax

extract operation copies from packet
into specific header object

25

P4: parsing
parser MyParser(...) {

state start {
transition parse_ethernet;

}
state parse_ethernet {

packet.extract(hdr.ethernet);
transition select(hdr.ethernet.etherType) {

TYPE_IPV4: parse_ipv4;
TYPE_IPV6: parse_ipv6
default: accept;

}
}
....

}

functions written as state machine
exectuion starts in state start
follows instructions in each statetransition statements say which state to go to next

can be conditional using switch-statement-like syntax

extract operation copies from packet
into specific header object

25

exercise: header representation (1)
let’s say packet format is:

16 bit source address
16 bit destination address
1 bit flag “is timestamp present”
1 bit flag “is data present’
6 bits unused
(optional) 32-bit timestamp
(optional) 16-bit data size
(optional) data

how to represent this?
how many structs?
what’s in the header {…}?

26

27

exercise: header parsing
struct basic_hdr_t {

bit<16> src; bit<16> dst;
bit<1> has_timestamp; bit<1> has_data; bit<6> unused;

};
struct timestamp_t {

bit<32> timestamp;
}
struct data_hdr_t {

bit<16> size;
}

what states/transitions in parser?

28

states/transitions
parse_basic:

has_timestamp: to parse_timestamp:
has_data: to parse_data
otherwise: accept

parse_timestamp:
has_data: to parse_data:
otherwise: accept

parse_data: then accept

29

P4: ingress processing
example: send everything to output port number 4
control MyIngress(...) {

apply {
standard_metadata.egress_spec = 4;

}
}

standard_metadata — ‘hard-coded’ phase reads egress_spec

special egress_spec value for “discard frame”

30

P4: ingress processing
example: send everything to output port number 4
control MyIngress(...) {

apply {
standard_metadata.egress_spec = 4;

}
}

standard_metadata — ‘hard-coded’ phase reads egress_spec

special egress_spec value for “discard frame”

30

switch decisions
most decisions switches/routers make are table lookups

take field from packet (e.g. destination)

lookup in table what to do with that (e.g. send to port X, throw
error, etc.)

P4 has special syntax for tables and table lookups

31

P4: tables
table mac_dst_exact {

key = {
hdr.ethernet.dstAddr : exact;

}
actions = {

drop,
forward_to,

}
size = 1024;
default_action = drop();

}

declare a table with a name
done has part of ingress/outgress
key/value structure
keys usually from headers
values are actions to run

here, each table entry
contains whole address
P4 also supports
partially matched keys

32

P4: tables
table mac_dst_exact {

key = {
hdr.ethernet.dstAddr : exact;

}
actions = {

drop,
forward_to,

}
size = 1024;
default_action = drop();

}

declare a table with a name
done has part of ingress/outgress

key/value structure
keys usually from headers
values are actions to run

here, each table entry
contains whole address
P4 also supports
partially matched keys

32

P4: tables
table mac_dst_exact {

key = {
hdr.ethernet.dstAddr : exact;

}
actions = {

drop,
forward_to,

}
size = 1024;
default_action = drop();

}

declare a table with a name
done has part of ingress/outgress

key/value structure
keys usually from headers
values are actions to run

here, each table entry
contains whole address
P4 also supports
partially matched keys

32

P4: tables
table mac_dst_exact {

key = {
hdr.ethernet.dstAddr : exact;

}
actions = {

drop,
forward_to,

}
size = 1024;
default_action = drop();

}

declare a table with a name
done has part of ingress/outgress
key/value structure
keys usually from headers
values are actions to run

here, each table entry
contains whole address
P4 also supports
partially matched keys

32

P4 table key types
exact — full entry

lpm — longest prefix match
table entries contain ‘prefixes’ of header field(s)
we’ll see motivation for this when we talk about routing
if multiple entries match, take longest one

ternary — 0/1/don’t care
table entries contain key and mask
entry matches if bits included in mask match
other view: keys represented with 0/1/don’t care ‘trits’

33

content-addressable memory
high-end routers/switches have content addressable memory
(CAM)

…including ternary content addressable memory (TCAM)

= hardware that implements a table lookup
‘content’ ≈ key being looked up
looks kinda like highly associative cache
probably lots of comparators

allows multigigabit frame processing speeds

P4 goal: P4 programs compile to use CAM/TCAM when available
34

aside: TCAM cost
2.7x more transistors than SRAM (common cache technology)

probably much more power than SRAM

hard to find recent quotes for price/power

but probably 10s of dollars per megabyte
e.g., secondary market price of Broadcom chip with 40Mbit of this is
∼$180
chip needs 80W heatsink, max 900MHz clock rate
but chip has a bunch of other functionality, of course

35

P4: using a table
control MyIngress(...) {

...
table mac_dst_exact = {

/* seen earlier */ ...
}
apply {

mac_dst_exact.apply();
}

}

apply operation invokes the action specified by the table

36

P4: using a table
control MyIngress(...) {

...
table mac_dst_exact = {

/* seen earlier */ ...
}
apply {

mac_dst_exact.apply();
}

}

apply operation invokes the action specified by the table

36

P4: actions
control MyIngress(...) {

action drop() {
mark_to_drop(standard_metadata);

}
action forward_to(egressSpec_t port) {

standard_metadata.egress_spec = port;
}
action mark_and_forward(egressSpec_t port) {

hdr.some_proto.value = 1;
standard_metadata.egress_spec = port;

}
...

}

actions basically function calls for packet
can include parameters that are stored in table
typically, actions set standard metadata
to indicate where to send frame next

actual sending/not sending frame done later

actions can also edit packet headers
or do other table lookups
(which we will need in the future)

37

P4: actions
control MyIngress(...) {

action drop() {
mark_to_drop(standard_metadata);

}
action forward_to(egressSpec_t port) {

standard_metadata.egress_spec = port;
}
action mark_and_forward(egressSpec_t port) {

hdr.some_proto.value = 1;
standard_metadata.egress_spec = port;

}
...

}

actions basically function calls for packet
can include parameters that are stored in table

typically, actions set standard metadata
to indicate where to send frame next

actual sending/not sending frame done later

actions can also edit packet headers
or do other table lookups
(which we will need in the future)

37

P4: actions
control MyIngress(...) {

action drop() {
mark_to_drop(standard_metadata);

}
action forward_to(egressSpec_t port) {

standard_metadata.egress_spec = port;
}
action mark_and_forward(egressSpec_t port) {

hdr.some_proto.value = 1;
standard_metadata.egress_spec = port;

}
...

}

actions basically function calls for packet
can include parameters that are stored in table

typically, actions set standard metadata
to indicate where to send frame next

actual sending/not sending frame done later

actions can also edit packet headers
or do other table lookups
(which we will need in the future)

37

P4: actions
control MyIngress(...) {

action drop() {
mark_to_drop(standard_metadata);

}
action forward_to(egressSpec_t port) {

standard_metadata.egress_spec = port;
}
action mark_and_forward(egressSpec_t port) {

hdr.some_proto.value = 1;
standard_metadata.egress_spec = port;

}
...

}

actions basically function calls for packet
can include parameters that are stored in table
typically, actions set standard metadata
to indicate where to send frame next

actual sending/not sending frame done later

actions can also edit packet headers
or do other table lookups
(which we will need in the future)

37

P4: special actions
some ways switch can direct packet (incomplete list)

send to the control plane
special output port that goes to ‘general purpose’ CPU

multicast/broadcast to multiple ports
control plane can set multicast groups
makes multiple copies of packets

38

exercise
suppose we want to implement the following policy:

by default, packets sent to servers A, B, C, and D are dropped
specific machines are given permission to contact server A
the same is true for servers B and C and D
some specific machines are give access to contact all servers

what tables would be useful to have?
what keys?
what match strategy?

39

egress processing
same as ingress processing but different function

usage in upcoming assignment:
ingress step duplicates packet to all output ports
egress step step runs on each duplicate, drops excess one

40

P4: control plane
P4 control plane is a program

sends commands to one or more switches:
load P4 program into data plane
set table entries
configure multicast groups
receive frames to process them

41

aside: wrappers
I’ll show code from a P4 controller for upcoming assignment

written in Python, using custom library to make things convenient

works with softawre based reference switch

no requirement to use Python or other specific language
controller sends commands over network/IPC to data plane

real raw code has more boilerplate/etc.

probably several things different for hardware-based switches

42

P4: control plane
P4 control plane is a program

sends commands to one or more switches:
load P4 program into data plane
set table entries
configure multicast groups
receive frames to process them

43

P4: loading P4 program
p4info_helper =
switch =
switch.MasterArbitrationUpdate()
switch.SetForwardingPipelineConfig(

p4info=p4info_helper.p4info,
bmv2_json_file_path=bmv2_file_path

)

swtich supports having primary + backup controller,
so need to indicate this is primary controller now

“forwarding pipeline” = dataplaneP4 code compiled to file to load, specified here

44

P4: loading P4 program
p4info_helper =
switch =
switch.MasterArbitrationUpdate()
switch.SetForwardingPipelineConfig(

p4info=p4info_helper.p4info,
bmv2_json_file_path=bmv2_file_path

)

swtich supports having primary + backup controller,
so need to indicate this is primary controller now

“forwarding pipeline” = dataplaneP4 code compiled to file to load, specified here

44

P4: loading P4 program
p4info_helper =
switch =
switch.MasterArbitrationUpdate()
switch.SetForwardingPipelineConfig(

p4info=p4info_helper.p4info,
bmv2_json_file_path=bmv2_file_path

)

swtich supports having primary + backup controller,
so need to indicate this is primary controller now

“forwarding pipeline” = dataplane

P4 code compiled to file to load, specified here

44

P4: loading P4 program
p4info_helper =
switch =
switch.MasterArbitrationUpdate()
switch.SetForwardingPipelineConfig(

p4info=p4info_helper.p4info,
bmv2_json_file_path=bmv2_file_path

)

swtich supports having primary + backup controller,
so need to indicate this is primary controller now

“forwarding pipeline” = dataplane

P4 code compiled to file to load, specified here

44

P4: control plane
P4 control plane is a program

sends commands to one or more switches:
load P4 program into data plane
set table entries
configure multicast groups
receive frames to process them

45

P4: setting table entries
write_or_overwrite_table_entry(

p4info_helper=p4info_helper, switch=switch,
table_name='MyIngress.mac_dst_exact',
match_fields={

'hdr.ethernet.dstAddr': some_address,
},
action_name='forward_to',
action_params={'port': port},

)

p4info_helper, switch objects created by setup codefull name of table, including stage it is defined inmatch value — format would be different
if key was lpm or ternary
instead of exact match

write_or_overwrite_table_entry not the ‘raw’ function
(one I wrote based on one P4 tutorial authors wrote)
uses gRPC (remote procedure call) library, which adds some extra steps

46

P4: setting table entries
write_or_overwrite_table_entry(

p4info_helper=p4info_helper, switch=switch,
table_name='MyIngress.mac_dst_exact',
match_fields={

'hdr.ethernet.dstAddr': some_address,
},
action_name='forward_to',
action_params={'port': port},

) p4info_helper, switch objects created by setup code

full name of table, including stage it is defined inmatch value — format would be different
if key was lpm or ternary
instead of exact match

write_or_overwrite_table_entry not the ‘raw’ function
(one I wrote based on one P4 tutorial authors wrote)
uses gRPC (remote procedure call) library, which adds some extra steps

46

P4: setting table entries
write_or_overwrite_table_entry(

p4info_helper=p4info_helper, switch=switch,
table_name='MyIngress.mac_dst_exact',
match_fields={

'hdr.ethernet.dstAddr': some_address,
},
action_name='forward_to',
action_params={'port': port},

)

p4info_helper, switch objects created by setup code

full name of table, including stage it is defined in

match value — format would be different
if key was lpm or ternary
instead of exact match

write_or_overwrite_table_entry not the ‘raw’ function
(one I wrote based on one P4 tutorial authors wrote)
uses gRPC (remote procedure call) library, which adds some extra steps

46

P4: setting table entries
write_or_overwrite_table_entry(

p4info_helper=p4info_helper, switch=switch,
table_name='MyIngress.mac_dst_exact',
match_fields={

'hdr.ethernet.dstAddr': some_address,
},
action_name='forward_to',
action_params={'port': port},

)

p4info_helper, switch objects created by setup codefull name of table, including stage it is defined in

match value — format would be different
if key was lpm or ternary
instead of exact match

write_or_overwrite_table_entry not the ‘raw’ function
(one I wrote based on one P4 tutorial authors wrote)
uses gRPC (remote procedure call) library, which adds some extra steps

46

P4: setting table entries
write_or_overwrite_table_entry(

p4info_helper=p4info_helper, switch=switch,
table_name='MyIngress.mac_dst_exact',
match_fields={

'hdr.ethernet.dstAddr': some_address,
},
action_name='forward_to',
action_params={'port': port},

)

p4info_helper, switch objects created by setup codefull name of table, including stage it is defined inmatch value — format would be different
if key was lpm or ternary
instead of exact match

write_or_overwrite_table_entry not the ‘raw’ function
(one I wrote based on one P4 tutorial authors wrote)
uses gRPC (remote procedure call) library, which adds some extra steps

46

P4: control plane
P4 control plane is a program

sends commands to one or more switches:
load P4 program into data plane
set table entries
configure multicast groups
receive frames to process them

47

P4: multicast groups
switch.WritePREEntry(

p4info_helper.buildMulticastGroupEntry(
multicast_group_id=1,
replicas=[

{'egress_port': 1, 'instance': 0},
{'egress_port': 2, 'instance': 0},
{'egress_port': 3, 'instance': 0},
{'egress_port': 4, 'instance': 0},

]
)

)

in P4 dataplane code can write
standard_metadata.mcast_grp = 1 to use this

list of ports to output to when group selected

instance can be inspected by dataplane code
for the egress step

PRE = packet replication engine

supports multicast groups (shown) and “clone sessions” (not shown)
(clone sessions make extra copy of packet,
but process original normally)

48

P4: multicast groups
switch.WritePREEntry(

p4info_helper.buildMulticastGroupEntry(
multicast_group_id=1,
replicas=[

{'egress_port': 1, 'instance': 0},
{'egress_port': 2, 'instance': 0},
{'egress_port': 3, 'instance': 0},
{'egress_port': 4, 'instance': 0},

]
)

)
in P4 dataplane code can write
standard_metadata.mcast_grp = 1 to use this

list of ports to output to when group selected

instance can be inspected by dataplane code
for the egress step

PRE = packet replication engine

supports multicast groups (shown) and “clone sessions” (not shown)
(clone sessions make extra copy of packet,
but process original normally)

48

P4: multicast groups
switch.WritePREEntry(

p4info_helper.buildMulticastGroupEntry(
multicast_group_id=1,
replicas=[

{'egress_port': 1, 'instance': 0},
{'egress_port': 2, 'instance': 0},
{'egress_port': 3, 'instance': 0},
{'egress_port': 4, 'instance': 0},

]
)

)

in P4 dataplane code can write
standard_metadata.mcast_grp = 1 to use this

list of ports to output to when group selected

instance can be inspected by dataplane code
for the egress step

PRE = packet replication engine

supports multicast groups (shown) and “clone sessions” (not shown)
(clone sessions make extra copy of packet,
but process original normally)

48

P4: multicast groups
switch.WritePREEntry(

p4info_helper.buildMulticastGroupEntry(
multicast_group_id=1,
replicas=[

{'egress_port': 1, 'instance': 0},
{'egress_port': 2, 'instance': 0},
{'egress_port': 3, 'instance': 0},
{'egress_port': 4, 'instance': 0},

]
)

)

in P4 dataplane code can write
standard_metadata.mcast_grp = 1 to use this

list of ports to output to when group selected

instance can be inspected by dataplane code
for the egress step

PRE = packet replication engine

supports multicast groups (shown) and “clone sessions” (not shown)
(clone sessions make extra copy of packet,
but process original normally)

48

P4: control plane
P4 control plane is a program

sends commands to one or more switches:
load P4 program into data plane
set table entries
configure multicast groups
receive frames to process them

49

P4: receiving frame
for item in switch.stream_msg_resp:

if item.HasField('packet'):
do_something_with(item.packet.payload,

item.packet.metadata)

payload = bytes of frame
(what would normally be sent on network)
extra metadata can be set by dataplane
example: which port packet came from

50

P4: receiving frame
for item in switch.stream_msg_resp:

if item.HasField('packet'):
do_something_with(item.packet.payload,

item.packet.metadata)

payload = bytes of frame
(what would normally be sent on network)

extra metadata can be set by dataplane
example: which port packet came from

50

P4: receiving frame
for item in switch.stream_msg_resp:

if item.HasField('packet'):
do_something_with(item.packet.payload,

item.packet.metadata)

payload = bytes of frame
(what would normally be sent on network)

extra metadata can be set by dataplane
example: which port packet came from

50

typically sent on Ethernet
preamble + start marker

source MAC address destination MAC address

type
data (for next layer)

sometimes extra stuff (“tags”)

checksum ‘interpacket gap’

explicit start marker
end indicated by ‘gap’ between signals

type field indicates which next layer in use
often varies on frame-by-frame basisactually type/length for historical reasons

but most commonly used for type these daysdestination address indicates who frame is for
present regardless of whether switching is in use

each host filters out frames for ‘wrong’ destination address

since destination address always present
as last resort, switches can send every frame to everyone

will still work, just much less efficient

who the frame came from
gives ‘return address’ for sending replies

will also be used by switches

51

network and switch tables
00:11:22:33:44:AA00:11:22:33:44:BB00:11:22:33:44:CC00:11:22:33:44:DD

00:11:22:33:44:EE

00:11:22:33:44:FF

dst MAC addr port
00:11:22:33:44:AA 1
00:11:22:33:44:BB 2
00:11:22:33:44:CC 4
00:11:22:33:44:DD 4
00:11:22:33:44:EE 4
00:11:22:33:44:FF 3

dst MAC addr port
00:11:22:33:44:AA 1
00:11:22:33:44:BB 1
00:11:22:33:44:CC 2
00:11:22:33:44:DD 3
00:11:22:33:44:EE 4
00:11:22:33:44:FF 2

12

3

23
4

4
1

52

network and switch tables
00:11:22:33:44:AA00:11:22:33:44:BB00:11:22:33:44:CC00:11:22:33:44:DD

00:11:22:33:44:EE

00:11:22:33:44:FF

dst MAC addr port
00:11:22:33:44:AA 1
00:11:22:33:44:BB 2
00:11:22:33:44:CC 4
00:11:22:33:44:DD 4
00:11:22:33:44:EE 4
00:11:22:33:44:FF 3

dst MAC addr port
00:11:22:33:44:AA 1
00:11:22:33:44:BB 1
00:11:22:33:44:CC 2
00:11:22:33:44:DD 3
00:11:22:33:44:EE 4
00:11:22:33:44:FF 2

12

3

23
4

4
1

52

network and switch tables
00:11:22:33:44:AA00:11:22:33:44:BB00:11:22:33:44:CC00:11:22:33:44:DD

00:11:22:33:44:EE

00:11:22:33:44:FF

dst MAC addr port
00:11:22:33:44:AA 1
00:11:22:33:44:BB 2
00:11:22:33:44:CC 4
00:11:22:33:44:DD 4
00:11:22:33:44:EE 4
00:11:22:33:44:FF 3

dst MAC addr port
00:11:22:33:44:AA 1
00:11:22:33:44:BB 1
00:11:22:33:44:CC 2
00:11:22:33:44:DD 3
00:11:22:33:44:EE 4
00:11:22:33:44:FF 2

12

3

23
4

4
1

52

network and switch tables
00:11:22:33:44:AA00:11:22:33:44:BB00:11:22:33:44:CC00:11:22:33:44:DD

00:11:22:33:44:EE

00:11:22:33:44:FF

dst MAC addr port
00:11:22:33:44:AA 1
00:11:22:33:44:BB 2
00:11:22:33:44:CC 4
00:11:22:33:44:DD 4
00:11:22:33:44:EE 4
00:11:22:33:44:FF 3

dst MAC addr port
00:11:22:33:44:AA 1
00:11:22:33:44:BB 1
00:11:22:33:44:CC 2
00:11:22:33:44:DD 3
00:11:22:33:44:EE 4
00:11:22:33:44:FF 2

12

3

23
4

4
1

52

constructing switch tables
could have system administrator input these by hand

through an SSH-like interface, probably

works, but error-prone, hard to change, etc.

alternative: switch should figure it out

53

constructing switch tables
could have system administrator input these by hand

through an SSH-like interface, probably

works, but error-prone, hard to change, etc.

alternative: switch should figure it out

53

MAC learning

dst MAC addr port

forwarding table

input port=2, output port = ???

data =

src=00:11:22:33:44:AA
dst=00:11:22:33:44:FF
type = IPV4
data = 33 45 43 42 …

incoming frame 1

input port=3, output port = ???

data =

src=00:11:22:33:44:FF
dst=00:11:22:33:44:AA
type = IPV4
data = 34 45 43 42 …

incoming frame 2

54

MAC learning

dst MAC addr port

(default) ALL*

forwarding table

input port=2, output port = ???

data =

src=00:11:22:33:44:AA
dst=00:11:22:33:44:FF
type = IPV4
data = 33 45 43 42 …

incoming frame 1

input port=3, output port = ???

data =

src=00:11:22:33:44:FF
dst=00:11:22:33:44:AA
type = IPV4
data = 34 45 43 42 …

incoming frame 2

54

MAC learning

dst MAC addr port

(default) ALL*

forwarding table
input port=2, output port = ???

data =

src=00:11:22:33:44:AA
dst=00:11:22:33:44:FF
type = IPV4
data = 33 45 43 42 …

incoming frame 1

input port=3, output port = ???

data =

src=00:11:22:33:44:FF
dst=00:11:22:33:44:AA
type = IPV4
data = 34 45 43 42 …

incoming frame 2

54

MAC learning

dst MAC addr port

(default) ALL*

forwarding table
input port=2, output port = all but 2

data =

src=00:11:22:33:44:AA
dst=00:11:22:33:44:FF
type = IPV4
data = 33 45 43 42 …

incoming frame 1

input port=3, output port = ???

data =

src=00:11:22:33:44:FF
dst=00:11:22:33:44:AA
type = IPV4
data = 34 45 43 42 …

incoming frame 2

54

MAC learning

dst MAC addr port
00:11:22:33:44:AA 2

(default) ALL*

forwarding table
input port=2, output port = all but 2

data =

src=00:11:22:33:44:AA
dst=00:11:22:33:44:FF
type = IPV4
data = 33 45 43 42 …

incoming frame 1

input port=3, output port = ???

data =

src=00:11:22:33:44:FF
dst=00:11:22:33:44:AA
type = IPV4
data = 34 45 43 42 …

incoming frame 2

54

MAC learning

dst MAC addr port
00:11:22:33:44:AA 2

(default) ALL*

forwarding table
input port=2, output port = all but 2

data =

src=00:11:22:33:44:AA
dst=00:11:22:33:44:FF
type = IPV4
data = 33 45 43 42 …

incoming frame 1

input port=3, output port = ???

data =

src=00:11:22:33:44:FF
dst=00:11:22:33:44:AA
type = IPV4
data = 34 45 43 42 …

incoming frame 2

54

MAC learning

dst MAC addr port
00:11:22:33:44:AA 2

(default) ALL*

forwarding table
input port=2, output port = all but 2

data =

src=00:11:22:33:44:AA
dst=00:11:22:33:44:FF
type = IPV4
data = 33 45 43 42 …

incoming frame 1

input port=3, output port = 2

data =

src=00:11:22:33:44:FF
dst=00:11:22:33:44:AA
type = IPV4
data = 34 45 43 42 …

incoming frame 2

54

MAC learning

dst MAC addr port
00:11:22:33:44:AA 2
00:11:22:33:44:FF 3

(default) ALL*

forwarding table
input port=2, output port = all but 2

data =

src=00:11:22:33:44:AA
dst=00:11:22:33:44:FF
type = IPV4
data = 33 45 43 42 …

incoming frame 1

input port=3, output port = 2

data =

src=00:11:22:33:44:FF
dst=00:11:22:33:44:AA
type = IPV4
data = 34 45 43 42 …

incoming frame 2

54

aside: no backwards broadcast
recall: broadcast sent to all but incoming port

question: what would happen if we didn’t do this?
multiple may apply

A. might cause host to receive duplicates
B. might cause copies sent to non-incoming port to be dropped
C. might cause frames sent at same time to be dropped
D. might cause frames sent much later to be dropped

55

loop from backwards broadcast time step 1

00:11:22:33:44:AA00:11:22:33:44:BB00:11:22:33:44:CC00:11:22:33:44:DD

00:11:22:33:44:EE

00:11:22:33:44:FF

>>>
12

3
234

4

1

56

loop from backwards broadcast time step 2

00:11:22:33:44:AA00:11:22:33:44:BB00:11:22:33:44:CC00:11:22:33:44:DD

00:11:22:33:44:EE

00:11:22:33:44:FF

<<<
1

<<<

2

<<
<

3
234

>>>

4

1

56

loop from backwards broadcast time step 3

00:11:22:33:44:AA00:11:22:33:44:BB00:11:22:33:44:CC00:11:22:33:44:DD

00:11:22:33:44:EE

00:11:22:33:44:FF

12

3

<<<

2

<<<

3

<<<
4

<<<

4

1

56

loop from backwards broadcast time step 4

00:11:22:33:44:AA00:11:22:33:44:BB00:11:22:33:44:CC00:11:22:33:44:DD

00:11:22:33:44:EE

00:11:22:33:44:FF

1

<<<

2

<<
<

3
234

>>>

4

1

56

loops
each packet keeps getting sent indefinitely

remember: happens for every packet sent

quickly overwhelms link between switches

but can just avoid by not sending back?

57

loops with only-to-other time step 1

00:11:22:33:44:AA00:11:22:33:44:BB00:11:22:33:44:CC00:11:22:33:44:DD

00:11:22:33:44:EE

00:11:22:33:44:FF

>>>

58

loops with only-to-other time step 2

00:11:22:33:44:AA00:11:22:33:44:BB00:11:22:33:44:CC00:11:22:33:44:DD

00:11:22:33:44:EE

00:11:22:33:44:FF

<<<
<<<<<<

58

loops with only-to-other time step 3

00:11:22:33:44:AA00:11:22:33:44:BB00:11:22:33:44:CC00:11:22:33:44:DD

00:11:22:33:44:EE

00:11:22:33:44:FF

<<<

<<<

<<<

<<< <</>>

58

loops with only-to-other time step 4

00:11:22:33:44:AA00:11:22:33:44:BB00:11:22:33:44:CC00:11:22:33:44:DD

00:11:22:33:44:EE

00:11:22:33:44:FF

<<<

<<<

<<<

<<<

>>>>>>

58

loops with only-to-other time step 5

00:11:22:33:44:AA00:11:22:33:44:BB00:11:22:33:44:CC00:11:22:33:44:DD

00:11:22:33:44:EE

00:11:22:33:44:FF

<<<
<<<

<<<
<<<

<<<<<<

58

explosion from loops
avoiding sending back is not enough

will get catastrophic failure of network!

simple fix: only have one path from A to B
BUT means network is more fragile

we’ll have better solutions when we talk about routing later

59

preview: routing
better ways to decide where to send packets

…but require coordinating between switches
avoid loops
choose between multiple paths
avoid ‘flooding’ for each new machine

problem also very important for large networks…

…like the Internet

we will revisit it when we talk about IP routing
60

backup slides

61

	switched networks
	datagrams and Ethernet format
	versus virtual circuits

	switch architecture
	not programmable
	control v dataplane
	what is P4
	P4 dataplane
	switch parts
	header management
	exercise
	ingress processing
	exercise
	egress processing

	P4 controlplane

	basic Ethernet switching / MAC learning
	aside: no loops please

	preview: internetworks
	backup slides

