
self-replicating malware

1

Changelog

Corrections made in this version not in first posting:
1 Feb 2017: slide 12: cmpq corrected to test
28 Feb 2017: slide 7: REX prefix’s first nibble is 0100

1

RE assignment

assembly reading practice

due Friday

2

last time

executable formats
using Linux as example, but concepts same elsewhere

started x86 encoding

why?
manipulating machine code

malware does it
a little bit on assignments

want you to have option besides “use objdump blindly”
on assignments

3

overall encoding

4

x86 encoding example (1)

pushq %rax encoded as 50
5-bit opcode 01010 plus 3-bit register number 000

pushq %r13 encoded as 41 55
41: REX prefix 0100 (constant), w:0, r:0, s:0, b:1
w = 0 because push is never 32-bit in 64-bit mode
55: 5-bit opcode 01010; 3-bit reg # 101
4-bit reg # 1101 = 13

5

x86 encoding example (2)

addq 0x12345678(%rax,%rbx,2), %ecx

03: opcode — add r/m32 to r/m32

8c: ModRM: mod = 10; reg = 001, r/m: 100
reg = 001 = %ecx (table)
SIB byte + 32-bit displacement (table)

58: SIB: scale = 01, index = 011, base = 000
index 011 = %rbx; base 000 = %rax;

78 56 32 12: 32-bit constant 0x12345678

6

x86 encoding example (3)

addq 0x12345678(%r10,%r11,2), %rax

4b: REX prefix 0010+w:1, r:0, s:1, b:1

03: opcode — add r/m64 to r64 (with REX.w)

84: ModRM: mod = 10; reg = 000, r/m: 100
reg = 0000 = %rax
SIB byte + 32-bit displacement (table)

5a: SIB: scale = 01, index = 011, base = 010
with REX: index = 1011 (11), base = 1010 (10)

78 56 32 12: 32-bit constant 0x12345678
7

x86 encoding example (3)

addq 0x12345678(%r10,%r11,2), %rax

4b: REX prefix 0010+w:1, r:0, s:1, b:1

03: opcode — add r/m64 to r64 (with REX.w)

84: ModRM: mod = 10; reg = 000, r/m: 100
reg = 0000 = %rax
SIB byte + 32-bit displacement (table)

5a: SIB: scale = 01, index = 011, base = 010
with REX: index = 1011 (11), base = 1010 (10)

78 56 32 12: 32-bit constant 0x12345678
7

x86 encoding example (4)

movq %fs:0x10,%r13

64: FS segment override
48: REX: w: 1 (64-bit), r: 1, s: 0, b: 0
8b: opcode for MOV memory to register
2c: ModRM: mod = 00, reg = 101, r/m: 100

with REX: reg = 1101 [%r12]; r/m = 100 (SIB
follows)

25: SIB: scale = 00; index = 0100; base = 0101
no register/no register in table

10 00 00 00: 4-byte constant 0x10
8

x86: relative and absolute

addresses in mov/lea are absolute
address appears directly in machine code
mov foo, %eax:

8b 04 25 (address of foo)
except mov foo(%rip), ..., etc.

addresses in jmp are relative
jmp skip_nop; nop; skip_nop: ...:

eb 01 (jmp skip_nop)
90 (nop)
(skip_nop:)

value in machine code added to PC

addresses in call are relative
9

x86-64 impossibilities

illegal: movq 0x12345678ab(%rax), %rax
maximum 32-bit displacement
movq 0x12345678ab, %rax okay

extra mov opcode for %rax only

illegal: movq $0x12345678ab, %rbx
maximum 32-bit (signed) constant
movq $0x12345678ab, %rax okay

illegal: pushl %eax
no 32-bit push/pop in 64-bit mode
but 16-bit allowed (operand size prefix byte 66)

illegal: movq (%rax, %rsp), %rax
cannot use %rsp as index register
movq (%rsp, %rax), %rax okay 10

instruction prefixes

REX (64-bit and/or extra register bits)

VEX (SSE/AVX instructions; other new instrs.)

operand/address-size change (64/32 to 16 or
vice-versa)

LOCK — synchronization between processors

REPNE/REPNZ/REP/REPE/REPZ — turns
instruction into loop

segment overrides
11

string instructions (1)

memcpy: // copy %rdx bytes from (%rsi) to (%rdi)
test %rdx, %rdx
je done
movsb
subq $1, %rdx
jmp memcpy

done: ret

movsb (move data from string to string, byte)
mov one byte from (%rsi) to (%rdi)
increment %rsi and %rdi (*)
cannot specify other registers

12

string instructions (2)

memcpy: // copy %rdx bytes from (%rsi) to (%rdi)
rep movsb
ret

rep prefix byte

repeat instruction until %rdx is 0

decrement %rdx each time

cannot specify other registers

cannot use rep with all instructions
13

string instructions (3)

lodsb, stosb — load/store into string

movsw, movsd — word/dword versions

string comparison instructions

rep movsb is still recommended on modern Intel
special-cased in processor?

14

exploring assembly

compiling little C programs looking at the assembly
is nice:
gcc -S -O

extra stuff like .cfi directives (for try/catch)

or disassemble:

gcc -O -c file.c (or make an executable)
objdump -dr file.o (or on an executable)

d: disassemble
r: show (non-dynamic) relocations

15

exploring assembly

compiling little C programs looking at the assembly
is nice:
gcc -S -O

extra stuff like .cfi directives (for try/catch)

or disassemble:

gcc -O -c file.c (or make an executable)
objdump -dr file.o (or on an executable)

d: disassemble
r: show (non-dynamic) relocations

15

assembly without optimizations

compilers do really silly things without optimizations:
int sum(int x, int y) { return x + y; }
sum:

pushq %rbp
movq %rsp, %rbp
movl %edi, −4(%rbp)
movl %esi, −8(%rbp)
movl −4(%rbp), %edx
movl −8(%rbp), %eax
addl %edx, %eax
popq %rbp
ret

instead of gcc -O version:
sum:

leal (%rdi,%rsi), %eax
ret 16

assembly reading advice

don’t know what an instruction does: look it up!

machine code: start with assembler/objdump
might need to edit addresses, etc.

remember calling conventions

function/variable names (if present) help

try to name values in registers, on stack
based on context
“input size” not “rax”

17

self-replicating malware

attacker’s problem:
getting malware to run where they want

some options:

connect to machine and install it there

send to someone

convince someone else to send it to someone

all automatable!

18

self-replicating malware

attacker’s problem:
getting malware to run where they want

some options:

connect to machine and install it there

send to someone

convince someone else to send it to someone

all automatable!
18

recall: kinds of malware

viruses — infects other programs

worms — own malicious programs

trojans — useful (looking) program that also is
malicious

rootkit — silent control of system

only useful after compromisingneeds to way to be run in the first placetargeted “social engineering”

19

viruses: hiding in files

get someone run your malware?

program they already want to run

to spread your malware?

program they already want to copy

trojan approach: create/modify new program

simpler: modify already used/shared program

20

virus prevalence

viruses on commerically sold software media
from 1990 memo by Chris McDonald:
4. MS-DOS INFECTIONS

SOFTWARE REPORTING LOCATION DATE VIRAL INFECTION

a. Unlock Masterkey Kennedy Space Center Oct 89 Vienna
b. SARGON III Iceland Sep 89 Cascade (1704)
c. ASYST RTDEMO02.EXE Fort Belvoir Aug 89 Jerusalem-B
d. Desktop Fractal Various Jan 90 Jerusalem (1813)

Design System
e. Bureau of the Government Printing Jan 90 Jerusalem-B

Census, Elec. County Office/US Census Bureau
& City Data Bk., 1988

f. Northern Computers Iceland Mar 90 Disk Killer
(PC Manufacturer shipped infected systems.)

5. MACINTOSH INFECTIONS

SOFTWARE REPORTING LOCATION DATE VIRAL INFECTION

a. NoteWriter Colgate College Sep 89 Scores and nVIR
....... https://groups.google.com/forum/#!original/comp.virus/XJCfYR9T6nI/azflHz5goooJ 21

early virus motivations

lots of (but not all) early virus software was “for fun”

not trying to monetize malware
(like is common today)

hard: Internet connections uncommon

22

Case Study: Vienna Virus

Vienna: virus from the 1980s

This version: published in Ralf Burger, “Computer
Viruses: a high-tech disease” (1988)

targetted COM-format executables on DOS

23

Diversion: .COM files

.COM is a very simple executable format

no header, no segments, no sections

file contents loaded at fixed address 0x0100

execution starts at 0x0100

everything is read/write/execute (no virtual memory)

24

Vienna: infection

0x0100:
mov $0x4f28, %cx
/* b9 28 4f */

0x0103:
mov $0x9e4e, %si
/* be 4e 9e */
mov %si, %di
push %ds
/* more normal

program
code */

....
0x0700: /* end */

uninfected
0x0100: jmp 0x0700
0x0103: mov $0x9e4e, %si
...
0x0700:

push %cx
... // %si ← 0x903
mov $0x100, %di
mov $3, %cx
rep movsb
...
mov $0x0100, %di
push %di
xor %di, %di
ret

...
0x0903:

.bytes 0xb9 0x28 0x4f
...

infected

25

Vienna: “fixup”

0x0700:
push %cx // initial value of %cx matters??
mov $0x8fd, %si // %si ← beginning of data
mov %si, %dx // save %si

// movsb uses %si, so
// can't use another register

add $0xa, %si // offset of saved code in data
mov $0x100, %di // target address
mov $3, %cx // bytes changed
/* copy %cx bytes from (%si) to (%di) */
rep movsb
...

...
// saved copy of original application code
0x903: .byte 0xb9 .byte 0x28 .byte 0x4f

26

Vienna: “fixup”

0x0700:
push %cx // initial value of %cx matters??
mov $0x8fd, %si // %si ← beginning of data
mov %si, %dx // save %si

// movsb uses %si, so
// can't use another register

add $0xa, %si // offset of saved code in data
mov $0x100, %di // target address
mov $3, %cx // bytes changed
/* copy %cx bytes from (%si) to (%di) */
rep movsb
...

...
// saved copy of original application code
0x903: .byte 0xb9 .byte 0x28 .byte 0x4f

26

Vienna: “fixup”

0x0700:
push %cx // initial value of %cx matters??
mov $0x8fd, %si // %si ← beginning of data
mov %si, %dx // save %si

// movsb uses %si, so
// can't use another register

add $0xa, %si // offset of saved code in data
mov $0x100, %di // target address
mov $3, %cx // bytes changed
/* copy %cx bytes from (%si) to (%di) */
rep movsb
...

...
// saved copy of original application code
0x903: .byte 0xb9 .byte 0x28 .byte 0x4f

26

Vienna: return

0x08e7:
pop %cx // restore initial value of %cx, %sp
xor %ax, %ax // %ax ← 0
xor %bx, %bx
xor %dx, %dx
xor %si, %si
// push 0x0100
mov $0x0100, %di
push %di
xor %di, %di // %di ← 0
// pop 0x0100 from stack
// jmp to 0x0100
ret

question: why not just jmp 0x0100 ?
27

Vienna: infection outline

Vienna appends code to infected application

where does it read the code come from?

how is code adjusted for new location in the binary?
what linker would do

how does it keep files from getting infinitely long?

28

Vienna: infection outline

Vienna appends code to infected application

where does it read the code come from?

how is code adjusted for new location in the binary?
what linker would do

how does it keep files from getting infinitely long?

29

quines

exercise: write a C program that outputs its source
code

(pseudo-code only okay)

possible in any (Turing-complete) programming language

called a “quine”

30

clever quine solution

#include <stdio.h>
char*x="int main(){

printf(p,10,34,x,34,10,34,p,34,10,x,10);
}";

char*p="#include <stdio.h>%c
char*x=%c%s%c;%cchar*p=%c%s%c;
%c%s%c";

int main(){
printf(p,10,34,x,34,10,34,p,34,10,x,10);

}

some line wrapping for readability — shouldn’t be in
actual quine

printf to fill template:
10 = newline; 34 = double-quote;
x, p = template/constant strings

template filled by printf

31

clever quine solution

#include <stdio.h>
char*x="int main(){

printf(p,10,34,x,34,10,34,p,34,10,x,10);
}";

char*p="#include <stdio.h>%c
char*x=%c%s%c;%cchar*p=%c%s%c;
%c%s%c";

int main(){
printf(p,10,34,x,34,10,34,p,34,10,x,10);

}

some line wrapping for readability — shouldn’t be in
actual quine

printf to fill template:
10 = newline; 34 = double-quote;
x, p = template/constant strings

template filled by printf

31

clever quine solution

#include <stdio.h>
char*x="int main(){

printf(p,10,34,x,34,10,34,p,34,10,x,10);
}";

char*p="#include <stdio.h>%c
char*x=%c%s%c;%cchar*p=%c%s%c;
%c%s%c";

int main(){
printf(p,10,34,x,34,10,34,p,34,10,x,10);

}

some line wrapping for readability — shouldn’t be in
actual quine

printf to fill template:
10 = newline; 34 = double-quote;
x, p = template/constant strings

template filled by printf

31

dumb quine solution

#include <stdio.h>
int main(void) {

char buffer[1024];
FILE *f = fopen("quine.c", "r");
size_t bytes = fread(buffer, 1,

sizeof(buffer), f);
fwrite(buffer, 1, bytes, stdout);
return 0;

}

a lot more straightforward!

but “cheating”

32

Vienna copying

mov $0x8f9, %si // %si = beginning of virus data
...
mov $0x288, %cx // length of virus
mov $0x40, %ah // system call # for write
mov %si, %dx
sub $0x1f9, %dx // %dx = beginning of virus code
int 0x21 // make write system call

33

Vienna copying

mov $0x8f9, %si // %si = beginning of virus data
...
mov $0x288, %cx // length of virus
mov $0x40, %ah // system call # for write
mov %si, %dx
sub $0x1f9, %dx // %dx = beginning of virus code
int 0x21 // make write system call

33

Vienna: infection outline

Vienna appends code to infected application

where does it read the code come from?

how is code adjusted for new location in the binary?
what linker would do

how does it keep files from getting infinitely long?

34

Vienna relocation

very little use of absolute addresses:
jmps use relative addresses (value to add to PC)

virus uses %si as a “base register”
points to beginning of virus data
set very early in virus execution

set via mov $0x8fd, %si near beginning of virus

35

Vienna relocation

// set virus data address:
0x700: mov $0x8f9, %si

// machine code: be f9 08
// be: opcode
// f9 08: immediate

...
// %ax contains file length (of file to infect)
mov %ax, %cx
...
add $0x2f9, %cx
mov %si, %di
sub $0x1f7, %di // %di ← 0x701
mov %cx, (%di) // update mov instruction
...

36

Vienna relocation

// set virus data address:
0x700: mov $0x8f9, %si

// machine code: be f9 08
// be: opcode
// f9 08: immediate

...
// %ax contains file length (of file to infect)
mov %ax, %cx
...
add $0x2f9, %cx
mov %si, %di
sub $0x1f7, %di // %di ← 0x701
mov %cx, (%di) // update mov instruction
...

36

Vienna relocation

// set virus data address:
0x700: mov $0x8f9, %si

// machine code: be f9 08
// be: opcode
// f9 08: immediate

...
// %ax contains file length (of file to infect)
mov %ax, %cx
...
add $0x2f9, %cx
mov %si, %di
sub $0x1f7, %di // %di ← 0x701
mov %cx, (%di) // update mov instruction
...

36

Vienna relocation

edit actual code for mov

why doesn’t this disrupt virus execution?

already ran that instruction

37

Vienna relocation

edit actual code for mov

why doesn’t this disrupt virus execution?
already ran that instruction

37

Vienna relocation

0x700: mov $0x8f9, %si
...
// %ax contains file length
// (of file to infect)
mov %ax, %cx
sub $3, %ax
// update template jmp instruction
mov %ax, 0xe(%si) // 0xe + %si = 0x907
...
mov $40, %ah
mov $3, %cx
mov %si, %dx
add $0xD, %dx // dx ← 0x906
int 0x21 // system call: write 3 bytes from 0x906
...
0x906: e9 fd 05 // jmp PC+FD 05

38

Vienna relocation

0x700: mov $0x8f9, %si
...
// %ax contains file length
// (of file to infect)
mov %ax, %cx
sub $3, %ax
// update template jmp instruction
mov %ax, 0xe(%si) // 0xe + %si = 0x907
...
mov $40, %ah
mov $3, %cx
mov %si, %dx
add $0xD, %dx // dx ← 0x906
int 0x21 // system call: write 3 bytes from 0x906
...
0x906: e9 fd 05 // jmp PC+FD 05

38

Vienna relocation

0x700: mov $0x8f9, %si
...
// %ax contains file length
// (of file to infect)
mov %ax, %cx
sub $3, %ax
// update template jmp instruction
mov %ax, 0xe(%si) // 0xe + %si = 0x907
...
mov $40, %ah
mov $3, %cx
mov %si, %dx
add $0xD, %dx // dx ← 0x906
int 0x21 // system call: write 3 bytes from 0x906
...
0x906: e9 fd 05 // jmp PC+FD 05

38

alternative relocation

could avoid having pointer to update:
0000000000000000 <next-0x3>:

0: e8 00 00 call 3 <next>
target addresses encoded relatively
pushes return address (next) onto stack

0000000000000003 <next>:
3: 59 pop %cx
cx containts address of the pop instruction

why didn’t Vienna do this?

39

Vienna: infection outline

Vienna appends code to infected application

where does it read the code come from?

how is code adjusted for new location in the binary?
what linker would do

how does it keep files from getting infinitely long?

40

Vienna: avoiding reinfection

scans through active directories for executables

“marks” infected executables in file metadata
could have checked for virus code — but slow

41

DOS last-written times

16-bit number for date; 16-bit number for time

15 9 8 5 4 0
Y-1980 Mon Day

15 11 10 5 4 0
H Min Sec/2

Sec/2: 5 bits: range from 0–31
corresponds to 0 to 62 seconds

Vienna trick: set infected file times to 62 seconds

need to update times anyways — hide tracks

42

DOS last-written times

16-bit number for date; 16-bit number for time

15 9 8 5 4 0
Y-1980 Mon Day

15 11 10 5 4 0
H Min Sec/2

Sec/2: 5 bits: range from 0–31
corresponds to 0 to 62 seconds

Vienna trick: set infected file times to 62 seconds

need to update times anyways — hide tracks

42

virus choices

where to put code

how to get code ran

43

virus choices

where to put code

how to get code ran

44

where to put code

considerations:
spreading — files that will be copied/reused
spreading — files that will be ran
stealth — user shouldn’t know until too late

45

where to put code: options

one or more of:

replacing executable code

after executable code (Vienna)

in unused executable code

inside OS code

in memory

46

where to put code: options

one or more of:

replacing executable code

after executable code (Vienna)

in unused executable code

inside OS code

in memory

47

replace executable

original
executable

virus code

48

replace executable?

seems silly — not stealthy!

has appeared in the wild — ILOVEYOU

2000 ILOVEYOU Worm
written in Visual Basic (!)
spread via email
replaced lots of files with copies of itself

huge impact

49

replace executable — subtle

original
executable

virus code
run original from tempfile

original
executable

50

where to put code: options

one or more of:

replacing executable code

after executable code (Vienna)

in unused executable code

inside OS code

in memory

51

appending

original
executable

original
executable

virus code

jmp to virus

52

note about appending

COM files are very simple — no metadata

modern executable formats have length information
to update

add segment to program header
update last segment of program header (size + make it
executable)

53

compressing viruses

file too big? how about compression

original
executable

virus code

decompressor

compressed
executable

unused space

54

where to put code: options

one or more of:

replacing executable code

after executable code (Vienna)

in unused executable code

inside OS code

in memory

55

unused code???

why would a program have unused code????

56

unused code case study: /bin/ls

unreachable no-ops!
...
403788: e9 59 0c 00 00 jmpq 4043e6 <__sprintf_chk@plt+0x1a06>
40378d: 0f 1f 00 nopl (%rax)
403790: ba 05 00 00 00 mov $0x5,%edx

...
403ab9: eb 4d jmp 403b08 <__sprintf_chk@plt+0x1128>
403abb: 0f 1f 44 00 00 nopl 0x0(%rax,%rax,1)
403ac0: 4d 8b 7f 08 mov 0x8(%r15),%r15

...
404a01: c3 retq
404a02: 0f 1f 40 00 nopl 0x0(%rax)
404a06: 66 2e 0f 1f 84 00 00 nopw %cs:0x0(%rax,%rax,1)
404a0d: 00 00 00
404a10: be 00 e6 61 00 mov $0x61e600,%esi

...

57

why empty space?

Intel Optimization Reference Manual:
“Assembly/Compiler Coding Rule 12. (M
impact, H generality) All branch targets should be
16-byte aligned.”

better for instruction cache (and TLB and related caches)
better for instruction decode logic
function calls count as branches for this purpose

58

other empty space

unused dynamic linking structure

unused debugging/symbol table information?

unused header space
recall — header loaded into memory!

59

other empty space

unused dynamic linking structure

unused debugging/symbol table information?

unused header space
recall — header loaded into memory!

60

dynamic linking cavity

.dynamic section — data structure used by
dynamic linker:
format: list of 8-byte type, 8-byte value

terminated by type == 0 entry
Contents of section .dynamic:
600e28 01000000 00000000 01000000 00000000

... several non-empty entries ...
600f88 f0ffff6f 00000000 56034000 00000000 ...o....V.@.....

VERSYM (required library version info at) 0x400356
600f98 00000000 00000000 00000000 00000000

NULL --- end of linker info
600fa8 00000000 00000000 00000000 00000000

unused! (and below)
600fb8 00000000 00000000 00000000 00000000
600fc8 00000000 00000000 00000000 00000000
600fd8 00000000 00000000 00000000 00000000
600fe8 00000000 00000000 00000000 00000000

61

is there enough empty space?

cavities look awfully small

really small viruses?

solution: chain cavities tgoether

62

case study: CIH (1)

original
executable

virus startup code
virus code locs

virus code part 1

virus code part 2

virus code part 3

63

case study: CIH (2)

virus startup code
virus code locs (table)

virus code part 1

virus code part 2

virus code part 3

in memory:

virus code part 1
virus code part 2
virus code part 3

64

CIH cavities

gaps between sections
common Windows linker aligned sections
(align = start on address multiple of N , e.g. 4096)
(normal Linux linker doesn’t do this...)

reassembling code avoids worrying about splitting
instructions

65

where to put code: options

one or more of:

replacing executable code

after executable code (Vienna)

in unused executable code

inside OS code

in memory

66

boot process
processor reset

BIOS/EFI
(chip on motherboard)

bootloader

operating system

very CPU/motherboard-specific code

fixed location on disk
code that understands files

files in a filesystem

67

boot process
processor reset

BIOS/EFI
(chip on motherboard)

bootloader

operating system

very CPU/motherboard-specific code

fixed location on disk
code that understands files

files in a filesystem

67

bootloaders in the DOS era

used to be common to boot from floppies

default to booting from floppy if present
even if hard drive to boot from

applications distributed as bootable floppies

so bootloaders on all devices were a target for viruses

68

historic bootloader layout

bootloader in first sector (512 bytes) of device

(along with partition information)

code in BIOS to copy bootloader into RAM, start
running

bootloader responsible for disk I/O etc.
some library-like functionality in BIOS for I/O

69

bootloader viruses

example: Stoned

data here???

partition table

bootloader
partition table

virus code

saved bootloader
partition table (unused)

70

bootloader viruses

example: Stoned

data here???

partition table

bootloader
partition table

virus code

saved bootloader
partition table (unused)

70

data here???

might be data there — risk

some unused space after partition table/boot loader
common

(allegedly)

also be filesystem metadata not used on smaller
floppies/disks

but could be wrong — oops

71

modern bootloaders — UEFI

BIOS-based boot is going away (slowly)

new thing: UEFI (Universal Extensible Firmware
Interface)

like BIOS:
library functionality for bootloaders
loads initial code from disk/DVD/etc.

unlike BIOS:
much more understanding of file systems
much more modern set of library calls

72

modern bootloaders — secure boot

“Secure Boot” is a common feature of modern
bootloaders

idea: UEFI/BIOS code checks bootloader code, fails
if not okay

requires user intervention to use not-okay code

73

Secure Boot and keys

Secure Boot relies on cryptographic signatures
idea: accept only “legitimate” bootloaders
legitimate: known authority vouched for them

user control of their own systems?
in theory: can add own keys

what about changing OS instead of bootloader?
need smart bootloader

74

boot process
processor reset

BIOS/EFI
(chip on motherboard)

bootloader

operating system

very CPU/motherboard-specific code

fixed location on disk
code that understands files

files in a filesystem

75

BIOS/UEFI implants

infrequent

BIOS/UEFI code is very non-portable

BIOS/UEFI update often requires physical access

BIOS/UEFI code sometimes requires cryptographic
signatures

…but very hard to remove — can reinstall other
malware

reports that Hacking Team (Milan-based malware
company) had UEFI-infecting “rootkit”

76

boot process
processor reset

BIOS/EFI
(chip on motherboard)

bootloader

operating system

very CPU/motherboard-specific code

fixed location on disk
code that understands files

files in a filesystem

77

system files

simpliest strategy: stuff that runs when you start
your computer

add a new startup program, run in the background
easy to blend in

alternatively, infect one of many system programs
automatically run

78

memory residence

malware wants to keep doing stuff

one option — background process (easy on modern
OSs)

also stealthy options:
insert self into OS code
insert self into other running programs

more commonly, OS code used for hiding malware
topic for later

79

80

virus choices

where to put code

how to get code ran

81

invoking virus code: options

boot loader

change starting location

alternative approaches: “entry point obscuring”

edit code that’s going to run anyways

replace a function pointer (or similar)

…

82

invoking virus code: options

boot loader

change starting location

alternative approaches: “entry point obscuring”

edit code that’s going to run anyways

replace a function pointer (or similar)

…

82

starting locations

/bin/ls: file format elf64-x86-64
/bin/ls
architecture: i386:x86-64, flags 0x00000112:
EXEC_P, HAS_SYMS, D_PAGED
start address 0x00000000004049a0

modern executable formats have ‘starting address’
field

just change it, insert jump to old address after virus
code

83

invoking virus code: options

boot loader

change starting location

alternative approaches: “entry point obscuring”

edit code that’s going to run anyways

replace a function pointer (or similar)

…

84

run anyways?

add code at start of program (Vienna)

return with padding after it:
404a01: c3 retq
404a02: 0f 1f 40 00 nopl 0x0(%rax)

replace with
404a01: e9 XX XX XX XX jmpq YYYYYYY

any random place in program?
just not in the middle of instruction

85

challenge: valid locations

x86: probably don’t want a full instruction parser

x86: might be non-instruction stuff mixed in with
code:
do_some_floating_point_stuff:

movss float_one(%rip), %xmm0
...
retq

float_one: .float 1

floating point value one (00 00 80 3f) is not valid
machine code
disassembler might lose track of instruction boundaries

86

finding function calls

one idea: replace calls

normal x86 call FOO: E8 (32-bit value: PC
- address of foo)

could look for E8 in code — lots of false positives
probably even if one excludes out-of-range addresses

87

really finding function calls

e.g. some popular compilers started x86-32 functions
with
foo:

push %ebp // push old frame pointer
// 0x55
mov %ebp, %esp // set frame pointer to stack pointer
// 0x89 0xec

use to identify when e8 refers to real function
(full version: also have some other function start
patterns)

88

remember stubs?

0000000000400400 <puts@plt>:
400400: ff 25 12 0c 20 00 jmpq *0x200c12(%rip)

/* 0x200c12+RIP = _GLOBAL_OFFSET_TABLE_+0x18 */
400406: 68 00 00 00 00 pushq $0x0
40040b: e9 e0 ff ff ff jmpq 4003f0 <_init+0x28>

replace with:
400400: e8 XX XX XX XX jmpq virus_code
400405: 90 nop
400406: 68 00 00 00 00 pushq $0x0
40040b: e9 e0 ff ff ff jmpq 4003f0 <_init+0x28>

in known location (particular section of executable)

89

invoking virus code: options

boot loader

change starting location

alternative approaches: “entry point obscuring”

edit code that’s going to run anyways

replace a function pointer (or similar)

…

90

stubs again

0000000000400400 <puts@plt>:
400400: ff 25 12 0c 20 00 jmpq *0x200c12(%rip)

/* 0x200c12+RIP = _GLOBAL_OFFSET_TABLE_+0x18 */
400406: 68 00 00 00 00 pushq $0x0
40040b: e9 e0 ff ff ff jmpq 4003f0 <_init+0x28>

don’t edit stub — edit initial value of
_GLOBAL_OFFSET_TABLE

stored in data section of executable

originally: pointer 0x400406; new — virus code

91

relocations?

hello.exe: file format elf64-x86-64

DYNAMIC RELOCATION RECORDS
OFFSET TYPE VALUE
0000000000600ff8 R_X86_64_GLOB_DAT __gmon_start__
0000000000601018 R_X86_64_JUMP_SLOT puts@GLIBC_2.2.5

replace with:
0000000000601018 R_X86_64_JUMP_SLOT _start + offset_of_virus
0000000000601020 R_X86_64_JUMP_SLOT __libc_start_main@GLIBC_2.2.5

tricky — usually no symbols from executable in
dynamic symbol table

(symbols from debugger/disassembler are a different
table)
Linux — need to link with -rdynamic

but…same idea works on shared library itself

92

relocations?

hello.exe: file format elf64-x86-64

DYNAMIC RELOCATION RECORDS
OFFSET TYPE VALUE
0000000000600ff8 R_X86_64_GLOB_DAT __gmon_start__
0000000000601018 R_X86_64_JUMP_SLOT puts@GLIBC_2.2.5

replace with:
0000000000601018 R_X86_64_JUMP_SLOT _start + offset_of_virus
0000000000601020 R_X86_64_JUMP_SLOT __libc_start_main@GLIBC_2.2.5

tricky — usually no symbols from executable in
dynamic symbol table

(symbols from debugger/disassembler are a different
table)
Linux — need to link with -rdynamic

but…same idea works on shared library itself
92

infecting shared libraries

kernel32.dll

header
symbol table

GetFileAttributesA
…

kernel32.dll

header
symbol table

virus code

GetFileAttributesA
…

93

summary

how to hide:
separate executable
append
existing “unused” space
compression

how to run:
change entry point
or “entry point obscuring”:
change some code (requires care!)
change library

94

32-bit ModRM table

95

SIB table

96

	x86 encoding
	on assembly and optimization
	assembly/machine code conclusion

	self-replicating malware: concept
	Case Study: Vienna
	Vienna: entry/exit
	Vienna: replicate
	Vienna: relocate
	Vienna: no reinfect

	more general virus choices
	problem 1: where to add code
	replacing executable code
	appending and compressing
	cavities
	boot sectors

	problem 2: where to invoke code
	start location
	code run anyways
	replacing pointers

	Backup Slides

