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Changelog

Corrections made in this version not in first posting:
8 Feb 2017: slide 31: visible space after negative foo
example
8 Feb 2017: slide 35: [a-zA-Z]*ing instead of
[a-zA-Z]ing
8 Feb 2017: slide 56: correct animation to show hashes
second
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on due dates
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ASM assignment questions?
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last time

places to put malicious code
replace executable
append/prepend
cavities
bootloaders/OS code

started: ways to get code to run
replace start address
replace instructions that are run

identify returns/function calls/etc.
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invoking virus code: options

boot loader

change starting location

alternative approaches: “entry point obscuring”

edit code that’s going to run anyways

replace a function pointer (or similar)

…
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run anyways?

add code at start of program (Vienna)

return with padding after it:
404a01: c3 retq
404a02: 0f 1f 40 00 nopl 0x0(%rax)

replace with
404a01: e9 XX XX XX XX jmpq YYYYYYY

any random place in program?
just not in the middle of instruction
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recall: finding function calls

e.g. some popular compilers started x86-32 functions
with
foo:

push %ebp // push old frame pointer
// 0x55
mov %esp, %ebp // set frame pointer to stack pointer
// 0x89 0xec

use to identify when e8 (call opcode) refers to
real function

(full version: also have some other function start
patterns)
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remember stubs?

0000000000400400 <puts@plt>:
400400: ff 25 12 0c 20 00 jmpq *0x200c12(%rip)

/* 0x200c12+RIP = _GLOBAL_OFFSET_TABLE_+0x18 */
400406: 68 00 00 00 00 pushq $0x0
40040b: e9 e0 ff ff ff jmpq 4003f0 <_init+0x28>

replace with:
400400: e8 XX XX XX XX jmpq virus_code
400405: 90 nop
400406: 68 00 00 00 00 pushq $0x0
40040b: e9 e0 ff ff ff jmpq 4003f0 <_init+0x28>

in known location (particular section of executable)

dynamic linker: just modifies global offset table
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invoking virus code: options

boot loader

change starting location

alternative approaches: “entry point obscuring”

edit code that’s going to run anyways
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stubs again

0000000000400400 <puts@plt>:
400400: ff 25 12 0c 20 00 jmpq *0x200c12(%rip)

/* 0x200c12+RIP = _GLOBAL_OFFSET_TABLE_+0x18 */
400406: 68 00 00 00 00 pushq $0x0
40040b: e9 e0 ff ff ff jmpq 4003f0 <_init+0x28>

don’t edit stub — edit initial value of
_GLOBAL_OFFSET_TABLE

stored in data section of executable

originally: pointer to 0x400406; new — pointer to
virus code

virus can jmp back to 0x400406 when done
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relocations?

hello.exe: file format elf64-x86-64

DYNAMIC RELOCATION RECORDS
OFFSET TYPE VALUE
0000000000600ff8 R_X86_64_GLOB_DAT __gmon_start__
0000000000601018 R_X86_64_JUMP_SLOT puts@GLIBC_2.2.5

replace with:
0000000000601018 R_X86_64_JUMP_SLOT _start + offset_of_virus
0000000000601020 R_X86_64_JUMP_SLOT __libc_start_main@GLIBC_2.2.5

tricky — usually no symbols from executable in
dynamic symbol table

(debugger/disassembler symbols are different tables)
Linux — need to link with -rdynamic

but…same idea works on shared library itself
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infecting shared libraries

kernel32.dll

header
symbol table

GetFileAttributesA
…

kernel32.dll

header
symbol table

virus code

GetFileAttributesA
…
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TRICKY

next assignment: TRICKY

insert “tricky jump” to virus code
replacing “ret” followed by cavity of nops

submission: program to modify supplied executable
need not work on any other program
but, question: how you’d modify it to work on other
programs
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virus choices?

why don’t viruses always append/replace?

why don’t viruses always change start location?

why did I bother talking about all these strategies?

head/tail scanning?check for suspicious starting location?
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more on virus strategies

after we talk about anti-virus strategies some
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anti-malware strategies

antivirus goals:
prevent malware from running
prevent malware from spreading
undo the effects of malware
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malware detection

important part: detecting malware

simple way:
have a copy of a malicious executable
compare every program to it

how big? every executable infected with every virus?when? how fast?
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malware “signatures”

antivirus vendor have signatures for known malware

many options to represent signatures

thought process: signature for Vienna?

goals: compact, fast to check, reliable
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exercise: signatures for Vienna
jmp 0x0700
mov $0x9e4e, %si
...
/* app code */
...
push %cx
mov $0x8f9, %si
...
mov $0x0100, %di
mov $3, %cx
rep movsb
...

...
add $0x2f9, %cx
mov %si, %di
sub $0x1f7, %di
mov %cx, (%di)
...
mov $0x288, %cx
mov $0x40 %ah
mov $si, $dx
sub $0x1f9, %dx
int 0x21
...

pop %cx
xor %ax, %ax
xor %bx, %bx
xor %dx, %dx
mov $0x0100, %di
push %di
xor %di, %di
ret
/* virus data */
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simple signature (1)

all the code Vienna copies

… except changed mov to %si

virus doesn’t change it to relocate

includes infection code — definitely malicious
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signature generality

the Vienna virus was copied a bunch of times

small changes, “payloads” added
print messages, do different malicious things, …

this signature will not detect any variants

can we do better?
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simple signature (2)

Vienna start code
weird jump at beginning??

problem: maybe real applications do this?

problem: easy to move jump
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simple signature (3)

Vienna infection code
scans directory, finds files

likely to stay the same in variants?

problem: virus writers react to antivirus

24



simple signature (3)

Vienna infection code
scans directory, finds files

likely to stay the same in variants?

problem: virus writers react to antivirus

24



simple signature (4)

Vienna finish code
push + ret

very unusual pattern

probably(?) not in “real” programs

real effort to change to something else?

problem: virus writers react to antivirus
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making things hard for the mouse

don’t want trivial changes to break detection

want to detect strategies
e.g. require changing relocation logic
…not just reordering instructions

goals: compact, fast to check, reliable, general?
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signature checking

how fast is signature checking?

problem: lots of I/O?

problem: how complicated are signatures?
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generic pattern example

another possibility: detect writing near 0x100

0x100 was DOS program entry code — no program
should do this(?)

problem: how to represent this?
describe machine code bytes
multiple possibilities
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regular expressions

one method of representing patterns like this:
regular expressions (regexes)

restricted language allows very fast implementations
especially when there’s a long list of patterns to look for

homework assignment next week
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regular expressions:
implementations

multiple implementations of regular expressions

we will target: flex, a parser generator
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simple patterns

alphanumeric characters match themselves

foo:
matches exactly foo only
does not match Foo
does not match foo␣
does not match foobar

backslash might be needed for others

C\+\+
matches exactly C++ only
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metachars (1)

special ways to match characters

\n, \t, \x3C, …— work like in C

[b-fi] — b or c or d or e or f or i

[^b-fi] — any character but b or c or …

. — any character except newline

(.|\n) — any character
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metachars (2)

a* — zero or more as:
(empty string), a, aa, aaa, …

a{3,5} — three to five as:
aaa, aaaa, aaaaa

(abc){3,5} — three to five abcs: (“grouping”)
abcabcabc, abcabcabcabc, abcabcabcabcabc

ab|cd
ab, cd

(ab|cd){2} — two ab-or-cds:
abab, abcd, cdab, cdcd
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metachars (3)

\xAB — the byte 0xAB

\x00 — the byte 0x00
flex is designed for text, handles binary fine

\n — newline (and other C string escapes)
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example regular expressions

match words ending with ing:
[a-zA-Z]*ing

match C /* ... */ comments:
/\*([^*]|\*[^/])*\*/

35



flex

flex is a regular expression matching tool

intended for writing parsers

generates C code

parser function called yylex
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flex example

int num_bytes = 0, num_lines = 0;
int num_foos = 0;

%%
foo {

num_bytes += 3;
num_foos += 1;

}
. { num_bytes += 1; }
\n { num_lines += 1; num_bytes += 1; }
%%
int main(void) {

yylex();
printf("%d bytes, %d lines, %d foos\n",

num_bytes, num_lines, num_foos);
}

three sectionsfirst — declarations for later
C code in output file

patterns, code to run on match
as parser: return “token” here

extra code to include
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flex: matched text

%%
[aA][a−z]* {

printf("found a−word '%s'\n",
yytext);

}
(.|\n) {} /* default rule: would output text */
%%
int main(void) {

yylex();
}

yytext — text of matched thing
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flex: matched text

%%
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%%
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yylex();
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flex: definitions

A [aA]
LOWERS [a−z]
ANY (.|\n)
%%
{A}{LOWERS}* {

printf("found a−word '%s'\n",
yytext);

}
{ANY} {} /* default rule would

output text */
%%
int main(void) {

yylex();
}

definitions of common patterns
included later
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flex: state machines

foo {...}
. {...}
\n {...}

start f fo foo

.
\n

f o o

other\n

(back 1)

(ba
ck

2)
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state machine matching
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flex states (1)

%x str
%%
\" { BEGIN(str); }
<str>\" { BEGIN(INITIAL); }
<str>foo { printf("foo in string\n"); }
foo { printf("foo out of string\n"); }
<INITIAL,str>(.|\n) {}
%%
int main(void) {

yylex();
}

declare “state” to track
which state determines what patterns are active
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flex states (1)
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flex states (2)

%s afterFoo
%%
<afterFoo>foo { printf("later␣foo\n"); }
foo {

printf("first␣foo\n");
BEGIN(afterfoo);

}
(.|\n) {}
%%
int main(void) {

yylex();
}

declare non-exclusive state
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flex states (2)
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%%
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why this?

(basically) one pass matching

basically speed of file I/O

handles multiple patterns well

flexible for “special cases”

real anti-virus: probably custom pattern “engine”
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other flex features

escape hatch — I/O directly from code

including “unget” function (match normally instead)

allows extra ad-hoc logic
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future flex assignment

coming weeks — will have a flex assignment

give you idea what pattern matching can do

produce pattern for push $…; ret.
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Vienna patterns (1)

simple Vienna patterns:

/* bytes of fixed part of Vienna sample */
\xFC\x89\xD6\x83\xC6\x81\xc7\x00\x01\x83(etc) {

printf("found Vienna code\n");
}
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Vienna patterns (2)

simple Vienna patterns:

/* Vienna sample with wildcards for
changing bytes: */

/* push %CX; mov ???, %dx; cld; ... */
\x51\xBA(.|\n)(.|\n)\xFC\x89(etc) {

printf("found Vienna code w/placeholder\n");
}

/* mov $0x100, %di; push %di; xor %di, %di; ret */
\xBF\x00\x01\x57\x31\xFF\xC3 {

printf("found Vienna return code\n");
}
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avoiding sensitivity: virus patterns

recall: things viruses can’t easily change!

example:
inserted jumps to virus codes
code in weird parts of executable file
code that modifies executables
…
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generic generalizing

take static parts of virus

look for distance to match

e.g. foobarbaz is 2 from fooxaxbaz

slower than regular-expression-like scanners
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pattern cost

constructed by hand?
question: how could we automate?

false positives?
push + ret really unused?
jmp at beginning?
what about data bytes?
…
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after scanning — disinfection

antivirus software wants to repair

requires specialized scanning
no room for errors
need to identify all
need to find relocated bits of code
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making scanners efficient

lots of viruses!
huge number of states, tables
copies of every piece of malware pretty large

reading files is slow!
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making scanners efficient

lots of viruses!
huge number of states, tables
copies of every piece of malware pretty large

reading files is slow!
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handling volume

storing signature strings is non-trivial

tens of thousands of states???

observation: fixed strings dominate
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scanning for fixed strings
123456789ABCDEF023456789ABCDEF034567…

16-byte “anchor” malware
204D616C6963696F7573205468696E6720 Virus A
34567890ABCDEF023456789ABCDEFG0345 Virus B
6120766972757320737472696E679090F2 Virus C
… …

(full pattern for Virus B)

4-byte hash
FC923131
34598873
994254A3
…

hash function
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real signatures: ClamAV

ClamAV: open source email scanning software

signature types:
hash of file
hash of contents of segment of executable

built-in executable, archive file parser
fixed string
basic regular expressions

wildcards, character classes, alternatives
more complete regular expressions

including features that need more than state machines
meta-signatures: match if other signatures match
icon image fuzzy-matching
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the I/O problem

scanning still requires reading the whole file

can we do better?
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selective scanning

check entry point and end only
a lot less I/O, maybe

check known offsets from entry point

heuristic: is entry point close to end of file?
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virus choices?

why don’t viruses always append/replace?

why don’t viruses always change start location?

why did I bother talking about all these strategies?

head/tail scanning?

check for suspicious starting location?
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playing mouse

techniques so far:
scan for pattern of constant part of virus
scan for strings, approx. 16-bytes long
scan top and bottom

virus-writer hat: how can you defeat these?

change some trivial part of virus —
e.g. add nops somewhere

insert nops everywhere;
split any big strings

insert jump in middle
keep code out of end of file
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playing mouse: preview

later: metamorphic/polymorphic viruses
signature resistent
change every time

anti-analysis techniques
make reverse engineering harder
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playing cat

harder to fool ways of detecting malware?

goal: small changes to malware preserve detection

ideal: detect new malware
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detecting new malware

look for anomalies
patterns of code that real executables “won’t” have

identify bad behavior
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viruses and executable formats

header: machine type, file type, etc.
program header: “segments” to load

(also, some other information)

segment 1 data
segment 2 data

segment 3 data — virus segment

heuristic 1: is entry point in last segment?
(segment usually not code)

heuristic 2: did virus mess up header?
(e.g. do sizes used by linker but not loader disagree)

section names disagree with usage?
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defeating entry point checking

insert jump in normal code section, set as entry-point

add code to first section instead (perhaps insert new
section at beginning)

“dynamic” heuristic: run code in VM, see if switches sections
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heuristics: library calls

dynamic linking — functions called by name

how do viruses add to dynamic linking tables?
often don’t! — instead dynamically look-up functions
if do — could mess that up/lots of code

heuristic: look for API function name strings
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evading library call checking

modify dynamic linking tables
probably tricky to add new entry

reimplement library call manually
Windows system calls not well documented, change

hide names
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hiding library call names

common approach: store hash of name

runtime: read library, scan list of functions for name

bonus: makes analysis harder
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detecting new malware

look for anomalies
patterns of code that real executables “won’t” have

identify bad behavior
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behavior-based detection

things malware does that other programs don’t?

modify system files

modifying existing executables

open network connections to lots of random places

…

basic idea: run in VM; or monitor all programs
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anti-virus: essential or worthless?

ungraded homework assignment

watch Hanno Böck’s talk “In Search of
Evidence-Based IT Security”

a rant mostly about antivirus-like software
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