
Virtual Machines

1

questions/logistics

office hours posted on website

VM setup due Friday

2

virtual machines

illusion of a dedicated machine

could or could not behave like real machine

3

virtual machine types

language — designed for programming language

process — designed for shared system

system — designed to emulate “real” hardware

4

virtual machine types

language — designed for programming language

process — designed for shared system

system — designed to emulate “real” hardware

5

language VMs

programming languages have a ‘virtual machine’

e.g. the Java virtual machine

compiler targets virtual machine

virtual machine designed for language

easier than real machine to compile to

reasonably fast to simulate on real machine

6

JVM specializations

“assembly” of virtual machine
knows about objects, methods

ISA designed for Java programs
with some adaptations for other languages

all stack-based instructions (no registers)
(thought to be) easier to implement in software

safe: can’t leak memory; can’t segfault

7

virtual machine types

language — designed for programming language

process — designed for shared system

system — designed to emulate “real” hardware

8

OSs are virtual machines

process virtual machines

different interface than physical HW

system calls instead of I/O instructions

system calls/signals instead of interrupts

9

process versus system

more complicated:
files
network connections
communicating with other processes
…

but simpler to program
more flexible
no hardware details (disk sizes, etc.)

10

virtual machine types

language — designed for programming language

process — designed for shared system

system — designed to emulate “real” hardware

11

system virtual machines

acts (more) like real hardware

not files, but a hard drive

not network connections, but an ethernet device

not memory allocation calls, but page tables

…

system virtual machines run operating systems

12

modern system VM software

VMWare — 1998 startup

VirtualBox (open source; Oracle, formally Sun)

Parallels (targets OS X)

Xen

QEMU

Hyper-V (Microsoft)

13

hosts and guests

guest OS — what’s inside the virtual machine

host OS — what’s outside the virtual machine

14

VM implementation strategies

traditional VM
virtual machine/guest OS

VM monitor
host OS

native CPU

privileged ops
become callbacks

(help from HW+OS)

native instruction set

emulator
virtual machine/guest OS

emulator
host OS

native CPU

interpret/translate

native instruction set

virtual ISA could be different from real ISA
(even excluding privileged operations)virtual ISA same as real ISA

(except for privileged operations)

15

VM implementation strategies

traditional VM
virtual machine/guest OS

VM monitor
host OS

native CPU

privileged ops
become callbacks

(help from HW+OS)

native instruction set

emulator
virtual machine/guest OS

emulator
host OS

native CPU

interpret/translate

native instruction set

virtual ISA could be different from real ISA
(even excluding privileged operations)virtual ISA same as real ISA

(except for privileged operations)

15

VM implementation strategies

traditional VM
virtual machine/guest OS

VM monitor
host OS

native CPU

privileged ops
become callbacks

(help from HW+OS)

native instruction set

emulator
virtual machine/guest OS

emulator
host OS

native CPU

interpret/translate

native instruction set

virtual ISA could be different from real ISA
(even excluding privileged operations)

virtual ISA same as real ISA
(except for privileged operations)

15

VM implementation strategies

traditional VM
virtual machine/guest OS

VM monitor
host OS

native CPU

privileged ops
become callbacks

(help from HW+OS)

native instruction set

emulator
virtual machine/guest OS

emulator
host OS

native CPU

interpret/translate

native instruction set

virtual ISA could be different from real ISA
(even excluding privileged operations)

virtual ISA same as real ISA
(except for privileged operations)

15

VMs are old

IBM/370 Model 158 (announced 1972) marketing:

Excerpt from: Computer History Museum catalog number 102646258
http://www.computerhistory.org/collections/catalog/102646258 16

http://www.computerhistory.org/collections/catalog/102646258

VMs as consolidation

Figure: Goldberg, “Survey of Virtual Machine Research”, IEEE Computer, September 1974 17

the consolidation case

compatibility — customize “whole” machine

efficiency —
two+ CPUs/hard drives for the work/data of one?
two+ CPUs for the work/data of one?

2011 public ‘cloud’ server CPU utilization: <10%
after consolidation

utilization %s: Liu, “A Measurement Study of Server Utilization in Public Clouds” 18

VM death and resurgence

VMs started with mainframes

one computer for an entire company

…

then the personal computer happened

19

resurgence of VMs

consolidation again (still a good idea)

compatibility
Windows on Mac
Unix on Windows
Windows 98 on Windows NT, etc.

…

1998 startup: VMWare
bought by EMC which was bought by Dell

20

VM implementation

hardware support —
originally, only viable way
IBM/370, VirtualBox, modern VMware, etc.

binary translation —
historic VMware

paravirtualization — Xen

emulation — Bochs

21

on kernel mode

hardware has two modes:
user mode and kernel mode

typically, only OS can run in kernel mode

privileged operations require kernel mode

22

exceptions and VMs

privileged operations need to run in kernel mode

guest OS is run in user mode

guest OS tries to do a privileged operation?
exception gives control to host OS

I/O device (e.g. keyboard) tries to signal OS
exception gives control to host OS

exception handlers are part of virtual machine
monitor

23

VMs and kernel mode

basic idea: run guest OS in user mode

virtual machine monitor (VMM) runs in kernel mode

on exception: virtual machine monitor forwards to
guest OS

“mirrors” what hardware did for VMM

24

system call flow

program

‘guest’ OS

virtual machine monitor

hardware

conceptual layering

user
mode

kernel
mode

pretend
user
mode
pretend
kernel
mode

system call
(exception)

run handler
update memory map

to user mode

run handler

25

system call flow

program

‘guest’ OS

virtual machine monitor

hardware

conceptual layering

user
mode

kernel
mode

pretend
user
mode
pretend
kernel
mode

system call
(exception)

run handler
update memory map

to user mode

run handler

25

system call flow

program

‘guest’ OS

virtual machine monitor

hardware

conceptual layering

user
mode

kernel
mode

pretend
user
mode
pretend
kernel
mode

system call
(exception)

run handler
update memory map

to user mode

run handler

25

system call flow

program

‘guest’ OS

virtual machine monitor

hardware

conceptual layering

user
mode

kernel
mode

pretend
user
mode
pretend
kernel
mode

system call
(exception)

run handler
update memory map

to user mode

run handler

25

system call flow

program

‘guest’ OS

virtual machine monitor

hardware

conceptual layering

user
mode

kernel
mode

pretend
user
mode
pretend
kernel
mode

system call
(exception)

run handler
update memory map

to user mode

run handler

25

system call flow

program

‘guest’ OS

virtual machine monitor

hardware

conceptual layering

user
mode

kernel
mode

pretend
user
mode
pretend
kernel
mode

system call
(exception)

run handler
update memory map

to user mode

run handler

25

extra hardware support

privileged operations becoming exceptions: minimal

hardware can do more:

nested page table lookup
makes memory mapping changes much faster/simpler

handling of read-only privileged instructions
e.g. reading “interrupt enable” flag

forwarding of some exceptions
e.g. flag to make syscalls run guest OS

26

binary translation

compile assembly to new assembly

works without instruction set support

early versions of VMWare on x86 (before x86 added
virtualisation support)

can be used to run one platform on another

27

binary translation idea

0x40FE00: addq %rax, %rbx
movq 14(%r14,4), %rdx
addss %xmm0, (%rdx)
...
0x40FE3A: jne 0x40F404

divide machine code
into basic blocks
(= “straight-line” code)
(= code till
jump/call/etc.)

generated code:
// addq %rax, %rbx
movq rax_location, %rdi
movq rbx_location, %rsi
call checked_addq
movq %rax, rax_location
...
// jne 0x40F404
... // get CCs
je do_jne
movq $0x40FE3F, %rdi
jmp translate_and_run
do_jne:
movq $0x40F404, %rdi
jmp translate_and_run

subss %xmm0, 4(%rdx)
...
je 0x40F543
ret

28

binary translation idea

0x40FE00: addq %rax, %rbx
movq 14(%r14,4), %rdx
addss %xmm0, (%rdx)
...
0x40FE3A: jne 0x40F404

divide machine code
into basic blocks
(= “straight-line” code)
(= code till
jump/call/etc.)

generated code:
// addq %rax, %rbx
movq rax_location, %rdi
movq rbx_location, %rsi
call checked_addq
movq %rax, rax_location
...
// jne 0x40F404
... // get CCs
je do_jne
movq $0x40FE3F, %rdi
jmp translate_and_run
do_jne:
movq $0x40F404, %rdi
jmp translate_and_run

subss %xmm0, 4(%rdx)
...
je 0x40F543
ret

28

binary translation idea

0x40FE00: addq %rax, %rbx
movq 14(%r14,4), %rdx
addss %xmm0, (%rdx)
...
0x40FE3A: jne 0x40F404

divide machine code
into basic blocks
(= “straight-line” code)
(= code till
jump/call/etc.)

generated code:
// addq %rax, %rbx
movq rax_location, %rdi
movq rbx_location, %rsi
call checked_addq
movq %rax, rax_location
...
// jne 0x40F404
... // get CCs
je do_jne
movq $0x40FE3F, %rdi
jmp translate_and_run
do_jne:
movq $0x40F404, %rdi
jmp translate_and_run

subss %xmm0, 4(%rdx)
...
je 0x40F543
ret

28

a binary translation idea

convert whole basic blocks
code upto branch/jump/call

end with call to translate_and_run
compute new simulated PC address to pass to call

29

making binary translation fast

cache converted code
translate_and_run checks cache first

patch calls to translate_and_run to refer
directly to cached code

do something more clever than
movq rax_location, ...

map (some) registers to registers, not memory

ends up being “just-in-time” compiler

30

binary translation? really?

early VMWare: focused on little pieces of OS code
that couldn’t be emulated

a few instructions that behaved differently to fix

used by Apple to handle changing CPU designs
not a system VM — used the native OS mostly

Rosetta: run Power PC on Intel (2005–2011)

Mac 68k emulator: Run Motorola 680x0 on Power
PC (1994–2005)

31

why binary translation?: POPF

x86 has an instruction called POPF

pop flags from stack
condition codes — CF, ZF, PF, SF, OF, etc.
direction flag (DF) — used by string instructions
I/O privilege level (IOPL)
interrupt enable flag (IF)
…

some flags are privileged!

popf silently doesn’t change them in user mode

32

why binary translation?: POPF

x86 has an instruction called POPF

pop flags from stack
condition codes — CF, ZF, PF, SF, OF, etc.
direction flag (DF) — used by string instructions
I/O privilege level (IOPL)
interrupt enable flag (IF)
…

some flags are privileged!

popf silently doesn’t change them in user mode

32

more binary translation problems

PUSHF also bad — want to pretend interrupts are
disabled, e.g.

several more x86 instructions

processor extensions to change these to be
virtualizable

mechanism: flag to make them trigger interrupt to
virtual machine monitor

33

other binary translation utility

enables other software analysis on unmodified
binaries

example: valgrind, debugging tools:
memory errors
synchronization bugs
…

34

paravirtualization

only a few pieces of the OS use things like POPF

instead: modify OS

called paravirtualization

OS makes explicit calls to virtual machine monitor

very small OS patch

more efficient?

35

other virtualisation support nits

hardware support for nested page tables

alternatives work, but are complex/slower

hardware support for limiting I/O devices
can safely give VMs I/O device access

36

emulation

read instruction, do what it says, repeat

slowest technique, but easiest to implement

easiest to provide detailed debugging information for

37

Why do we care about VMs?

isolation

run dangerous stuff safely!

analyze dangerous stuff without disrupting it!

38

isolation: network

virtual machines have a “virtual” network device

easy to make disconnected

provide network of other VMs, not connected to
internet

setup custom firewall without extra hardware

39

isolation: disk

virtual machines have “virtual” hard drives — just a
file!

virus infects files? not anything that matters on the
machine

easy to identify what to backup
even if virus modifies “hidden” files

…

40

snapshots

virtual disks, virtual memory, …

make copy of disk/memory/etc.

e.g. see what damage malware does

go back to before damage happens

41

snapshot efficiency

but aren’t snapshots slow???
copy all of disk, memory

can be done faster:

sector # data
15 FFF434…
456 0045010…
… …

snapshot 1 updates
read/write

from
VM

sector # data
0 00235544…
1 44467520…
2 00000000…
… …

base disk image

sector # data
15 FFF434…
456 0045010…
… …

snapshot 2 updates

42

snapshot efficiency

but aren’t snapshots slow???
copy all of disk, memory

can be done faster:

sector # data
15 FFF434…
456 0045010…
… …

snapshot 1 updates
read/write

from
VM

sector # data
0 00235544…
1 44467520…
2 00000000…
… …

base disk image

sector # data
15 FFF434…
456 0045010…
… …

snapshot 2 updates

42

debugging support

hardware has support for debuggers…

but there are ways of interfering/detecting

virtual machines can “hide” these changes
e.g. slow down in debugger? — virtual clock

(might require slower implementation technique)

also easy to do whole-machine debugging on VMs
attach GDB to entire VM

43

VM replay

virtual machines can support replay

rerun something exactly the same

good for debugging

not trivial to implement — why?

44

VM replay challenges

timing and I/O

need to remember exactly when I/O happens

need to have virtual clock

how?

log all I/O, timer readings
read log on replay

at instruction 100043243: keypress 'a'
at instruction 100483782: time = 100333.3456
at instruction 100688445: network packet '024A...'

45

VM replay challenges

timing and I/O

need to remember exactly when I/O happens

need to have virtual clock

how?

log all I/O, timer readings
read log on replay

at instruction 100043243: keypress 'a'
at instruction 100483782: time = 100333.3456
at instruction 100688445: network packet '024A...'

45

VM replay challenges

timing and I/O

need to remember exactly when I/O happens

need to have virtual clock

how?
log all I/O, timer readings
read log on replay

at instruction 100043243: keypress 'a'
at instruction 100483782: time = 100333.3456
at instruction 100688445: network packet '024A...'

45

virtual machine escape

46

virtual machine escape

bug in virtual machine monitor that lets virtual
machines run code that’s not isolated

47

VM detection

really the same?

48

VM detection

no reason why detectable, but…

normal system VMs are not not stealthy

49

without specialized tools

ubuntu@ubuntu-xenial:~$ sudo dmidecode | head
dmidecode 3.0
Getting SMBIOS data from sysfs.
SMBIOS 2.5 present.
10 structures occupying 450 bytes.
Table at 0x000E1000.

Handle 0x0000, DMI type 0, 20 bytes
BIOS Information

Vendor: innotek Gmbcp
Version: VirtualBox

DMI — BIOS (system startup) table

51

VM detection: case study

search for devices with “VMWARE” in their names

search for VM-only device drivers

check if processor is suspiciously slow
ideally things that are easier in HW than SW
e.g. speed of syscalls, address space changes
unimplemented features?
might need external source of time

Via https://www.fireeye.com/blog/threat-research/2011/01/the-dead-giveaways-of-vm-aware-malware.html 52

https://www.fireeye.com/blog/threat-research/2011/01/the-dead-giveaways-of-vm-aware-malware.html

VMs for anti-malware

does SW do something bad?

run it in a VM/“sandbox”

check if things change that shouldn’t

actual antivirus software technique

53

VMs as antimalware limitations

completeness
emulate entire filesystem?
emulate all system calls?
emulate network?
provide real network?

user input, etc.
can’t easily automate keypresses, etc.

speed
how long until you say “it’s safe”

54

lightweight sandboxing

(system) VMs are resource-intensive

two OSes — lots of extra memory

worse performance
more code needed for I/O

more efficient alternative: operating system isolation
e.g. on lab machines, users can’t interfere with each
other
e.g. browsers do this for web page code

55

OS interface size

OS interfaces are complicated

Linux:
100s of system calls
… including some to talk to hundreds of device drivers

hard to tell which program needs

hard to tell which are safe

56

OS sandboxing support

OS-level isolation of filesystem, memory, CPU

extra code for each kind of resource/system call

lots of obscure system resources to exhaust, etc.:
list of pending signals
network buffers
buffers for interprocess pipes
process control data structures in the OS
etc.

need to limit each of them

57

sandboxing on Linux (1)

one mechanism: secccomp

system call filter

example: video decoder:
reads encoded video
writes decoded images

only needs read/write — easy to sandbox

58

sandboxing on Linux (2)

another mechanism: cgroups

set limits for CPU, memory, networks, process IDs,
etc.

extra kernel code for each kind of resource

only expose subset of filesystem (chroot)
/ (root directory) changedA

much more complex to configure securely than VM

not used by major rental computing providers
59

the real sandboxing problem

policy

60

VMs in this course

consistent environment!

our attacks may depend on exact memory addresses

our attacks may depend on exact versions of system
libraries

61

do real attackers do that?

if exploits are so sensitive…

fragile, not always broken

exploits can be made less fragile

Slapper worm: exploit variants for 23 architectures

62

exploits: avoiding fragility

some exploits cause a jump to attacker-controlled
code

fragile because need to encode exact address

partial fix: choose exploit code to give leeway

63

nop sled

nop /* ← jumping to here */
nop
nop
nop
nop
nop /* ← same as jumping to here */
nop
nop
...
/* exploit code here */

64

next topic: x86-64 assembly

you’ve seen this before

in theory

65

x86-64 assembly

history: AMD constructed 64-bit extension to x86
first

marketing term: AMD64

Intel first tried a new ISA (Itanium), which failed

Then Intel copied AMD64
marketing term: EM64T (Extended Memory 64
Technology)
later marketing term: Intel 64

both Intel and AMD have manuals — definitive
reference

66

67

x86-64 manuals

Intel manuals:
https://software.intel.com/en-us/
articles/intel-sdm
24 MB, 4684 pages
Volume 2: instruction set reference (2190 pages)

AMD manuals:
https:
//support.amd.com/en-us/search/tech-docs
“AMD64 Architecture Programmer’s Manual”

68

https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://support.amd.com/en-us/search/tech-docs
https://support.amd.com/en-us/search/tech-docs

recall: x86-64 general purpose
registers

Immae via Wikipedia 69

overlapping registers (1)

setting 32-bit registers sets whole 64-bit register

extra bits are always zeroes

movq $0x123456789abcdef, %rax
xor %eax, %eax
// %rax is 0, not 0x1234567800000000
movl $−1, %ebx
// %rbx is 0xFFFFFFFF, not −1 (0xFFFFFFFFFFFFFFFF)

70

overlapping registers (2)

setting 8/16-bit registers doesn’t change rest of
64-bit register:

movq $0x12345789abcdef, %rax
movw $0xaaaa, %ax
// %rax is 0x123456789abaaaa

71

AT&T versus Intel syntax

AT&T syntax:
movq $42, 100(%rbx,%rcx,4)

Intel syntax:
mov QWORD PTR [rbx+rcx*4+100], 42

effect (pseudo-C):
memory[rbx + rcx * 4 + 100] <- 42

72

AT&T syntax (1)

movq $42, 100(%rbx,%rcx,4)

destination last

constants start with $

registers start with %

73

AT&T syntax (2)

movq $42, 100(%rbx,%rcx,4)

operand length: q
l = 4; w = 2; b = 1

100(%rbx,%rcx,4):
memory[100 + rbx + rcx * 4]

sub %rax, %rbx: rbx ← rbx - rax

74

Intel syntax

destination first

[...] indicates location in memory

QWORD PTR [...] for 8 bytes in memory
DWORD for 4
WORD for 2
BYTE for 1

75

On LEA

LEA = Load Effective Address

uses the syntax of a memory access, but…

just computes the address and uses it:

leaq 4(%rax), %rax has same result as
addq $4, %rax

almost — doesn’t set condition codes

leaq (%rax,%rax,4), %rax multiplies
%rax by 5

address-of(memory[rax + rax * 4])

76

question

.data
string:

.asciz "abcdefgh"
.text

movq $string, %rax
movq string, %rdx
movb (%rax), %bl
leal 1(%rbx), %ebx
movb %bl, (%rax)
movq %rdx, 4(%rax)

What is the final value of string?
a. ”abcdabcd”
b. ”bbcdefgh”
c. ”bbcdabcd”
d. ”abcdefgh”
e. something else / not enough info

77

	Virtual Machine Abstraction
	Language VM
	Process VM
	System VM

	VM History
	IBM VM/370
	Resurgence: VMWare

	VM implementation
	VMs and software analysis
	VM Escape and Detection
	VM detection: theory/practice

	AT&T versus Intel

