
viruses 3 / anti-virus

1

Changelog

Corrections made in this version not in first posting:
8 Feb 2017: slide 31: visible space after negative foo
example
8 Feb 2017: slide 35: [a-zA-Z]*ing instead of
[a-zA-Z]ing
8 Feb 2017: slide 56: correct animation to show hashes
second

1

on due dates

2

ASM assignment questions?

3

last time

places to put malicious code
replace executable
append/prepend
cavities
bootloaders/OS code

started: ways to get code to run
replace start address
replace instructions that are run

identify returns/function calls/etc.

4

last time

places to put malicious code
replace executable
append/prepend
cavities
bootloaders/OS code

started: ways to get code to run
replace start address
replace instructions that are run

identify returns/function calls/etc.

4

invoking virus code: options

boot loader

change starting location

alternative approaches: “entry point obscuring”

edit code that’s going to run anyways

replace a function pointer (or similar)

…

5

run anyways?

add code at start of program (Vienna)

return with padding after it:
404a01: c3 retq
404a02: 0f 1f 40 00 nopl 0x0(%rax)

replace with
404a01: e9 XX XX XX XX jmpq YYYYYYY

any random place in program?
just not in the middle of instruction

6

recall: finding function calls

e.g. some popular compilers started x86-32 functions
with
foo:

push %ebp // push old frame pointer
// 0x55
mov %esp, %ebp // set frame pointer to stack pointer
// 0x89 0xec

use to identify when e8 (call opcode) refers to
real function

(full version: also have some other function start
patterns)

7

remember stubs?

0000000000400400 <puts@plt>:
400400: ff 25 12 0c 20 00 jmpq *0x200c12(%rip)

/* 0x200c12+RIP = _GLOBAL_OFFSET_TABLE_+0x18 */
400406: 68 00 00 00 00 pushq $0x0
40040b: e9 e0 ff ff ff jmpq 4003f0 <_init+0x28>

replace with:
400400: e8 XX XX XX XX jmpq virus_code
400405: 90 nop
400406: 68 00 00 00 00 pushq $0x0
40040b: e9 e0 ff ff ff jmpq 4003f0 <_init+0x28>

in known location (particular section of executable)

dynamic linker: just modifies global offset table

8

invoking virus code: options

boot loader

change starting location

alternative approaches: “entry point obscuring”

edit code that’s going to run anyways

replace a function pointer (or similar)

…

9

stubs again

0000000000400400 <puts@plt>:
400400: ff 25 12 0c 20 00 jmpq *0x200c12(%rip)

/* 0x200c12+RIP = _GLOBAL_OFFSET_TABLE_+0x18 */
400406: 68 00 00 00 00 pushq $0x0
40040b: e9 e0 ff ff ff jmpq 4003f0 <_init+0x28>

don’t edit stub — edit initial value of
_GLOBAL_OFFSET_TABLE

stored in data section of executable

originally: pointer to 0x400406; new — pointer to
virus code

virus can jmp back to 0x400406 when done

10

relocations?

hello.exe: file format elf64-x86-64

DYNAMIC RELOCATION RECORDS
OFFSET TYPE VALUE
0000000000600ff8 R_X86_64_GLOB_DAT __gmon_start__
0000000000601018 R_X86_64_JUMP_SLOT puts@GLIBC_2.2.5

replace with:
0000000000601018 R_X86_64_JUMP_SLOT _start + offset_of_virus
0000000000601020 R_X86_64_JUMP_SLOT __libc_start_main@GLIBC_2.2.5

tricky — usually no symbols from executable in
dynamic symbol table

(debugger/disassembler symbols are different tables)
Linux — need to link with -rdynamic

but…same idea works on shared library itself

11

relocations?

hello.exe: file format elf64-x86-64

DYNAMIC RELOCATION RECORDS
OFFSET TYPE VALUE
0000000000600ff8 R_X86_64_GLOB_DAT __gmon_start__
0000000000601018 R_X86_64_JUMP_SLOT puts@GLIBC_2.2.5

replace with:
0000000000601018 R_X86_64_JUMP_SLOT _start + offset_of_virus
0000000000601020 R_X86_64_JUMP_SLOT __libc_start_main@GLIBC_2.2.5

tricky — usually no symbols from executable in
dynamic symbol table

(debugger/disassembler symbols are different tables)
Linux — need to link with -rdynamic

but…same idea works on shared library itself

11

infecting shared libraries

kernel32.dll

header
symbol table

GetFileAttributesA
…

kernel32.dll

header
symbol table

virus code

GetFileAttributesA
…

12

TRICKY

next assignment: TRICKY

insert “tricky jump” to virus code
replacing “ret” followed by cavity of nops

submission: program to modify supplied executable
need not work on any other program
but, question: how you’d modify it to work on other
programs

13

virus choices?

why don’t viruses always append/replace?

why don’t viruses always change start location?

why did I bother talking about all these strategies?

head/tail scanning?check for suspicious starting location?

14

more on virus strategies

after we talk about anti-virus strategies some

15

Anti-VirusAnti-Virus andandVirusVirus

anti-malware strategies

antivirus goals:
prevent malware from running
prevent malware from spreading
undo the effects of malware

17

malware detection

important part: detecting malware

simple way:
have a copy of a malicious executable
compare every program to it

how big? every executable infected with every virus?when? how fast?

18

malware detection

important part: detecting malware

simple way:
have a copy of a malicious executable
compare every program to it

how big? every executable infected with every virus?

when? how fast?

18

malware detection

important part: detecting malware

simple way:
have a copy of a malicious executable
compare every program to it

how big? every executable infected with every virus?

when? how fast?

18

malware “signatures”

antivirus vendor have signatures for known malware

many options to represent signatures

thought process: signature for Vienna?

goals: compact, fast to check, reliable

19

exercise: signatures for Vienna
jmp 0x0700
mov $0x9e4e, %si
...
/* app code */
...
push %cx
mov $0x8f9, %si
...
mov $0x0100, %di
mov $3, %cx
rep movsb
...

...
add $0x2f9, %cx
mov %si, %di
sub $0x1f7, %di
mov %cx, (%di)
...
mov $0x288, %cx
mov $0x40 %ah
mov $si, $dx
sub $0x1f9, %dx
int 0x21
...

pop %cx
xor %ax, %ax
xor %bx, %bx
xor %dx, %dx
mov $0x0100, %di
push %di
xor %di, %di
ret
/* virus data */

20

exercise: signatures for Vienna
jmp 0x0700
mov $0x9e4e, %si
...
/* app code */
...
push %cx
mov $0x8f9, %si
...
mov $0x0100, %di
mov $3, %cx
rep movsb
...

...
add $0x2f9, %cx
mov %si, %di
sub $0x1f7, %di
mov %cx, (%di)
...
mov $0x288, %cx
mov $0x40 %ah
mov $si, $dx
sub $0x1f9, %dx
int 0x21
...

pop %cx
xor %ax, %ax
xor %bx, %bx
xor %dx, %dx
mov $0x0100, %di
push %di
xor %di, %di
ret
/* virus data */

20

exercise: signatures for Vienna
jmp 0x0700
mov $0x9e4e, %si
...
/* app code */
...
push %cx
mov $0x8f9, %si
...
mov $0x0100, %di
mov $3, %cx
rep movsb
...

...
add $0x2f9, %cx
mov %si, %di
sub $0x1f7, %di
mov %cx, (%di)
...
mov $0x288, %cx
mov $0x40 %ah
mov $si, $dx
sub $0x1f9, %dx
int 0x21
...

pop %cx
xor %ax, %ax
xor %bx, %bx
xor %dx, %dx
mov $0x0100, %di
push %di
xor %di, %di
ret
/* virus data */

20

exercise: signatures for Vienna
jmp 0x0700
mov $0x9e4e, %si
...
/* app code */
...
push %cx
mov $0x8f9, %si
...
mov $0x0100, %di
mov $3, %cx
rep movsb
...

...
add $0x2f9, %cx
mov %si, %di
sub $0x1f7, %di
mov %cx, (%di)
...
mov $0x288, %cx
mov $0x40 %ah
mov $si, $dx
sub $0x1f9, %dx
int 0x21
...

pop %cx
xor %ax, %ax
xor %bx, %bx
xor %dx, %dx
mov $0x0100, %di
push %di
xor %di, %di
ret
/* virus data */

20

simple signature (1)

all the code Vienna copies

… except changed mov to %si

virus doesn’t change it to relocate

includes infection code — definitely malicious

21

signature generality

the Vienna virus was copied a bunch of times

small changes, “payloads” added
print messages, do different malicious things, …

this signature will not detect any variants

can we do better?

22

simple signature (2)

Vienna start code
weird jump at beginning??

problem: maybe real applications do this?

problem: easy to move jump

23

simple signature (3)

Vienna infection code
scans directory, finds files

likely to stay the same in variants?

problem: virus writers react to antivirus

24

simple signature (3)

Vienna infection code
scans directory, finds files

likely to stay the same in variants?

problem: virus writers react to antivirus

24

simple signature (4)

Vienna finish code
push + ret

very unusual pattern

probably(?) not in “real” programs

real effort to change to something else?

problem: virus writers react to antivirus

25

simple signature (4)

Vienna finish code
push + ret

very unusual pattern

probably(?) not in “real” programs

real effort to change to something else?

problem: virus writers react to antivirus

25

making things hard for the mouse

don’t want trivial changes to break detection

want to detect strategies
e.g. require changing relocation logic
…not just reordering instructions

goals: compact, fast to check, reliable, general?

26

signature checking

how fast is signature checking?

problem: lots of I/O?

problem: how complicated are signatures?

27

generic pattern example

another possibility: detect writing near 0x100

0x100 was DOS program entry code — no program
should do this(?)

problem: how to represent this?
describe machine code bytes
multiple possibilities

28

regular expressions

one method of representing patterns like this:
regular expressions (regexes)

restricted language allows very fast implementations
especially when there’s a long list of patterns to look for

homework assignment next week

29

regular expressions:
implementations

multiple implementations of regular expressions

we will target: flex, a parser generator

30

simple patterns

alphanumeric characters match themselves

foo:
matches exactly foo only
does not match Foo
does not match foo␣
does not match foobar

backslash might be needed for others

C\+\+
matches exactly C++ only

31

metachars (1)

special ways to match characters

\n, \t, \x3C, …— work like in C

[b-fi] — b or c or d or e or f or i

[^b-fi] — any character but b or c or …

. — any character except newline

(.|\n) — any character

32

metachars (2)

a* — zero or more as:
(empty string), a, aa, aaa, …

a{3,5} — three to five as:
aaa, aaaa, aaaaa

(abc){3,5} — three to five abcs: (“grouping”)
abcabcabc, abcabcabcabc, abcabcabcabcabc

ab|cd
ab, cd

(ab|cd){2} — two ab-or-cds:
abab, abcd, cdab, cdcd

33

metachars (3)

\xAB — the byte 0xAB

\x00 — the byte 0x00
flex is designed for text, handles binary fine

\n — newline (and other C string escapes)

34

example regular expressions

match words ending with ing:
[a-zA-Z]*ing

match C /* ... */ comments:
/*([^*]|*[^/])**/

35

flex

flex is a regular expression matching tool

intended for writing parsers

generates C code

parser function called yylex

36

flex example

int num_bytes = 0, num_lines = 0;
int num_foos = 0;

%%
foo {

num_bytes += 3;
num_foos += 1;

}
. { num_bytes += 1; }
\n { num_lines += 1; num_bytes += 1; }
%%
int main(void) {

yylex();
printf("%d bytes, %d lines, %d foos\n",

num_bytes, num_lines, num_foos);
}

three sectionsfirst — declarations for later
C code in output file

patterns, code to run on match
as parser: return “token” here

extra code to include

37

flex example

int num_bytes = 0, num_lines = 0;
int num_foos = 0;

%%
foo {

num_bytes += 3;
num_foos += 1;

}
. { num_bytes += 1; }
\n { num_lines += 1; num_bytes += 1; }
%%
int main(void) {

yylex();
printf("%d bytes, %d lines, %d foos\n",

num_bytes, num_lines, num_foos);
}

three sections

first — declarations for later
C code in output file

patterns, code to run on match
as parser: return “token” here

extra code to include

37

flex example

int num_bytes = 0, num_lines = 0;
int num_foos = 0;

%%
foo {

num_bytes += 3;
num_foos += 1;

}
. { num_bytes += 1; }
\n { num_lines += 1; num_bytes += 1; }
%%
int main(void) {

yylex();
printf("%d bytes, %d lines, %d foos\n",

num_bytes, num_lines, num_foos);
}

three sections

first — declarations for later
C code in output file

patterns, code to run on match
as parser: return “token” here

extra code to include

37

flex example

int num_bytes = 0, num_lines = 0;
int num_foos = 0;

%%
foo {

num_bytes += 3;
num_foos += 1;

}
. { num_bytes += 1; }
\n { num_lines += 1; num_bytes += 1; }
%%
int main(void) {

yylex();
printf("%d bytes, %d lines, %d foos\n",

num_bytes, num_lines, num_foos);
}

three sectionsfirst — declarations for later
C code in output file

patterns, code to run on match
as parser: return “token” here

extra code to include

37

flex example

int num_bytes = 0, num_lines = 0;
int num_foos = 0;

%%
foo {

num_bytes += 3;
num_foos += 1;

}
. { num_bytes += 1; }
\n { num_lines += 1; num_bytes += 1; }
%%
int main(void) {

yylex();
printf("%d bytes, %d lines, %d foos\n",

num_bytes, num_lines, num_foos);
}

three sectionsfirst — declarations for later
C code in output file

patterns, code to run on match
as parser: return “token” here

extra code to include

37

flex: matched text

%%
[aA][a−z]* {

printf("found a−word '%s'\n",
yytext);

}
(.|\n) {} /* default rule: would output text */
%%
int main(void) {

yylex();
}

yytext — text of matched thing

38

flex: matched text

%%
[aA][a−z]* {

printf("found a−word '%s'\n",
yytext);

}
(.|\n) {} /* default rule: would output text */
%%
int main(void) {

yylex();
}

yytext — text of matched thing

38

flex: definitions

A [aA]
LOWERS [a−z]
ANY (.|\n)
%%
{A}{LOWERS}* {

printf("found a−word '%s'\n",
yytext);

}
{ANY} {} /* default rule would

output text */
%%
int main(void) {

yylex();
}

definitions of common patterns
included later

39

flex: definitions

A [aA]
LOWERS [a−z]
ANY (.|\n)
%%
{A}{LOWERS}* {

printf("found a−word '%s'\n",
yytext);

}
{ANY} {} /* default rule would

output text */
%%
int main(void) {

yylex();
}

definitions of common patterns
included later

39

flex: state machines

foo {...}
. {...}
\n {...}

start f fo foo

.
\n

f o o

other\n

(back 1)

(ba
ck

2)

40

flex: state machines

foo {...}
. {...}
\n {...}

start f fo foo

.
\n

f o o

other\n (back 1)

(ba
ck

2)
40

state machine matching

abfoofoabffoo

altstart f fo foo

.
\n

f o o

other\n (back 1)

(ba
ck

2)
41

state machine matching

abfoofoabffoo

altstart f fo foo

.
\n

f o o

other\n (back 1)

(ba
ck

2)
41

state machine matching

abfoofoabffoo

altstart f fo foo

.
\n

f o o

other\n (back 1)

(ba
ck

2)
41

state machine matching

abfoofoabffoo

altstart f fo foo

.
\n

f o o

other\n (back 1)

(ba
ck

2)
41

state machine matching

abfoofoabffoo

altstart f fo foo

.
\n

f o o

other\n (back 1)

(ba
ck

2)
41

state machine matching

abfoofoabffoo

altstart f fo foo

.
\n

f o o

other\n (back 1)

(ba
ck

2)
41

state machine matching

abfoofoabffoo

altstart f fo foo

.
\n

f o o

other\n (back 1)

(ba
ck

2)
41

state machine matching

abfoofoabffoo

altstart f fo foo

.
\n

f o o

other\n (back 1)

(ba
ck

2)
41

flex states (1)

%x str
%%
\" { BEGIN(str); }
<str>\" { BEGIN(INITIAL); }
<str>foo { printf("foo in string\n"); }
foo { printf("foo out of string\n"); }
<INITIAL,str>(.|\n) {}
%%
int main(void) {

yylex();
}

declare “state” to track
which state determines what patterns are active

42

flex states (1)

%x str
%%
\" { BEGIN(str); }
<str>\" { BEGIN(INITIAL); }
<str>foo { printf("foo in string\n"); }
foo { printf("foo out of string\n"); }
<INITIAL,str>(.|\n) {}
%%
int main(void) {

yylex();
}

declare “state” to track
which state determines what patterns are active

42

flex states (1)

%x str
%%
\" { BEGIN(str); }
<str>\" { BEGIN(INITIAL); }
<str>foo { printf("foo in string\n"); }
foo { printf("foo out of string\n"); }
<INITIAL,str>(.|\n) {}
%%
int main(void) {

yylex();
}

declare “state” to track
which state determines what patterns are active
“x” — exclusive

42

flex states (2)

%s afterFoo
%%
<afterFoo>foo { printf("later␣foo\n"); }
foo {

printf("first␣foo\n");
BEGIN(afterfoo);

}
(.|\n) {}
%%
int main(void) {

yylex();
}

declare non-exclusive state

43

flex states (2)

%s afterFoo
%%
<afterFoo>foo { printf("later␣foo\n"); }
foo {

printf("first␣foo\n");
BEGIN(afterfoo);

}
(.|\n) {}
%%
int main(void) {

yylex();
}

declare non-exclusive state

43

why this?

(basically) one pass matching

basically speed of file I/O

handles multiple patterns well

flexible for “special cases”

real anti-virus: probably custom pattern “engine”

44

why this?

(basically) one pass matching

basically speed of file I/O

handles multiple patterns well

flexible for “special cases”

real anti-virus: probably custom pattern “engine”

44

other flex features

escape hatch — I/O directly from code

including “unget” function (match normally instead)

allows extra ad-hoc logic

45

future flex assignment

coming weeks — will have a flex assignment

give you idea what pattern matching can do

produce pattern for push $…; ret.

46

Vienna patterns (1)

simple Vienna patterns:

/* bytes of fixed part of Vienna sample */
\xFC\x89\xD6\x83\xC6\x81\xc7\x00\x01\x83(etc) {

printf("found Vienna code\n");
}

47

Vienna patterns (2)

simple Vienna patterns:

/* Vienna sample with wildcards for
changing bytes: */

/* push %CX; mov ???, %dx; cld; ... */
\x51\xBA(.|\n)(.|\n)\xFC\x89(etc) {

printf("found Vienna code w/placeholder\n");
}

/* mov $0x100, %di; push %di; xor %di, %di; ret */
\xBF\x00\x01\x57\x31\xFF\xC3 {

printf("found Vienna return code\n");
}

48

Vienna patterns (2)

simple Vienna patterns:

/* Vienna sample with wildcards for
changing bytes: */

/* push %CX; mov ???, %dx; cld; ... */
\x51\xBA(.|\n)(.|\n)\xFC\x89(etc) {

printf("found Vienna code w/placeholder\n");
}

/* mov $0x100, %di; push %di; xor %di, %di; ret */
\xBF\x00\x01\x57\x31\xFF\xC3 {

printf("found Vienna return code\n");
}

48

avoiding sensitivity: virus patterns

recall: things viruses can’t easily change!

example:
inserted jumps to virus codes
code in weird parts of executable file
code that modifies executables
…

49

generic generalizing

take static parts of virus

look for distance to match

e.g. foobarbaz is 2 from fooxaxbaz

slower than regular-expression-like scanners

50

pattern cost

constructed by hand?
question: how could we automate?

false positives?
push + ret really unused?
jmp at beginning?
what about data bytes?
…

51

after scanning — disinfection

antivirus software wants to repair

requires specialized scanning
no room for errors
need to identify all
need to find relocated bits of code

52

making scanners efficient

lots of viruses!
huge number of states, tables
copies of every piece of malware pretty large

reading files is slow!

53

making scanners efficient

lots of viruses!
huge number of states, tables
copies of every piece of malware pretty large

reading files is slow!

54

handling volume

storing signature strings is non-trivial

tens of thousands of states???

observation: fixed strings dominate

55

scanning for fixed strings
123456789ABCDEF023456789ABCDEF034567…

16-byte “anchor” malware
204D616C6963696F7573205468696E6720 Virus A
34567890ABCDEF023456789ABCDEFG0345 Virus B
6120766972757320737472696E679090F2 Virus C
… …

(full pattern for Virus B)

4-byte hash
FC923131
34598873
994254A3
…

hash function

56

scanning for fixed strings
123456789ABCDEF023456789ABCDEF034567…

16-byte “anchor” malware
204D616C6963696F7573205468696E6720 Virus A
34567890ABCDEF023456789ABCDEFG0345 Virus B
6120766972757320737472696E679090F2 Virus C
… …

(full pattern for Virus B)

4-byte hash
FC923131
34598873
994254A3
…

hash function

56

scanning for fixed strings
123456789ABCDEF023456789ABCDEF034567…

16-byte “anchor” malware
204D616C6963696F7573205468696E6720 Virus A
34567890ABCDEF023456789ABCDEFG0345 Virus B
6120766972757320737472696E679090F2 Virus C
… …

(full pattern for Virus B)

4-byte hash
FC923131
34598873
994254A3
…

hash function

56

scanning for fixed strings
123456789ABCDEF023456789ABCDEF034567…

16-byte “anchor” malware
204D616C6963696F7573205468696E6720 Virus A
34567890ABCDEF023456789ABCDEFG0345 Virus B
6120766972757320737472696E679090F2 Virus C
… …

(full pattern for Virus B)

4-byte hash
FC923131
34598873
994254A3
…

hash function

56

scanning for fixed strings
123456789ABCDEF023456789ABCDEF034567…

16-byte “anchor” malware
204D616C6963696F7573205468696E6720 Virus A
34567890ABCDEF023456789ABCDEFG0345 Virus B
6120766972757320737472696E679090F2 Virus C
… …

(full pattern for Virus B)

4-byte hash
FC923131
34598873
994254A3
…

hash function

56

real signatures: ClamAV

ClamAV: open source email scanning software

signature types:
hash of file
hash of contents of segment of executable

built-in executable, archive file parser
fixed string
basic regular expressions

wildcards, character classes, alternatives
more complete regular expressions

including features that need more than state machines
meta-signatures: match if other signatures match
icon image fuzzy-matching

57

the I/O problem

scanning still requires reading the whole file

can we do better?

58

selective scanning

check entry point and end only
a lot less I/O, maybe

check known offsets from entry point

heuristic: is entry point close to end of file?

59

virus choices?

why don’t viruses always append/replace?

why don’t viruses always change start location?

why did I bother talking about all these strategies?

head/tail scanning?

check for suspicious starting location?

60

playing mouse

techniques so far:
scan for pattern of constant part of virus
scan for strings, approx. 16-bytes long
scan top and bottom

virus-writer hat: how can you defeat these?

change some trivial part of virus —
e.g. add nops somewhere

insert nops everywhere;
split any big strings

insert jump in middle
keep code out of end of file

61

playing mouse

techniques so far:
scan for pattern of constant part of virus
scan for strings, approx. 16-bytes long
scan top and bottom

virus-writer hat: how can you defeat these?

change some trivial part of virus —
e.g. add nops somewhere

insert nops everywhere;
split any big strings

insert jump in middle
keep code out of end of file

61

playing mouse

techniques so far:
scan for pattern of constant part of virus
scan for strings, approx. 16-bytes long
scan top and bottom

virus-writer hat: how can you defeat these?

change some trivial part of virus —
e.g. add nops somewhere

insert nops everywhere;
split any big strings

insert jump in middle
keep code out of end of file

61

playing mouse

techniques so far:
scan for pattern of constant part of virus
scan for strings, approx. 16-bytes long
scan top and bottom

virus-writer hat: how can you defeat these?

change some trivial part of virus —
e.g. add nops somewhere

insert nops everywhere;
split any big strings

insert jump in middle
keep code out of end of file

61

playing mouse: preview

later: metamorphic/polymorphic viruses
signature resistent
change every time

anti-analysis techniques
make reverse engineering harder

62

playing cat

harder to fool ways of detecting malware?

goal: small changes to malware preserve detection

ideal: detect new malware

63

detecting new malware

look for anomalies
patterns of code that real executables “won’t” have

identify bad behavior

64

viruses and executable formats

header: machine type, file type, etc.
program header: “segments” to load

(also, some other information)

segment 1 data
segment 2 data

segment 3 data — virus segment

heuristic 1: is entry point in last segment?
(segment usually not code)

heuristic 2: did virus mess up header?
(e.g. do sizes used by linker but not loader disagree)

section names disagree with usage?

65

viruses and executable formats

header: machine type, file type, etc.
program header: “segments” to load

(also, some other information)
length edited by virus

segment 1 data
segment 2 data

virus code + new entry point?
segment 3 data — virus segment

heuristic 1: is entry point in last segment?
(segment usually not code)

heuristic 2: did virus mess up header?
(e.g. do sizes used by linker but not loader disagree)

section names disagree with usage?

65

viruses and executable formats

header: machine type, file type, etc.
program header: “segments” to load

(also, some other information)
length edited by virus

segment 1 data
segment 2 data

virus code + new entry point?
segment 3 data — virus segment

heuristic 1: is entry point in last segment?
(segment usually not code)

heuristic 2: did virus mess up header?
(e.g. do sizes used by linker but not loader disagree)

section names disagree with usage?

65

viruses and executable formats

header: machine type, file type, etc.
program header: “segments” to load

(also, some other information)
new segment added by virus

segment 1 data
segment 2 data

segment 3 data — virus segment

heuristic 1: is entry point in last segment?
(segment usually not code)

heuristic 2: did virus mess up header?
(e.g. do sizes used by linker but not loader disagree)

section names disagree with usage?

65

viruses and executable formats

header: machine type, file type, etc.
program header: “segments” to load

(also, some other information)
new segment added by virus

segment 1 data
segment 2 data

segment 3 data — virus segment
heuristic 1: is entry point in last segment?

(segment usually not code)

heuristic 2: did virus mess up header?
(e.g. do sizes used by linker but not loader disagree)

section names disagree with usage?

65

viruses and executable formats

header: machine type, file type, etc.
program header: “segments” to load

(also, some other information)
new segment added by virus

segment 1 data
segment 2 data

segment 3 data — virus segment

heuristic 1: is entry point in last segment?
(segment usually not code)

heuristic 2: did virus mess up header?
(e.g. do sizes used by linker but not loader disagree)

section names disagree with usage?
65

defeating entry point checking

insert jump in normal code section, set as entry-point

add code to first section instead (perhaps insert new
section at beginning)

“dynamic” heuristic: run code in VM, see if switches sections

66

defeating entry point checking

insert jump in normal code section, set as entry-point

add code to first section instead (perhaps insert new
section at beginning)

“dynamic” heuristic: run code in VM, see if switches sections

66

heuristics: library calls

dynamic linking — functions called by name

how do viruses add to dynamic linking tables?
often don’t! — instead dynamically look-up functions
if do — could mess that up/lots of code

heuristic: look for API function name strings

67

evading library call checking

modify dynamic linking tables
probably tricky to add new entry

reimplement library call manually
Windows system calls not well documented, change

hide names

68

evading library call checking

modify dynamic linking tables
probably tricky to add new entry

reimplement library call manually
Windows system calls not well documented, change

hide names

68

hiding library call names

common approach: store hash of name

runtime: read library, scan list of functions for name

bonus: makes analysis harder

69

detecting new malware

look for anomalies
patterns of code that real executables “won’t” have

identify bad behavior

70

behavior-based detection

things malware does that other programs don’t?

modify system files

modifying existing executables

open network connections to lots of random places

…

basic idea: run in VM; or monitor all programs

71

behavior-based detection

things malware does that other programs don’t?

modify system files

modifying existing executables

open network connections to lots of random places

…

basic idea: run in VM; or monitor all programs

71

anti-virus: essential or worthless?

ungraded homework assignment

watch Hanno Böck’s talk “In Search of
Evidence-Based IT Security”

a rant mostly about antivirus-like software

72

	continuation: virus options
	replacing pointers

	signature-based detection
	example: known virus code

