Viruses con't

Changelog

Corrections made in this version not in first posting:

6 Feb 2017: slide 62: mov %ebp, %esp corrected to
mov %esp, %ebp

ASM assignment

is out

anonymous feedback

“Please make the homeworks due at midnight
instead of 8pm, it's much easier to find time to work
on homework later in the night”

my main concern:
don't want peak demand for help to be after 6pm Friday

last time

x86 encoding + special cases

bit sloppy
didn't answer whether add %rax, %rax and add
%rax), %rax can have same opcode
(they can — different ModRM byte mod)

started: the Vienna virus

x86 encoding short version

bthS: (prefixes) (opcode) (ModRM) (SIB) (displace/immediate)

one register: reg field of ModRM byte or in opcode
0 =%rax, 1 =%rcx, .., 7 = %rdi

two registers: reg and r/m field of ModRM byte
mod field of ModRM selects %reg versus
offset(%reg)

three registers: reg field of ModRM, index, base
field of SIB

REX prefix: extra bits for up to three register
numbers
8 =%rs8, ..

on the ASM assignment

write VolumeAndDens1ity
writes results into 32-bit outputs

symbol table in object file: local and global entries

local — used in current file; debuggers
global — visible from other files
not default

.globl VolumeAndDensity

Vienna: infection outline

Vienna appends code to infected application

where does it read the code come from?

how is code adjusted for new location in the binary?
what linker would do

how does it keep files from getting infinitely long?

Vienna relocation

very little use of absolute addresses:

exception — ©x100 (program start address)
jmps use relative addresses (value to add to PC)

virus uses %s1 as a “base register”

points to beginning of virus data
set very early in virus execution
add/subtract to access data in virus

set via mov $0x8fd, %si near beginning of virus

Vienna relocation

// set virus data address:
OXx700: mov $Ox8f9, %si
// machine code: be f9 08
// be: opcode
// 9 08: immediate

// %ax contains file length (of file to infect)
mov %ax, 9%cCX

add $0x2f9, %cx

mov %si, %di

sub $0x1f7, %di // %di <« 0x701

mov %cx, (%di) // update mov instruction

Vienna relocation

// set virus data address:
OXx700: mov $Ox8f9, %si
// machine code: be f9 08
// be: opcode
// 9 08: immediate

// %ax contains file length (of file to infect)
mov %ax, 9%cCX

add $0x2f9, %cx

mov %si, %di

sub $0x1f7, %di // %di <« 0x701

mov %cx, (%di) // update mov instruction

Vienna relocation

// set virus data address:
OXx700: mov $Ox8f9, %si

/) %

sax contains file length (of file to infect)

mov
add
mov

sub
mov

// machine code: be f9 08
// be: opcode
// 9 08: immediate

%ax, %cx

$0x2f9, %cx

%si, %di

$Ox1f7, %di // %di + 0x701

%cx, (%di) // update mov instruction

Vienna relocation

edit actual code for mov

why doesn't this disrupt virus execution?

10

Vienna relocation

edit actual code for mov

why doesn't this disrupt virus execution?
already ran that instruction

10

Vienna relocation

Ox700: mov $0x8f9, %si

// %ax contains file length

// (of file to 1infect)

mov %ax, %cx

sub $3, %ax

// update template jmp instruction

mov %ax, Oxe(%si) // Oxe + %si = 0x907

mov $40, %ah

mov $3, %cCx

mov %si, %dx

add $0xD, %dx // dx <+ 0x906

int 0x21 // system call: write 3 bytes from 0x906

0x906: €9 fd 05 // jmp PCH+FD 05

11

Vienna relocation

Ox700: mov $0x8f9, %si

// %ax contains file length

// (of file to 1infect)

mov %ax, %cx

sub $3, %ax

// update template jmp instruction

mov %ax, Oxe(%si) // Oxe + %si = 0x907

mov $40, %ah

mov $3, %cCx

mov %si, %dx

add $0xD, %dx // dx <+ 0x906

int 0x21 // system call: write 3 bytes from 0x906

0x906: €9 fd 05 // jmp PC+FD 05

11

Vienna relocation

Ox700: mov $0x8f9, %si

// %ax contains file length

// (of file to 1infect)

mov %ax, %cx

sub $3, %ax

// update template jmp instruction

mov %ax, Oxe(%si) // Oxe + %si = 0x907

mov $40, %ah

mov $3, %cCx

mov %si, %dx

add $0xD, %dx // dx <+ 0x906

int 0x21 // system call: write 3 bytes from 0x906

0x906: €9 fd 05 // jmp PCH+FD 05

11

alternative relocation

could avoid having pointer to update:

000000000OOO0000 <next-0x3>:
0: e8 00 00 call 3 <next>
target addresses encoded relatively
pushes return address (next) onto stack
0000000000003 <next>:
3: 59 pop %CX
cx containts address of the pop instruction

why didn’t Vienna do this?

12

Vienna: infection outline

Vienna appends code to infected application

where does it read the code come from?

how is code adjusted for new location in the binary?
what linker would do

how does it keep files from getting infinitely long?

13

Vienna: avoiding reinfection

scans through active directories for executables

“marks” infected executables in file metadata
could have checked for virus code — but slow

14

DOS last-written times

16-bit number for date; 16-bit number for time

Y-1980
15 9

Mon
8

5|4

Day

0

H

15

11

10

Min

5

4Sec/20

15

DOS last-written times

16-bit number for date; 16-bit number for time

Y-1980 |Mon| Day H Min | Sec/2
15 918 4 0

514 0 15 11710 5

Sec/2: 5 bits: range from 0-31

corresponds to 0 to 62 seconds
Vienna trick: set infected file times to 62 seconds

need to update times anyways — hide tracks

15

virus choices

where to put code

how to get code ran

16

virus choices

where to put code

how to get code ran

17

where to put code

considerations:

spreading — files that will be copied/reused
spreading — files that will be ran
stealth — user shouldn’t know until too late

18

where to put code: options

one or more of:

replacing executable code
after executable code (Vienna)
in unused executable code
inside OS code

In memory

19

where to put code: options

one or more of:

replacing executable code
after executable code (Vienna)
in unused executable code
inside OS code

In memory

20

replace executable

original
executable

virus code

21

replace executable?

seems silly — not stealthy!

has appeared in the wild — ILOVEYOU
2000 ILOVEYOU Worm

written in Visual Basic (!)
spread via email
replaced lots of files with copies of itself

huge impact — because destroying data to copy itself

22

replace executable — subtle

original
executable

virus code

run original from tempfile

original
executable

23

where to put code: options

one or more of:

replacing executable code
after executable code (Vienna)
in unused executable code
inside OS code

In memory

24

appending

original
executable

[J«jmp to virus

original
executable

virus code

25

note about appending

COM files are very simple — no metadata

modern executable formats have length information
to update
add segment to program header

update last segment of program header (size + make it
executable)

26

compressing viruses

file too big? how about compression

original
executable

virus code

decompressor

compressed
executable

unused space

27

where to put code: options

one or more of:

replacing executable code
after executable code (Vienna)
in unused executable code
inside OS code

In memory

28

unused code???

277
why would a program have unused code??77

29

unused code case study: /bin/Is

unreachable no-ops!

403788:
40378d:
403790:

403ab9:
403abb:
403ac0:

404a01:
404a02:
404a06:
404a0d:
404a10:

e9
of
ba

eb
of
4d

c3
of
66
00
be

59
if
05

4d

if
8b

if

Oc
00
00

44
7f

40
of

e6

00

00

00

00
1f

61

00

00

00

84 00 00

00

jmpq
nopl
mov

jmp
nopl
mov

retq
nopl
nopw

mov

4043e6 <__spt
%rax)
$0x5,%edx

403b08 <__spt

0x0 (%rax,%ra>
Ox8(%rl5) ,%r]

Ox0 (%rax)
%cs:Ox0(%rax,

$0x61e600,%es

30

why empty space?

Intel Optimization Reference Manual:
“Assembly /Compiler Coding Rule 12. (M
impact, H generality) All branch targets should be
16-byte aligned.”
better for instruction cache (and TLB and related caches)
better for instruction decode logic
function calls count as branches for this purpose

31

why weird nops

could fill with anything — unreachable

nops allow compiler/assembler to align without
checking reachability

nops better for disassembly

Intel manual recommends form of nop for different
lengths

possibly better for CPU
“Placing data immediately following an indirect branch
can cause performance problems. If the data consists of

all zeros, it looks like a long stream of ADDs to memory
destinations, and this can cause resource conflicts...”

32

other empty space

unused dynamic linking structure
unused debugging/symbol table information?

unused space between segments

unused header space

file offsets of segments can be in middle of header
loader doesn't care what segments “mean”

33

other empty space

unused dynamic linking structure
unused debugging/symbol table information?

unused space between segments

unused header space

file offsets of segments can be in middle of header
loader doesn't care what segments “mean”

34

dynamic linking cavity

.dynamic section — data structure used by

dynamic linker:

format: list of 8-byte type, 8-byte value

terminated by type == 0 entry

Contents of secti

on .dynamic:

600e28 01000000 OOOOOCOOO O01OOLCOCO00 OOOOLOOOO
... several non-empty entries ...

60088 foffffef 0OOOOOOO 56034000 OOOEOOOO
VERSYM (required library version info at) 0x400356

60098 00OOEOOOEO

NULL --- end
600fa8 00000000

unused! (and
600fb8 00000000
600fc8 00000000
600fd8 00000000
600fe8 00000000

00000000 OOOOOOOO
of linker 1info
00000000 OOOOOOO0
below)

00000000 OOOOOOO0
00000000 O0OOOOO00
00000000 OOOOOOO0
00000000 OOOOOOOO

00000000

00000000

00000000
00000000
00000000
00000000

L0 Vi@l

................

35

is there enough empty space?

cavities look awfully small
really small viruses?

solution: chain cavities together

36

case study: CIH (1)

virus startup code

virus code locs

original '
executable

virus code part 1

virus code part 2

virus code part 3

37

case study: CIH (2)

virus startup code
virus code locs

virus code part 1

virus code part 2

virus code part 3

in memory:

virus code part 1

virus code part 2

virus code part 3

38

CIH cavities

gaps between sections
common Windows linker aligned sections
(align = start on address multiple of NV, e.g. 4096)

probably means kilobytes of cavity in typical binary
normal Linux linker doesn’t do this
smaller executables but less convenient for linker--loader

reassembling: unsplit multibyte instructions

39

where to put code: options

one or more of:

replacing executable code
after executable code (Vienna)
in unused executable code
inside OS code

In memory

40

boot process

processor reset

|

very CPU/motherboard-specific code —

BIOS /EFI

(chip on motherboard)

fixed location on disk
code that understands files

files in a filesystem —»

Y

bootloader

Y

operating system

41

boot process

processor reset

|

very CPU/motherboard-specific code —

BIOS /EFI

(chip on motherboard)

fixed location on disk
code that understands files

files in a filesystem —»

Y

bootloader

Y

operating system

41

bootloaders in the DOS era

used to be common to boot from floppies

default to booting from floppy if present
even if hard drive to boot from

applications distributed as bootable floppies

so bootloaders on all devices were a target for viruses

42

historic bootloader layout

bootloader in first sector (512 bytes) of device
(along with partition information)

code in BIOS to copy bootloader into RAM, start
running

bootloader responsible for disk 1/0 etc.
some library-like functionality in BIOS for 1/0

43

bootloader viruses

example: Stoned

partition table partition table

bootloader virus code

partition table (unused)

saved bootloader

SRVAV, SRVAV,

44

bootloader viruses

example: Stoned

partition table partition table
bootloader virus code
partition table (unused)
data here??? | |- EETREETET Lo
saved bootloader

SRVAV, SRVAV,

data here???

might be data there — risk

some unused space after partition table/boot loader
common

(allegedly)

also be filesystem metadata not used on smaller
floppies/disks

but could be wrong — oops

45

modern bootloaders — UEFI

BIOS-based boot is going away (slowly)

new thing: UEFI (Universal Extensible Firmware
Interface)

like BIOS:

library functionality for bootloaders
loads initial code from disk/DVD /etc.

unlike BIOS:

much more understanding of file systems
much more modern set of library calls

46

modern bootloaders — secure boot

“Secure Boot"” is a common feature of modern
bootloaders

idea: UEFI/BIOS code checks bootloader code, fails
if not okay

requires user intervention to use not-okay code

47

Secure Boot and keys

Secure Boot relies on cryptographic signatures

idea: accept only “legitimate” bootloaders
legitimate: known authority vouched for them

user control of their own systems?
in theory: can add own keys

what about changing OS instead of bootloader?
need smart bootloader

48

boot process

processor reset

|

very CPU/motherboard-specific code —»

BIOS /EFI

(chip on motherboard)

fixed location on disk
code that understands files

Y

bootloader

Y

files in a filesystem —»

operating system

49

BIOS /UEFI implants

infrequent
BIOS/UEFI code is very non-portable
BIOS/UEFI update may require physical access

BIOS/UEFI code may require cryptographic
signatures

..but very hard to remove — “persist” other malware

reports of BIOS/UEFI-infecting “implants”

sold by Hacking Team (Milan-based malware company)
listed in leaked NSA Tailored Access Group catalog

50

boot process

processor reset

|

very CPU/motherboard-specific code —

BIOS /EFI

(chip on motherboard)

fixed location on disk
code that understands files

Y

bootloader

Y

files in a filesystem —

operating system

51

system files

simpliest strategy: stuff that runs when you start
your computer

add a new startup program, run in the background
easy to blend in

alternatively, infect one of many system programs
automatically run

52

memory residence

malware wants to keep doing stuff

one option — background process (easy on modern

OSs)

also stealthy options:

insert self into OS code
insert self into other running programs

more commonly, OS code used for hiding malware
topic for later

53

54

virus choices

where to put code

how to get code ran

55

invoking virus code: options

boot loader

change starting location

alternative approaches: “entry point obscuring”
edit code that's going to run anyways

replace a function pointer (or similar)

56

invoking virus code: options

boot loader

change starting location

alternative approaches: “entry point obscuring”
edit code that's going to run anyways

replace a function pointer (or similar)

56

starting locations

/bin/1ls: file format elf64-x86-64
/bin/1s

architecture: i386:x86-64, flags Ox00000112:
EXEC_P, HAS_SYMS, D_PAGED

start address 0Ox00000000004049a0

modern executable formats have ‘starting address’
field

just change it, insert jump to old address after virus
code

57

invoking virus code: options

boot loader

change starting location

alternative approaches: “entry point obscuring”
edit code that's going to run anyways

replace a function pointer (or similar)

58

run anyways?

add code at start of program (Vienna)

return with padding after it:

404a01: c3 retq

404a02: of 1f 40 00 nopl
replace with

404201: e9 XX XX XX XX jmpq

any random place in program?
just not in the middle of instruction

0Ox0 (%rax)

YYYYYYY

59

challenge: valid locations

x86: probably don't want a full instruction parser

x86: might be non-instruction stuff mixed in with
code:

do_some_floating_point_stuff:
movss float_one(%rip), %xmm@

retq
float_one: .float 1

floating point value one (00 00 80 3f) is not valid
machine code

disassembler might lose track of instruction boundaries

60

finding function calls

one idea: replace calls

normal x86 call FOO: E8 (32-bit value: PC
- address of foo)

could look for E8 in code — lots of false positives
probably even if one excludes out-of-range addresses

61

really finding function calls

e.g. some popular compilers started x86-32 functions
with
foo:
push %ebp // push old frame pointer
// 0x55

mov %esp, %ebp // set frame pointer to stack
// 0x89 0Oxec

use to identify when e8 refers to real function

(full version: also have some other function start
patterns)

62

remember stubs?

0000000000400400 <puts@plt>:

400400: ff 25 12 0c 20 00 jmpg *0x200cl2 (%rip)
/* 0x200cl2+RIP = _GLOBAL_OFFSET_TABLE_+0x18 */
400406: 68 00 00 00 00 pushg $0x0
40040b: e9 e0 ff ff ff jmpqg 4003f0 <_init+Ox28>
replace with:
400400: e8 XX XX XX XX jmpq virus_code
400405: 90 nop
400406: 68 00 00 00 00 pushg $0x0
40040b: e9 e0 ff ff ff jmpqg 4003f0 <_init+Ox28>

in known location (particular section of executable)

63

invoking virus code: options

boot loader

change starting location

alternative approaches: “entry point obscuring”
edit code that's going to run anyways

replace a function pointer (or similar)

64

stubs again

0000000000400400 <puts@plt>:

400400: ff 25 12 0c 20 00 jmpq *0x200c12 (%rip)

/* 0x200cl2+RIP = _GLOBAL_OFFSET_TABLE_+0x18 x*/
400406: 68 00 00 00 00 pushg $0x0
40040b: e9 e0 ff ff ff jmpqg 4003f0 <_init+Ox28>

don't edit stub — edit initial value of
_GLOBAL_OFFSET_TABLE

stored in data section of executable

originally: pointer Ox400406; new — virus code

65

relocations?

hello.exe: file format elf64-x86-64

DYNAMIC RELOCATION RECORDS
OFFSET TYPE VALUE
0000000000600ff8 R_X86_64_GLOB_DAT __gmon_start__
0000000000601018 R_X86_64_JUMP_SLOT puts@GLIBC_2.2.5

replace with:
0000000000601018 R_X86_64_JUMP_SLOT _start + offset_of_virus
0000000000601020 R_X86_64_JUMP_SLOT __1libc_start_main@GLIBC_2.2.5

tricky — usually no symbols from executable in
dynamic symbol table
(symbols from debugger/disassembler are a different
table)
Linux — need to link with —-rdynamic

66

relocations?

hello.exe: file format elf64-x86-64

DYNAMIC RELOCATION RECORDS
OFFSET TYPE VALUE
0000000000600ff8 R_X86_64_GLOB_DAT __gmon_start__
0000000000601018 R_X86_64_JUMP_SLOT puts@GLIBC_2.2.5

replace with:
0000000000601018 R_X86_64_JUMP_SLOT _start + offset_of_virus
0000000000601020 R_X86_64_JUMP_SLOT __1libc_start_main@GLIBC_2.2.5

but..same idea works on shared library itself

66

infecting shared libraries

header

symbol table
GetFileAttributesA

header

kernel32.dl1

symbol table
GetFileAttributesA

A

kernel32.dl1l

<

virus code

67

summary

how to hide:

separate executable
append

existing “unused” space
compression

how to run:

change entry point

or “entry point obscuring”:
change some code (requires care!)
change library

68

anti-malware strategies

antivirus goals:

prevent malware from running
prevent malware from spreading
undo the effects of malware

69

malware detection

important part: detecting malware

simple way:
have a copy of a malicious executable
compare every program to it

70

malware detection

important part: detecting malware

simple way:
have a copy of a malicious executable
compare every program to it

how big? every executable infected with every virus?

70

malware detection

important part: detecting malware

simple way:
have a copy of a malicious executable

compare every\&amto it

when? how fast?

70

malware “signatures”

antivirus vendor have “signatures” for known
malware

many options to represent signatures

thought process: signature for Vienna?

71

exercise: signatures for Vienna

jmp 0x0700
mov $0x9ede, %si

push %cx
mov $0x8f9, %si
mov $0x0100, %di

mov $3, %CX
rep movsb

add
mov
sub
mov
mov
mov
mov

sub
int

$0x2f9, %cx
%si, %di
$0x1f7, %di
%cx, (%di)

$0x288, %cx
$0x40 %ah
si, SSdx
$0x1f9, %dx
0Ox21

pop %cCx

xor %ax, %ax
xor %bx, %bx
xor %dx, %dx
mov $0x0100 %d
push %di

xor %di, %di
ret

72

simple signature

all the code Vienna copies

.. except changed mov to %s1

virus doesn't change it to relocate

includes infection code — definitely malicious

73

signature generality

the Vienna virus was copied a bunch of times

small changes, “payloads” added
print messages, do malicious things, ..

this signature will not detect any variants

can we do better?

74

simple signature (2)
Vienna infection code
scans directory, finds files

likely to stay the same in variants...

..except that virus writer’s will change it

75

Anti Vlrus oo°V|rus =

signature checking

how fast is signature checking?

clever trick: only read end of file (where virus code
will be)

very fast

7

generalizing the signature

another possibility: detect writing to Ox100

0x100 was DOS program entry code — no program
should do this

problem: how to represent this

78

regular expressions

one method of representing patterns like this:
regular expressions (regexes)

restricted language allows very fast implementations
especially when there's a long list of patterns to look for

homework assignment next week
more next class

along with other anti-virus techniques

79

anti-virus: essential or worthless?

ungraded homework assignment

watch Hanno Bock's talk “In Search of
Evidence-Based IT Security”

a rant mostly about antivirus-like software

80

Case Study: Vienna Virus

Vienna: virus from the 1980s

This version: published in Ralf Burger, “Computer
Viruses: a high-tech disease” (1988)

targetted COM-format executables on DOS

81

Diversion: .COM files

.COM is a very simple executable format

no header, no segments, no sections

file contents loaded at fixed address Ox0100
execution starts at Ox0100

everything is read/write/execute (no virtual memory)

82

Vienna: infection

uninfected

infected

0x0100:
mov $0x4f28, %cx
/* b9 28 4f x/
0x0103:
mov $0x9ede, %si
/* be 4e 9e x/
mov %si, %di
push %ds
/* more normal
program
code x/

Ox0700: /* end */

0x0100: jmp OXxO700
0x0103: mov $0x9%e4de, %si

0x0700:

push %cx

eee J/ %S1 «— 0x903
mov $0x100, %di

mov $3, %Cx

rep movsb

mov $0x0100, %di
push %d1

xor %di, %di

ret

Ox0903:

.bytes 0xb9 0x28 0x4f

§

Vienna: “fixup”

Ox0700:

push %cx // initial value of %cx matters??
mov $0x8fd, %si // %si <« beginning of data
mov %si, %dx // save %si

// movsb uses %si, Sso

// can't use another register
add $0xa, %si // offset of saved code in data
mov $0x100, %di // target address
mov $3, %cx // bytes changed
/* copy %cx bytes from (%si) to (%di) */
rep movsb

// saved copy of original application code

0x903: .byte 0xb9 .byte 0x28 .byte 0x4f o

Vienna: “fixup”

Ox0700:

push %cx // initial value of %cx matters??
mov $0x8fd, %si // %si <« beginning of data
mov %si, %dx // save %si

// movsb uses %si, Sso

// can't use another register
add $0xa, %si // offset of saved code in data
mov $0x100, %di // target address
mov $3, %cx // bytes changed
/* copy %cx bytes from (%si) to (%di) */
rep movsb

// saved copy of original application code

0x903: .byte 0xb9 .byte 0x28 .byte 0x4f o

Vienna: “fixup”

Ox0700:

push %cx // initial value of %cx matters??
mov $0x8fd, %si // %si <« beginning of data
mov %si, %dx // save %si

// movsb uses %si, Sso

// can't use another register
add $0xa, %si // offset of saved code in data
mov $0x100, %di // target address
mov $3, %cx // bytes changed
/* copy %cx bytes from (%si) to (%di) */
rep movsb

// saved copy of original application code

0x903: .byte 0xb9 .byte 0x28 .byte 0x4f o

Vienna: return

Ox08e7:

pop %cx // restore initial value of %cx, %sp

xor %ax, %ax // %ax <« 0O
xor %bx, %bx

xor %dx, %dx

Xor %si, %si

// push 0x0100

mov $0x0100, %di

push %d-i

xor %di, %di // %di < 0O
// pop 0x0100 from stack
// jmp to O0x0100

ret

question: why not just jmp 0x0100 7

85

Vienna: infection outline

Vienna appends code to infected application

where does it read the code come from?

how is code adjusted for new location in the binary?
what linker would do

how does it keep files from getting infinitely long?

86

Vienna: infection outline

Vienna appends code to infected application

where does it read the code come from?

how is code adjusted for new location in the binary?
what linker would do

how does it keep files from getting infinitely long?

87

quines

exercise: write a C program that outputs its source
code

(pseudo-code only okay)

possible in any (Turing-complete) programming language

called a “quine”

88

clever quine solution

#include <stdio.h>
charxx="1int main(){
printf(p,10,34,x,34,10,34,p,34,10,x,10);
}ll;
char*p="#1include <stdio.h>%c
charxx=%c%s%c;%ccharxp=%c%s%c;
%c%s%c"
int main(){
printf(p,10,34,%x,34,10,34,p,34,10,%x,10);
}

some line wrapping for readability — shouldn’t be in
actual quine

89

clever quine solution

#include <stdio.h>
char*xx="1int main(){
printf(p,10,34,x,34,10,34,p,34,10,%x,10);
}ll .
charxp="# printf to fill template:
char® 10 = newline; 34 = double-quote;

02,~0/c0 .
. °C3% % p = template/constant strings
int main(

printf(p,10,34,x,34,10,34,p,34,10,x,10);

}

some line wrapping for readability — shouldn’t be in
actual quine

89

clever quine solution

#include <stdio.h>
charxx="1int main(){
printf(p,10,34,x,34,10,34,p,34,10,x,10);
S template filled by printf
char*p="#‘inc1 U SSCTUTULTT770C
charxx=%c%s%c;%ccharxp=%c%s%c;
%c%s%c"
int main(){
printf(p,10,34,%x,34,10,34,p,34,10,%x,10);

}

some line wrapping for readability — shouldn’t be in
actual quine

89

dumb quine solution

#include <stdio.h>
int main(void) {
char buffer[1024];
FILE xf = fopen("quine.c", "r");
size_t bytes = fread(buffer, 1,
sizeof(buffer), f);
fwrite(buffer, 1, bytes, stdout);
return 0;

}

a lot more straightforward!

but “cheating”

90

Vienna copying

mov $Ox8f9, %si // %si = beginning of virus data

mov $0x288, %cx // length of virus

mov $0x40, %ah // system call # for write

mov %si, %dx

sub $0x1f9, %dx // %dx = beginning of virus code
int 0x21 // make write system call

91

Vienna copying

mov $0x8f9, %si // %si = beginning of virus data

mov $0x288, %cx // length of virus

mov $0x40, %ah // system call # for write

mov %si, %dx

sub $0x1f9, %dx // %dx = beginning of virus code
int 0x21 // make write system call

91

32-bit ModRM table

r8(/r)
r16(/r)
r32(/r)
mm(/r)
xmm(/r)
(In decimal) /digit (Opcode)
(In binary) REG =
Effective Address Mod R/IM
[EAX] 00 000
[ECX] 001
[EDX] 010
EBX 011
-] 100
disp3e? 101
[ESN) 110
[€DI] 11
[EAX]+disp83 01 000
[ECX]+disp8 001
[EDX]+disp8 010
[EBX]+d|spH 011
[+ 100
[EBP]+di spa 101
[ESIJ+disp8 110
[EDI}+disp8 m
[EAX]+disp32 10 |o000
ECXJ+disp32 001
EDX]+disp32 010
EBX]+disp32 011
-][--]+disp32 100
[EBP]+disp32 101
[ESI]+disp32 110
[EDI}+disp32 m
EAX/AX/AL/MMO/XMMO mn 000
ECX/CX/CUMM/XMM1 001
EDX/DX/DUMM2/XMM2 010
EBX/BX/BL/MM3/XMM3 011
ESP/SP/AH/MM4/XMM4 100
EBP/BP/CH/MMS5/XMM5 101
ESI/S/DH/MMB/XMME 110
EDI/DI/BH/MM7/XMM7 m

92

SIB table

Table 2-3. 32-Bit Addressing Forms with the SIB Byte
r32 EAX ECX EDX EBX ESP [ESI EDI
In decimal) Base = 0 1 2 3 4 5 6 7
In binary) Base = 000 001 010 011 100 101 110 m
Scaled Index SS Index Value of SIB Byte (in Hexadecimal)
[EAX] 00 000 00 01 02 03 04 05 06 07
[ECX] 001 08 09 0A 0B oc oD 0E OF
[EDX] 010 10 m 12 13 14 15 16 17
[EBX] on 18 19 1A 1B 1c 10 1€ 1F
none 100 20 21 22 23 24 25 26 27
[EBP] 101 28 29 2A 2B 2C 2D 2€ 2F
[ESI] 110 30 31 32 33 34 35 36 37
[eDi] 111 38 39 3A 3B 3C 3D ElS 3F
[EAX*2] 01 000 40 41 42 43 44 45 46 47
[ECX*2] 001 48 49 4A 4B 4c 4D 4€ 4aF
[EDX*2] 010 50 51 52 53 54 55 56 57
[EBX*2] on 58 59 SA 5B 5C 5D 5€ SF
none 100 60 61 62 63 64 65 66 67
[EBP*2] 101 68 69 B6A 6B 6C 6D 6€E 6F
[ESI*2] 110 70 71 72 73 74 75 76 77
[eDI*2] 111 78 79 7A 7B 7C 70 7€ 7F
[EAX*4] 10 000 80 81 82 83 84 85 86 87
[ECX*4] 001 88 89 8A 8B 8C 8D 8E 8F
[EDX*4] 010 90 91 92 93 94 95 96 97
[EBX*4] 011 98 99 9A 9B 9C 9D 9€E 9F
one 100 A0 A1 A2 A3 A4 A5 A6 A7
[EBP*4] 101 A8 A9 AB AC AD AE AF
[ESI*4] 110 BO B1 B2 B3 B4 BS B6 B7
[EDI*4] 111 B8 B9 BA BB BC BD BE BF
[EAX*8] 11 000 co a [e} C4 5 6 c7
[ECX‘S 001 8 9 CA B cc (0] CE CF
EDX*8 010 Do D1 D2 D3 D4 D5 D6 D7
[EBX*8] 011 D8 D9 DA DB DC DD DE DF
none 100 €0 El €2 €3 E4 €5 €6 €7
EBP*8] 101 €8 E9 EA EB EC €D EE EF
ESI*8] 110 FO F1 F2 F3 F4 F5 F6 F7
[eDI*8] 111 F8 F9 FA FB FC FD FE FF
NOTES:

1. The [*] nomenclature means a disp32 with no base if the MOD is 00B. Otherwise, [*] means disp8 or disp32 + [EBP]. This provides the

	Vienna case study
	Vienna: relocate
	Vienna: no reinfect

	more general virus choices
	problem 1: where to add code
	replacing executable code
	appending and compressing
	cavities
	boot sectors

	problem 2: where to invoke code
	start location
	code run anyways
	replacing pointers

	signature-based detection
	Backup Slides
	Vienna: entry/exit
	Vienna: replicate

