
Viruses con’t

1

Changelog

Corrections made in this version not in first posting:
6 Feb 2017: slide 62: mov %ebp, %esp corrected to
mov %esp, %ebp

1

ASM assignment

is out

2

anonymous feedback

“Please make the homeworks due at midnight
instead of 8pm, it’s much easier to find time to work
on homework later in the night”

my main concern:
don’t want peak demand for help to be after 6pm Friday

3

last time

x86 encoding + special cases
bit sloppy
didn’t answer whether add %rax, %rax and add
(%rax), %rax can have same opcode

(they can — different ModRM byte mod)

started: the Vienna virus

4

x86 encoding short version

bytes: (prefixes) (opcode) (ModRM) (SIB) (displace/immediate)

one register: reg field of ModRM byte or in opcode
0 = %rax, 1 = %rcx, …, 7 = %rdi

two registers: reg and r/m field of ModRM byte
mod field of ModRM selects %reg versus
offset(%reg)

three registers: reg field of ModRM, index, base
field of SIB
REX prefix: extra bits for up to three register
numbers

8 = %r8, …
5

on the ASM assignment

write VolumeAndDensity
writes results into 32-bit outputs

symbol table in object file: local and global entries

local — used in current file; debuggers

global — visible from other files
not default
.globl VolumeAndDensity

6

Vienna: infection outline

Vienna appends code to infected application

where does it read the code come from?

how is code adjusted for new location in the binary?
what linker would do

how does it keep files from getting infinitely long?

7

Vienna relocation

very little use of absolute addresses:
exception — 0x100 (program start address)
jmps use relative addresses (value to add to PC)

virus uses %si as a “base register”
points to beginning of virus data
set very early in virus execution
add/subtract to access data in virus

set via mov $0x8fd, %si near beginning of virus

8

Vienna relocation

// set virus data address:
0x700: mov $0x8f9, %si

// machine code: be f9 08
// be: opcode
// f9 08: immediate

...
// %ax contains file length (of file to infect)
mov %ax, %cx
...
add $0x2f9, %cx
mov %si, %di
sub $0x1f7, %di // %di ← 0x701
mov %cx, (%di) // update mov instruction
...

9

Vienna relocation

// set virus data address:
0x700: mov $0x8f9, %si

// machine code: be f9 08
// be: opcode
// f9 08: immediate

...
// %ax contains file length (of file to infect)
mov %ax, %cx
...
add $0x2f9, %cx
mov %si, %di
sub $0x1f7, %di // %di ← 0x701
mov %cx, (%di) // update mov instruction
...

9

Vienna relocation

// set virus data address:
0x700: mov $0x8f9, %si

// machine code: be f9 08
// be: opcode
// f9 08: immediate

...
// %ax contains file length (of file to infect)
mov %ax, %cx
...
add $0x2f9, %cx
mov %si, %di
sub $0x1f7, %di // %di ← 0x701
mov %cx, (%di) // update mov instruction
...

9

Vienna relocation

edit actual code for mov

why doesn’t this disrupt virus execution?

already ran that instruction

10

Vienna relocation

edit actual code for mov

why doesn’t this disrupt virus execution?
already ran that instruction

10

Vienna relocation

0x700: mov $0x8f9, %si
...
// %ax contains file length
// (of file to infect)
mov %ax, %cx
sub $3, %ax
// update template jmp instruction
mov %ax, 0xe(%si) // 0xe + %si = 0x907
...
mov $40, %ah
mov $3, %cx
mov %si, %dx
add $0xD, %dx // dx ← 0x906
int 0x21 // system call: write 3 bytes from 0x906
...
0x906: e9 fd 05 // jmp PC+FD 05

11

Vienna relocation

0x700: mov $0x8f9, %si
...
// %ax contains file length
// (of file to infect)
mov %ax, %cx
sub $3, %ax
// update template jmp instruction
mov %ax, 0xe(%si) // 0xe + %si = 0x907
...
mov $40, %ah
mov $3, %cx
mov %si, %dx
add $0xD, %dx // dx ← 0x906
int 0x21 // system call: write 3 bytes from 0x906
...
0x906: e9 fd 05 // jmp PC+FD 05

11

Vienna relocation

0x700: mov $0x8f9, %si
...
// %ax contains file length
// (of file to infect)
mov %ax, %cx
sub $3, %ax
// update template jmp instruction
mov %ax, 0xe(%si) // 0xe + %si = 0x907
...
mov $40, %ah
mov $3, %cx
mov %si, %dx
add $0xD, %dx // dx ← 0x906
int 0x21 // system call: write 3 bytes from 0x906
...
0x906: e9 fd 05 // jmp PC+FD 05

11

alternative relocation

could avoid having pointer to update:
0000000000000000 <next-0x3>:

0: e8 00 00 call 3 <next>
target addresses encoded relatively
pushes return address (next) onto stack

0000000000000003 <next>:
3: 59 pop %cx
cx containts address of the pop instruction

why didn’t Vienna do this?

12

Vienna: infection outline

Vienna appends code to infected application

where does it read the code come from?

how is code adjusted for new location in the binary?
what linker would do

how does it keep files from getting infinitely long?

13

Vienna: avoiding reinfection

scans through active directories for executables

“marks” infected executables in file metadata
could have checked for virus code — but slow

14

DOS last-written times

16-bit number for date; 16-bit number for time

15 9 8 5 4 0
Y-1980 Mon Day

15 11 10 5 4 0
H Min Sec/2

Sec/2: 5 bits: range from 0–31
corresponds to 0 to 62 seconds

Vienna trick: set infected file times to 62 seconds

need to update times anyways — hide tracks

15

DOS last-written times

16-bit number for date; 16-bit number for time

15 9 8 5 4 0
Y-1980 Mon Day

15 11 10 5 4 0
H Min Sec/2

Sec/2: 5 bits: range from 0–31
corresponds to 0 to 62 seconds

Vienna trick: set infected file times to 62 seconds

need to update times anyways — hide tracks

15

virus choices

where to put code

how to get code ran

16

virus choices

where to put code

how to get code ran

17

where to put code

considerations:
spreading — files that will be copied/reused
spreading — files that will be ran
stealth — user shouldn’t know until too late

18

where to put code: options

one or more of:

replacing executable code

after executable code (Vienna)

in unused executable code

inside OS code

in memory

19

where to put code: options

one or more of:

replacing executable code

after executable code (Vienna)

in unused executable code

inside OS code

in memory

20

replace executable

original
executable

virus code

21

replace executable?

seems silly — not stealthy!

has appeared in the wild — ILOVEYOU

2000 ILOVEYOU Worm
written in Visual Basic (!)
spread via email
replaced lots of files with copies of itself

huge impact — because destroying data to copy itself

22

replace executable — subtle

original
executable

virus code
run original from tempfile

original
executable

23

where to put code: options

one or more of:

replacing executable code

after executable code (Vienna)

in unused executable code

inside OS code

in memory

24

appending

original
executable

original
executable

virus code

jmp to virus

25

note about appending

COM files are very simple — no metadata

modern executable formats have length information
to update

add segment to program header
update last segment of program header (size + make it
executable)

26

compressing viruses

file too big? how about compression

original
executable

virus code

decompressor

compressed
executable

unused space

27

where to put code: options

one or more of:

replacing executable code

after executable code (Vienna)

in unused executable code

inside OS code

in memory

28

unused code???

why would a program have unused code????

29

unused code case study: /bin/ls

unreachable no-ops!
...
403788: e9 59 0c 00 00 jmpq 4043e6 <__sprintf_chk@plt+0x1a06>
40378d: 0f 1f 00 nopl (%rax)
403790: ba 05 00 00 00 mov $0x5,%edx

...
403ab9: eb 4d jmp 403b08 <__sprintf_chk@plt+0x1128>
403abb: 0f 1f 44 00 00 nopl 0x0(%rax,%rax,1)
403ac0: 4d 8b 7f 08 mov 0x8(%r15),%r15

...
404a01: c3 retq
404a02: 0f 1f 40 00 nopl 0x0(%rax)
404a06: 66 2e 0f 1f 84 00 00 nopw %cs:0x0(%rax,%rax,1)
404a0d: 00 00 00
404a10: be 00 e6 61 00 mov $0x61e600,%esi

...

30

why empty space?

Intel Optimization Reference Manual:
“Assembly/Compiler Coding Rule 12. (M
impact, H generality) All branch targets should be
16-byte aligned.”

better for instruction cache (and TLB and related caches)
better for instruction decode logic
function calls count as branches for this purpose

31

why weird nops

could fill with anything — unreachable

nops allow compiler/assembler to align without
checking reachability
nops better for disassembly

Intel manual recommends form of nop for different
lengths

possibly better for CPU
“Placing data immediately following an indirect branch
can cause performance problems. If the data consists of
all zeros, it looks like a long stream of ADDs to memory
destinations, and this can cause resource conflicts…”

32

other empty space

unused dynamic linking structure

unused debugging/symbol table information?

unused space between segments

unused header space
file offsets of segments can be in middle of header
loader doesn’t care what segments “mean”

33

other empty space

unused dynamic linking structure

unused debugging/symbol table information?

unused space between segments

unused header space
file offsets of segments can be in middle of header
loader doesn’t care what segments “mean”

34

dynamic linking cavity

.dynamic section — data structure used by
dynamic linker:
format: list of 8-byte type, 8-byte value

terminated by type == 0 entry
Contents of section .dynamic:
600e28 01000000 00000000 01000000 00000000

... several non-empty entries ...
600f88 f0ffff6f 00000000 56034000 00000000 ...o....V.@.....

VERSYM (required library version info at) 0x400356
600f98 00000000 00000000 00000000 00000000

NULL --- end of linker info
600fa8 00000000 00000000 00000000 00000000

unused! (and below)
600fb8 00000000 00000000 00000000 00000000
600fc8 00000000 00000000 00000000 00000000
600fd8 00000000 00000000 00000000 00000000
600fe8 00000000 00000000 00000000 00000000

35

is there enough empty space?

cavities look awfully small

really small viruses?

solution: chain cavities together

36

case study: CIH (1)

original
executable

virus startup code
virus code locs

virus code part 1

virus code part 2

virus code part 3

37

case study: CIH (2)

virus startup code
virus code locs

virus code part 1

virus code part 2

virus code part 3

in memory:

virus code part 1
virus code part 2
virus code part 3

38

CIH cavities

gaps between sections
common Windows linker aligned sections
(align = start on address multiple of N , e.g. 4096)
probably means kilobytes of cavity in typical binary
normal Linux linker doesn’t do this

smaller executables but less convenient for linker+loader

reassembling: unsplit multibyte instructions

39

where to put code: options

one or more of:

replacing executable code

after executable code (Vienna)

in unused executable code

inside OS code

in memory

40

boot process
processor reset

BIOS/EFI
(chip on motherboard)

bootloader

operating system

very CPU/motherboard-specific code

fixed location on disk
code that understands files

files in a filesystem

41

boot process
processor reset

BIOS/EFI
(chip on motherboard)

bootloader

operating system

very CPU/motherboard-specific code

fixed location on disk
code that understands files

files in a filesystem

41

bootloaders in the DOS era

used to be common to boot from floppies

default to booting from floppy if present
even if hard drive to boot from

applications distributed as bootable floppies

so bootloaders on all devices were a target for viruses

42

historic bootloader layout

bootloader in first sector (512 bytes) of device

(along with partition information)

code in BIOS to copy bootloader into RAM, start
running

bootloader responsible for disk I/O etc.
some library-like functionality in BIOS for I/O

43

bootloader viruses

example: Stoned

data here???

partition table

bootloader
partition table

virus code

saved bootloader
partition table (unused)

44

bootloader viruses

example: Stoned

data here???

partition table

bootloader
partition table

virus code

saved bootloader
partition table (unused)

44

data here???

might be data there — risk

some unused space after partition table/boot loader
common

(allegedly)

also be filesystem metadata not used on smaller
floppies/disks

but could be wrong — oops

45

modern bootloaders — UEFI

BIOS-based boot is going away (slowly)

new thing: UEFI (Universal Extensible Firmware
Interface)

like BIOS:
library functionality for bootloaders
loads initial code from disk/DVD/etc.

unlike BIOS:
much more understanding of file systems
much more modern set of library calls

46

modern bootloaders — secure boot

“Secure Boot” is a common feature of modern
bootloaders

idea: UEFI/BIOS code checks bootloader code, fails
if not okay

requires user intervention to use not-okay code

47

Secure Boot and keys

Secure Boot relies on cryptographic signatures
idea: accept only “legitimate” bootloaders
legitimate: known authority vouched for them

user control of their own systems?
in theory: can add own keys

what about changing OS instead of bootloader?
need smart bootloader

48

boot process
processor reset

BIOS/EFI
(chip on motherboard)

bootloader

operating system

very CPU/motherboard-specific code

fixed location on disk
code that understands files

files in a filesystem

49

BIOS/UEFI implants

infrequent

BIOS/UEFI code is very non-portable

BIOS/UEFI update may require physical access

BIOS/UEFI code may require cryptographic
signatures

…but very hard to remove — “persist” other malware
reports of BIOS/UEFI-infecting “implants”

sold by Hacking Team (Milan-based malware company)
listed in leaked NSA Tailored Access Group catalog

50

boot process
processor reset

BIOS/EFI
(chip on motherboard)

bootloader

operating system

very CPU/motherboard-specific code

fixed location on disk
code that understands files

files in a filesystem

51

system files

simpliest strategy: stuff that runs when you start
your computer

add a new startup program, run in the background
easy to blend in

alternatively, infect one of many system programs
automatically run

52

memory residence

malware wants to keep doing stuff

one option — background process (easy on modern
OSs)

also stealthy options:
insert self into OS code
insert self into other running programs

more commonly, OS code used for hiding malware
topic for later

53

54

virus choices

where to put code

how to get code ran

55

invoking virus code: options

boot loader

change starting location

alternative approaches: “entry point obscuring”

edit code that’s going to run anyways

replace a function pointer (or similar)

…

56

invoking virus code: options

boot loader

change starting location

alternative approaches: “entry point obscuring”

edit code that’s going to run anyways

replace a function pointer (or similar)

…

56

starting locations

/bin/ls: file format elf64-x86-64
/bin/ls
architecture: i386:x86-64, flags 0x00000112:
EXEC_P, HAS_SYMS, D_PAGED
start address 0x00000000004049a0

modern executable formats have ‘starting address’
field

just change it, insert jump to old address after virus
code

57

invoking virus code: options

boot loader

change starting location

alternative approaches: “entry point obscuring”

edit code that’s going to run anyways

replace a function pointer (or similar)

…

58

run anyways?

add code at start of program (Vienna)

return with padding after it:
404a01: c3 retq
404a02: 0f 1f 40 00 nopl 0x0(%rax)

replace with
404a01: e9 XX XX XX XX jmpq YYYYYYY

any random place in program?
just not in the middle of instruction

59

challenge: valid locations

x86: probably don’t want a full instruction parser

x86: might be non-instruction stuff mixed in with
code:
do_some_floating_point_stuff:

movss float_one(%rip), %xmm0
...
retq

float_one: .float 1

floating point value one (00 00 80 3f) is not valid
machine code
disassembler might lose track of instruction boundaries

60

finding function calls

one idea: replace calls

normal x86 call FOO: E8 (32-bit value: PC
- address of foo)

could look for E8 in code — lots of false positives
probably even if one excludes out-of-range addresses

61

really finding function calls

e.g. some popular compilers started x86-32 functions
with
foo:

push %ebp // push old frame pointer
// 0x55
mov %esp, %ebp // set frame pointer to stack pointer
// 0x89 0xec

use to identify when e8 refers to real function
(full version: also have some other function start
patterns)

62

remember stubs?

0000000000400400 <puts@plt>:
400400: ff 25 12 0c 20 00 jmpq *0x200c12(%rip)

/* 0x200c12+RIP = _GLOBAL_OFFSET_TABLE_+0x18 */
400406: 68 00 00 00 00 pushq $0x0
40040b: e9 e0 ff ff ff jmpq 4003f0 <_init+0x28>

replace with:
400400: e8 XX XX XX XX jmpq virus_code
400405: 90 nop
400406: 68 00 00 00 00 pushq $0x0
40040b: e9 e0 ff ff ff jmpq 4003f0 <_init+0x28>

in known location (particular section of executable)

63

invoking virus code: options

boot loader

change starting location

alternative approaches: “entry point obscuring”

edit code that’s going to run anyways

replace a function pointer (or similar)

…

64

stubs again

0000000000400400 <puts@plt>:
400400: ff 25 12 0c 20 00 jmpq *0x200c12(%rip)

/* 0x200c12+RIP = _GLOBAL_OFFSET_TABLE_+0x18 */
400406: 68 00 00 00 00 pushq $0x0
40040b: e9 e0 ff ff ff jmpq 4003f0 <_init+0x28>

don’t edit stub — edit initial value of
_GLOBAL_OFFSET_TABLE

stored in data section of executable

originally: pointer 0x400406; new — virus code

65

relocations?

hello.exe: file format elf64-x86-64

DYNAMIC RELOCATION RECORDS
OFFSET TYPE VALUE
0000000000600ff8 R_X86_64_GLOB_DAT __gmon_start__
0000000000601018 R_X86_64_JUMP_SLOT puts@GLIBC_2.2.5

replace with:
0000000000601018 R_X86_64_JUMP_SLOT _start + offset_of_virus
0000000000601020 R_X86_64_JUMP_SLOT __libc_start_main@GLIBC_2.2.5

tricky — usually no symbols from executable in
dynamic symbol table

(symbols from debugger/disassembler are a different
table)
Linux — need to link with -rdynamic

but…same idea works on shared library itself

66

relocations?

hello.exe: file format elf64-x86-64

DYNAMIC RELOCATION RECORDS
OFFSET TYPE VALUE
0000000000600ff8 R_X86_64_GLOB_DAT __gmon_start__
0000000000601018 R_X86_64_JUMP_SLOT puts@GLIBC_2.2.5

replace with:
0000000000601018 R_X86_64_JUMP_SLOT _start + offset_of_virus
0000000000601020 R_X86_64_JUMP_SLOT __libc_start_main@GLIBC_2.2.5

tricky — usually no symbols from executable in
dynamic symbol table

(symbols from debugger/disassembler are a different
table)
Linux — need to link with -rdynamic

but…same idea works on shared library itself
66

infecting shared libraries

kernel32.dll

header
symbol table

GetFileAttributesA
…

kernel32.dll

header
symbol table

virus code

GetFileAttributesA
…

67

summary

how to hide:
separate executable
append
existing “unused” space
compression

how to run:
change entry point
or “entry point obscuring”:
change some code (requires care!)
change library

68

anti-malware strategies

antivirus goals:
prevent malware from running
prevent malware from spreading
undo the effects of malware

69

malware detection

important part: detecting malware

simple way:
have a copy of a malicious executable
compare every program to it

how big? every executable infected with every virus?when? how fast?

70

malware detection

important part: detecting malware

simple way:
have a copy of a malicious executable
compare every program to it

how big? every executable infected with every virus?

when? how fast?

70

malware detection

important part: detecting malware

simple way:
have a copy of a malicious executable
compare every program to it

how big? every executable infected with every virus?

when? how fast?

70

malware “signatures”

antivirus vendor have “signatures” for known
malware

many options to represent signatures

thought process: signature for Vienna?

71

exercise: signatures for Vienna

jmp 0x0700
mov $0x9e4e, %si
...
push %cx
mov $0x8f9, %si
...
mov $0x0100, %di
mov $3, %cx
rep movsb
...

...
add $0x2f9, %cx
mov %si, %di
sub $0x1f7, %di
mov %cx, (%di)
...
mov $0x288, %cx
mov $0x40 %ah
mov $si, $dx
sub $0x1f9, %dx
int 0x21
...

pop %cx
xor %ax, %ax
xor %bx, %bx
xor %dx, %dx
mov $0x0100 %di
push %di
xor %di, %di
ret

72

simple signature

all the code Vienna copies

… except changed mov to %si

virus doesn’t change it to relocate

includes infection code — definitely malicious

73

signature generality

the Vienna virus was copied a bunch of times

small changes, “payloads” added
print messages, do malicious things, …

this signature will not detect any variants

can we do better?

74

simple signature (2)

Vienna infection code
scans directory, finds files

likely to stay the same in variants…

…except that virus writer’s will change it

75

Anti-VirusAnti-Virus andandVirusVirus

signature checking

how fast is signature checking?

clever trick: only read end of file (where virus code
will be)

very fast

77

generalizing the signature

another possibility: detect writing to 0x100

0x100 was DOS program entry code — no program
should do this

problem: how to represent this

78

regular expressions

one method of representing patterns like this:
regular expressions (regexes)

restricted language allows very fast implementations
especially when there’s a long list of patterns to look for

homework assignment next week

more next class

along with other anti-virus techniques

79

anti-virus: essential or worthless?

ungraded homework assignment

watch Hanno Böck’s talk “In Search of
Evidence-Based IT Security”

a rant mostly about antivirus-like software

80

Case Study: Vienna Virus

Vienna: virus from the 1980s

This version: published in Ralf Burger, “Computer
Viruses: a high-tech disease” (1988)

targetted COM-format executables on DOS

81

Diversion: .COM files

.COM is a very simple executable format

no header, no segments, no sections

file contents loaded at fixed address 0x0100

execution starts at 0x0100

everything is read/write/execute (no virtual memory)

82

Vienna: infection

0x0100:
mov $0x4f28, %cx
/* b9 28 4f */

0x0103:
mov $0x9e4e, %si
/* be 4e 9e */
mov %si, %di
push %ds
/* more normal

program
code */

....
0x0700: /* end */

uninfected
0x0100: jmp 0x0700
0x0103: mov $0x9e4e, %si
...
0x0700:

push %cx
... // %si ← 0x903
mov $0x100, %di
mov $3, %cx
rep movsb
...
mov $0x0100, %di
push %di
xor %di, %di
ret

...
0x0903:

.bytes 0xb9 0x28 0x4f
...

infected

83

Vienna: “fixup”

0x0700:
push %cx // initial value of %cx matters??
mov $0x8fd, %si // %si ← beginning of data
mov %si, %dx // save %si

// movsb uses %si, so
// can't use another register

add $0xa, %si // offset of saved code in data
mov $0x100, %di // target address
mov $3, %cx // bytes changed
/* copy %cx bytes from (%si) to (%di) */
rep movsb
...

...
// saved copy of original application code
0x903: .byte 0xb9 .byte 0x28 .byte 0x4f

84

Vienna: “fixup”

0x0700:
push %cx // initial value of %cx matters??
mov $0x8fd, %si // %si ← beginning of data
mov %si, %dx // save %si

// movsb uses %si, so
// can't use another register

add $0xa, %si // offset of saved code in data
mov $0x100, %di // target address
mov $3, %cx // bytes changed
/* copy %cx bytes from (%si) to (%di) */
rep movsb
...

...
// saved copy of original application code
0x903: .byte 0xb9 .byte 0x28 .byte 0x4f

84

Vienna: “fixup”

0x0700:
push %cx // initial value of %cx matters??
mov $0x8fd, %si // %si ← beginning of data
mov %si, %dx // save %si

// movsb uses %si, so
// can't use another register

add $0xa, %si // offset of saved code in data
mov $0x100, %di // target address
mov $3, %cx // bytes changed
/* copy %cx bytes from (%si) to (%di) */
rep movsb
...

...
// saved copy of original application code
0x903: .byte 0xb9 .byte 0x28 .byte 0x4f

84

Vienna: return

0x08e7:
pop %cx // restore initial value of %cx, %sp
xor %ax, %ax // %ax ← 0
xor %bx, %bx
xor %dx, %dx
xor %si, %si
// push 0x0100
mov $0x0100, %di
push %di
xor %di, %di // %di ← 0
// pop 0x0100 from stack
// jmp to 0x0100
ret

question: why not just jmp 0x0100 ?
85

Vienna: infection outline

Vienna appends code to infected application

where does it read the code come from?

how is code adjusted for new location in the binary?
what linker would do

how does it keep files from getting infinitely long?

86

Vienna: infection outline

Vienna appends code to infected application

where does it read the code come from?

how is code adjusted for new location in the binary?
what linker would do

how does it keep files from getting infinitely long?

87

quines

exercise: write a C program that outputs its source
code

(pseudo-code only okay)

possible in any (Turing-complete) programming language

called a “quine”

88

clever quine solution

#include <stdio.h>
char*x="int main(){

printf(p,10,34,x,34,10,34,p,34,10,x,10);
}";

char*p="#include <stdio.h>%c
char*x=%c%s%c;%cchar*p=%c%s%c;
%c%s%c";

int main(){
printf(p,10,34,x,34,10,34,p,34,10,x,10);

}

some line wrapping for readability — shouldn’t be in
actual quine

printf to fill template:
10 = newline; 34 = double-quote;
x, p = template/constant strings

template filled by printf

89

clever quine solution

#include <stdio.h>
char*x="int main(){

printf(p,10,34,x,34,10,34,p,34,10,x,10);
}";

char*p="#include <stdio.h>%c
char*x=%c%s%c;%cchar*p=%c%s%c;
%c%s%c";

int main(){
printf(p,10,34,x,34,10,34,p,34,10,x,10);

}

some line wrapping for readability — shouldn’t be in
actual quine

printf to fill template:
10 = newline; 34 = double-quote;
x, p = template/constant strings

template filled by printf

89

clever quine solution

#include <stdio.h>
char*x="int main(){

printf(p,10,34,x,34,10,34,p,34,10,x,10);
}";

char*p="#include <stdio.h>%c
char*x=%c%s%c;%cchar*p=%c%s%c;
%c%s%c";

int main(){
printf(p,10,34,x,34,10,34,p,34,10,x,10);

}

some line wrapping for readability — shouldn’t be in
actual quine

printf to fill template:
10 = newline; 34 = double-quote;
x, p = template/constant strings

template filled by printf

89

dumb quine solution

#include <stdio.h>
int main(void) {

char buffer[1024];
FILE *f = fopen("quine.c", "r");
size_t bytes = fread(buffer, 1,

sizeof(buffer), f);
fwrite(buffer, 1, bytes, stdout);
return 0;

}

a lot more straightforward!

but “cheating”

90

Vienna copying

mov $0x8f9, %si // %si = beginning of virus data
...
mov $0x288, %cx // length of virus
mov $0x40, %ah // system call # for write
mov %si, %dx
sub $0x1f9, %dx // %dx = beginning of virus code
int 0x21 // make write system call

91

Vienna copying

mov $0x8f9, %si // %si = beginning of virus data
...
mov $0x288, %cx // length of virus
mov $0x40, %ah // system call # for write
mov %si, %dx
sub $0x1f9, %dx // %dx = beginning of virus code
int 0x21 // make write system call

91

32-bit ModRM table

92

SIB table

93

	Vienna case study
	Vienna: relocate
	Vienna: no reinfect

	more general virus choices
	problem 1: where to add code
	replacing executable code
	appending and compressing
	cavities
	boot sectors

	problem 2: where to invoke code
	start location
	code run anyways
	replacing pointers

	signature-based detection
	Backup Slides
	Vienna: entry/exit
	Vienna: replicate

