
anti-virus and anti-anti-virus

1

logistics: TRICKY

HW assignment out

“infecting” an executable

2

anti-virus techniques

last time: signature-based detection
regular expression-like matching
snippets of virus(-like) code

heuristic detection
look for “suspicious” things

behavior-based detection
look for virus activity

not explicitly mentioned: producing signatures
manual? analysis

not explicitly mentioned: “disinfection”
manual? analysis

3

anti-virus techniques

last time: signature-based detection
regular expression-like matching
snippets of virus(-like) code

heuristic detection
look for “suspicious” things

behavior-based detection
look for virus activity

not explicitly mentioned: producing signatures
manual? analysis

not explicitly mentioned: “disinfection”
manual? analysis

4

regular expression cheatsheet

a — matches a
a* — matches (empty string), a, aa, aaa, …
a\ — matches the string a*
foo|bar — matches foo, bar
[ab] — matches a, b
[^ab] — matches any byte except a and b
(foo|bar)* —

(empty string), foo, bar, foobar, barfoo, …

(.|\n)* — matches anything whatsoever
5

recall: why regular expressions?

(essentially) one-pass, lookup table

not the most flexible, but fast

flex — regular expressions + code for exceptions

6

recall: faster than regular
expressions?

optimization 1: look for fixed-length strings
sliding window + hashtable
test with full pattern

optimization 2: head/tail scanning
avoid reading whole files

7

scanning for fixed strings
123456789ABCDEF023456789ABCDEF034567…

16-byte “anchor” malware
204D616C6963696F7573205468696E6720 Virus A
34567890ABCDEF023456789ABCDEFG0345 Virus B
6120766972757320737472696E679090F2 Virus C
… …

(full pattern for Virus B)

4-byte hash
FC923131
34598873
994254A3
…

hash function

8

scanning for fixed strings
123456789ABCDEF023456789ABCDEF034567…

16-byte “anchor” malware
204D616C6963696F7573205468696E6720 Virus A
34567890ABCDEF023456789ABCDEFG0345 Virus B
6120766972757320737472696E679090F2 Virus C
… …

(full pattern for Virus B)

4-byte hash
FC923131
34598873
994254A3
…

hash function

8

scanning for fixed strings
123456789ABCDEF023456789ABCDEF034567…

16-byte “anchor” malware
204D616C6963696F7573205468696E6720 Virus A
34567890ABCDEF023456789ABCDEFG0345 Virus B
6120766972757320737472696E679090F2 Virus C
… …

(full pattern for Virus B)

4-byte hash
FC923131
34598873
994254A3
…

hash function

8

scanning for fixed strings
123456789ABCDEF023456789ABCDEF034567…

16-byte “anchor” malware
204D616C6963696F7573205468696E6720 Virus A
34567890ABCDEF023456789ABCDEFG0345 Virus B
6120766972757320737472696E679090F2 Virus C
… …

(full pattern for Virus B)

4-byte hash
FC923131
34598873
994254A3
…

hash function

8

scanning for fixed strings
123456789ABCDEF023456789ABCDEF034567…

16-byte “anchor” malware
204D616C6963696F7573205468696E6720 Virus A
34567890ABCDEF023456789ABCDEFG0345 Virus B
6120766972757320737472696E679090F2 Virus C
… …

(full pattern for Virus B)

4-byte hash
FC923131
34598873
994254A3
…

hash function

8

virus patterns

specific — large snippet of code from virus
false positives essentially impossible

general — strategy (e.g. push + ret)
false positives possible
real applications might do this?
might appear in application data?

9

detecting new malware

goal: detect unseen malware

some signatures might do this — look for strategies

also look for anomalies
hope that real compilers/linkers/etc. don’t do …

10

anti-virus techniques

last time: signature-based detection
regular expression-like matching
snippets of virus(-like) code

heuristic detection
look for “suspicious” things

behavior-based detection
look for virus activity

not explicitly mentioned: producing signatures
manual? analysis

not explicitly mentioned: “disinfection”
manual? analysis

11

viruses and executable formats

header: machine type, file type, etc.
program header: “segments” to load

(also, some other information)

segment 1 data
segment 2 data

segment 3 data — virus segment

heuristic 1: is entry point in last segment?
(last segment usually not code)

heuristic 2: did virus mess up header?
(e.g. do sizes used by linker but not loader disagree)

section names disagree with usage?

12

viruses and executable formats

header: machine type, file type, etc.
program header: “segments” to load

(also, some other information)
length edited by virus

segment 1 data
segment 2 data

virus code + new entry point?
segment 3 data — virus segment

heuristic 1: is entry point in last segment?
(last segment usually not code)

heuristic 2: did virus mess up header?
(e.g. do sizes used by linker but not loader disagree)

section names disagree with usage?

12

viruses and executable formats

header: machine type, file type, etc.
program header: “segments” to load

(also, some other information)
length edited by virus

segment 1 data
segment 2 data

virus code + new entry point?
segment 3 data — virus segment

heuristic 1: is entry point in last segment?
(last segment usually not code)

heuristic 2: did virus mess up header?
(e.g. do sizes used by linker but not loader disagree)

section names disagree with usage?

12

viruses and executable formats

header: machine type, file type, etc.
program header: “segments” to load

(also, some other information)
new segment added by virus

segment 1 data
segment 2 data

segment 3 data — virus segment

heuristic 1: is entry point in last segment?
(last segment usually not code)

heuristic 2: did virus mess up header?
(e.g. do sizes used by linker but not loader disagree)

section names disagree with usage?

12

viruses and executable formats

header: machine type, file type, etc.
program header: “segments” to load

(also, some other information)
new segment added by virus

segment 1 data
segment 2 data

segment 3 data — virus segment

heuristic 1: is entry point in last segment?
(last segment usually not code)

heuristic 2: did virus mess up header?
(e.g. do sizes used by linker but not loader disagree)

section names disagree with usage?

12

viruses and executable formats

header: machine type, file type, etc.
program header: “segments” to load

(also, some other information)
new segment added by virus

segment 1 data
segment 2 data

segment 3 data — virus segment

heuristic 1: is entry point in last segment?
(last segment usually not code)

heuristic 2: did virus mess up header?
(e.g. do sizes used by linker but not loader disagree)

section names disagree with usage?

12

defeating entry point checking

insert jump in normal code section and…
set as entry point; or
assume it’s reached ‘soon’

“dynamic” heuristic: run code in VM for a while,
see if switches sections

13

defeating entry point checking

insert jump in normal code section and…
set as entry point; or
assume it’s reached ‘soon’

“dynamic” heuristic: run code in VM for a while,
see if switches sections

13

heuristics: library calls

dynamic linking — functions called by name

how do viruses add to dynamic linking tables?
often don’t! — instead dynamically look-up functions
if do — could mess that up/lots of code

heuristic: look for API function name strings
(outside linking info)

14

evading library call checking

modify dynamic linking tables

reimplement library call manually
Linux: usually easy
Windows: system calls not well documented, change

hide names

15

evading library call checking

modify dynamic linking tables

reimplement library call manually
Linux: usually easy
Windows: system calls not well documented, change

hide names

15

hiding library call names

common approach: store hash of name

runtime: read library, scan list of functions for name

bonus: makes analysis harder

16

anti-virus techniques

last time: signature-based detection
regular expression-like matching
snippets of virus(-like) code

heuristic detection
look for “suspicious” things

behavior-based detection
look for virus activity

not explicitly mentioned: producing signatures
manual? analysis

not explicitly mentioned: “disinfection”
manual? analysis

17

behavior-based detection

things malware does that other programs don’t?

modify system files
modifying existing executables
open network connections to lots of random places
…

monitor all programs for weird behavior
problem: false positives (e.g. installers)

18

behavior-based detection

things malware does that other programs don’t?

modify system files
modifying existing executables
open network connections to lots of random places
…

monitor all programs for weird behavior
problem: false positives (e.g. installers)

18

behavior-based detection

things malware does that other programs don’t?

modify system files
modifying existing executables
open network connections to lots of random places
…

monitor all programs for weird behavior
problem: false positives (e.g. installers)

18

heuristic detection

virus “shortcuts”
generally: not producing executable via normal linker
generally: trying to make analysis harder
push then ret instead of jmp
entry point in “wrong” segment
switching segments
library calls without normal dynamic linker mechanisms

infection behavior
modifying executables/system files
weird network connections

19

example heuristics: DREBIN (1)

from 2014 research paper on Android malware: Arp et al,
“DREBIN: Effective and Explainable Detection of Android
Malware in Your Pocket”

features from applications (without running):
hardware requirements
requested permissions
whether it runs in background, with pushed
notifications, etc.
what API calls it uses
network addresses

detect dynamic code generation explicitly
statistics (i.e. machine learning) to determine score 20

example heuristics: DREBIN (2)

advantage: Android uses Dalvik bytecode (Java-like)
high-level “machine code”
much easier/more useful to analyze

accuracy?
tested on 131k apps, 94% of malware, 1% false positives
versus best commercial: 96%, < 0.3% false positives

(probably has explicit patterns for many known malware
samples)

…but
statistics: training set needs to be typical of malware
cat-and-mouse: what would attackers do in response?

21

anti-virus techniques

last time: signature-based detection
regular expression-like matching
snippets of virus(-like) code

heuristic detection
look for “suspicious” things

behavior-based detection
look for virus activity

not explicitly mentioned: producing signatures
manual? analysis

not explicitly mentioned: “disinfection”
manual? analysis

22

anti-anti-virus

defeating signatures:

avoid things compilers/linkers never do

make analysis harder
takes longer to produce signatures
takes longer to produce “repair” program

make changing viruses
make any one signature less effective

23

some terms

armored viruses
viruses designed to make analysis harder

metamorphic/polymorphic/oligomorphic viruses
viruses that change their code each time
different terms — different types of changes (later)

24

encrypted(?) data

char obviousString[] =
"Please␣open␣this␣100%"
"␣safe␣attachment";

char lessObviousString[] =
"oSZ^LZ\037POZQ\037KWVL\037\016\017"
"\017\032\037L^YZ\037^KK^\\WRZQK";

for (int i = 0; i < sizeof(lessObviousString) − 1; ++i) {
lessObviousString[i] =

lessObviousString[i] ^ '?';
}

25

recall: hiding API calls

/* functions, functionsNames retrieved
from library before */

/* 0xd7c9e758 = hash("GetFileAttributesA") */
unsigned hashOfString = 0xd7c9e758;
for (int i = 0; i < num_functions; ++i) {

unsigned functionHash = 0;
for (int j = 0; j < strlen(functionNames[i]); ++j) {

functionHash = (functionHash * 7 +
functionNames[i][j]);

}
if (functionHash == hashOfString) {

return functions[i];
}

}

26

encrypted data and signatures

doesn’t really stop signatures
“encrypted” string + decryption code is more unique

but makes analyzing virus a little harder
how much harder?
exercise: how would you decrypt strings?

can we do better?

27

encrypted data and signatures

doesn’t really stop signatures
“encrypted” string + decryption code is more unique

but makes analyzing virus a little harder
how much harder?
exercise: how would you decrypt strings?

can we do better?

27

encrypted(?) viruses

char encrypted[] = "\x12\x45...";
char key[] = "...";
virusEntryPoint() {

decrypt(encrypted, key);
goto encrypted;

}
decrypt(char *buffer, char *key) {...}

choose a new key each time!

not good encryption — key is there

sometimes mixed with compression

28

encrypted viruses: no signature?

decrypt is a pretty good signature

still need to a way to disguise that code

how about analysis? how does one analyze this?

29

not just anti-antivirus

“encrypted” body

just running objdump not enough…

instead — run debugger, set breakpoint after
“decryption”

dump decrypted memory afterwords

30

unneeded steps

understanding the “encryption” algorithm
more complex encryption algorithm won’t help

extracting the key and encrypted data
making key less obvious won’t help

needed to know when encryption finished

needed debugger to work
countermeasures?

encrypt in strange order? multiple passes?
anti-debugging (later)

31

unneeded steps

understanding the “encryption” algorithm
more complex encryption algorithm won’t help

extracting the key and encrypted data
making key less obvious won’t help

needed to know when encryption finished

needed debugger to work

countermeasures?
encrypt in strange order? multiple passes?
anti-debugging (later)

31

unneeded steps

understanding the “encryption” algorithm
more complex encryption algorithm won’t help

extracting the key and encrypted data
making key less obvious won’t help

needed to know when encryption finished

needed debugger to work
countermeasures?

encrypt in strange order? multiple passes?
anti-debugging (later)

31

example: Cascade decrypter

lea encrypted_code, %si
decrypt:

mov $0x682, %sp // length of body
xor %si, (%si)
xor %sp, (%si)
inc %si
dec %sp
jnz decrypt

encrypted_code:
...

Szor Listing 7.1 32

example: Cascade decrypter

lea encrypted_code, %si
decrypt:

mov $0x682, %sp // length of body
xor %si, (%si)
xor %sp, (%si)
inc %si
dec %sp
jnz decrypt

encrypted_code:
...

Szor Listing 7.1 32

example: Cascade decrypter

lea encrypted_code, %si
decrypt:

mov $0x682, %sp // length of body
xor %si, (%si)
xor %sp, (%si)
inc %si
dec %sp
jnz decrypt

encrypted_code:
...

Szor Listing 7.1 32

decrypter

more variations:
nested decrypters, different orders, etc.

still problem: decrypter code is signature

…but harder to distinguish different malware

often tries to frustrate debugging in other ways
e.g. use stack pointer (not for the stack)
(more on this later)

“disinfection” — want to precisely identify malwareeasiest way to defeat decrypter manually:
run in debugger until code is decrypted

33

decrypter

more variations:
nested decrypters, different orders, etc.

still problem: decrypter code is signature

…but harder to distinguish different malware

often tries to frustrate debugging in other ways
e.g. use stack pointer (not for the stack)
(more on this later)“disinfection” — want to precisely identify malware

easiest way to defeat decrypter manually:
run in debugger until code is decrypted

33

decrypter

more variations:
nested decrypters, different orders, etc.

still problem: decrypter code is signature

…but harder to distinguish different malware

often tries to frustrate debugging in other ways
e.g. use stack pointer (not for the stack)
(more on this later)

“disinfection” — want to precisely identify malware

easiest way to defeat decrypter manually:
run in debugger until code is decrypted

33

legitimate “packers”

some commercial software is packaged in this way

…including antidebugging stuff

why? intended to be copy/reverse engineering
protection

34

playing mouse

signature-based techniques:
scan for pattern of constant part of virus
scan for strings, approx. 16-bytes long
shortcut: scan top and bottom

virus-writer hat: how can you defeat these?
encrypting code? — encrypter is pattern

change some trivial part of virus —
e.g. add nops somewhere

insert nops everywhere;
split any big strings

insert jump in middle
keep code out of end of file

35

playing mouse

signature-based techniques:
scan for pattern of constant part of virus
scan for strings, approx. 16-bytes long
shortcut: scan top and bottom

virus-writer hat: how can you defeat these?
encrypting code? — encrypter is pattern

change some trivial part of virus —
e.g. add nops somewhere

insert nops everywhere;
split any big strings

insert jump in middle
keep code out of end of file

36

adding nops

instead of copying, copy but insert nops

a little tricky — only between instructions

could have hard-coded places to insert
likely easy to turn into signature
or tricky to write

or can parse instructions
x86 encoding isn’t that bad
malware can use limited subset

37

producing changing malware

not just nop:

switch between synonym instructions

swap registers

random instructions that manipulate ‘unused’ register

…

38

oligomorphic viruses

use packing technique but

make slight changes to decrypters

39

example: W95/Memorial
mov $0x405000, %ebp
mov $0x550, %ecx
lea 0x2e(%ebp), %esi
add 0x29(%ebp), %ecx
mov 0x2d(%ebp), %al

decrypt:
nop
nop
xor %al, (%esi)
inc %esi
nop
inc %al
dec %ecx
jnz decrypt
...

mov $0x550, %ecx
mov $0x13bc000, %ebp
lea 0x2e(%ebp), %esi
add 0x29(%ebp), %ecx
mov 0x2d(%ebp), %al

decrypt:
nop
nop
xor %al, (%esi)
inc %esi
nop
inc %al
loop decrypt
...
... Szor, Listsings 7.3 and 7.4

change instruction order; location of decryption key/etc.variable choices of loop instructionsSzor: “96 different decryptor patterns”

40

example: W95/Memorial
mov $0x405000, %ebp
mov $0x550, %ecx
lea 0x2e(%ebp), %esi
add 0x29(%ebp), %ecx
mov 0x2d(%ebp), %al

decrypt:
nop
nop
xor %al, (%esi)
inc %esi
nop
inc %al
dec %ecx
jnz decrypt
...

mov $0x550, %ecx
mov $0x13bc000, %ebp
lea 0x2e(%ebp), %esi
add 0x29(%ebp), %ecx
mov 0x2d(%ebp), %al

decrypt:
nop
nop
xor %al, (%esi)
inc %esi
nop
inc %al
loop decrypt
...
... Szor, Listsings 7.3 and 7.4

change instruction order; location of decryption key/etc.

variable choices of loop instructionsSzor: “96 different decryptor patterns”

40

example: W95/Memorial
mov $0x405000, %ebp
mov $0x550, %ecx
lea 0x2e(%ebp), %esi
add 0x29(%ebp), %ecx
mov 0x2d(%ebp), %al

decrypt:
nop
nop
xor %al, (%esi)
inc %esi
nop
inc %al
dec %ecx
jnz decrypt
...

mov $0x550, %ecx
mov $0x13bc000, %ebp
lea 0x2e(%ebp), %esi
add 0x29(%ebp), %ecx
mov 0x2d(%ebp), %al

decrypt:
nop
nop
xor %al, (%esi)
inc %esi
nop
inc %al
loop decrypt
...
... Szor, Listsings 7.3 and 7.4

change instruction order; location of decryption key/etc.

variable choices of loop instructions

Szor: “96 different decryptor patterns”

40

example: W95/Memorial
mov $0x405000, %ebp
mov $0x550, %ecx
lea 0x2e(%ebp), %esi
add 0x29(%ebp), %ecx
mov 0x2d(%ebp), %al

decrypt:
nop
nop
xor %al, (%esi)
inc %esi
nop
inc %al
dec %ecx
jnz decrypt
...

mov $0x550, %ecx
mov $0x13bc000, %ebp
lea 0x2e(%ebp), %esi
add 0x29(%ebp), %ecx
mov 0x2d(%ebp), %al

decrypt:
nop
nop
xor %al, (%esi)
inc %esi
nop
inc %al
loop decrypt
...
... Szor, Listsings 7.3 and 7.4

change instruction order; location of decryption key/etc.variable choices of loop instructions

Szor: “96 different decryptor patterns”

40

more advanced changes?

Szor calls W95/Memorial oligomoprhic
“encrypted” code
plus small changes to decrypter

What about doing more changes to decrypter?
many, many variations

Szor calls doing this polymorphic

polymorphic example: 1260

41

example: 1260 (virus)
inc %si
mov $0x0e9b, %ax
clc
mov $0x12a, %di
nop
mov $0x571, %cx

decrypt:
xor %cx, (%di)
sub %dx, %bx
sub %cx, %bx
sub %ax, %bx
nop
xor %cx, %dx
xor %ax, (%di)
...

mov $0x0a43, %ax
nop
mov $0x15a, %di
sub %dx, %bx
sub %cx, %bx
mov $0x571, %cx
clc

decrypt:
xor %cx, (%di)
xor %cx, %dx
sub %cx, %bx
nop
xor %cx, %bx
xor %ax, (%di)
...

adapted from Szor, Listing 7.5

do-nothing instructionsdifferent decryption “key”

42

example: 1260 (virus)
inc %si
mov $0x0e9b, %ax
clc
mov $0x12a, %di
nop
mov $0x571, %cx

decrypt:
xor %cx, (%di)
sub %dx, %bx
sub %cx, %bx
sub %ax, %bx
nop
xor %cx, %dx
xor %ax, (%di)
...

mov $0x0a43, %ax
nop
mov $0x15a, %di
sub %dx, %bx
sub %cx, %bx
mov $0x571, %cx
clc

decrypt:
xor %cx, (%di)
xor %cx, %dx
sub %cx, %bx
nop
xor %cx, %bx
xor %ax, (%di)
...

adapted from Szor, Listing 7.5

do-nothing instructionsdifferent decryption “key”

42

example: 1260 (virus)
inc %si
mov $0x0e9b, %ax
clc
mov $0x12a, %di
nop
mov $0x571, %cx

decrypt:
xor %cx, (%di)
sub %dx, %bx
sub %cx, %bx
sub %ax, %bx
nop
xor %cx, %dx
xor %ax, (%di)
...

mov $0x0a43, %ax
nop
mov $0x15a, %di
sub %dx, %bx
sub %cx, %bx
mov $0x571, %cx
clc

decrypt:
xor %cx, (%di)
xor %cx, %dx
sub %cx, %bx
nop
xor %cx, %bx
xor %ax, (%di)
...

adapted from Szor, Listing 7.5

do-nothing instructions

different decryption “key”

42

example: 1260 (virus)
inc %si
mov $0x0e9b, %ax
clc
mov $0x12a, %di
nop
mov $0x571, %cx

decrypt:
xor %cx, (%di)
sub %dx, %bx
sub %cx, %bx
sub %ax, %bx
nop
xor %cx, %dx
xor %ax, (%di)
...

mov $0x0a43, %ax
nop
mov $0x15a, %di
sub %dx, %bx
sub %cx, %bx
mov $0x571, %cx
clc

decrypt:
xor %cx, (%di)
xor %cx, %dx
sub %cx, %bx
nop
xor %cx, %bx
xor %ax, (%di)
...

adapted from Szor, Listing 7.5

do-nothing instructionsdifferent decryption “key”

42

example: 1260 (virus)
inc %si
mov $0x0e9b, %ax
clc
mov $0x12a, %di
nop
mov $0x571, %cx

decrypt:
xor %cx, (%di)
sub %dx, %bx
sub %cx, %bx
sub %ax, %bx
nop
xor %cx, %dx
xor %ax, (%di)
...

mov $0x0a43, %ax
nop
mov $0x15a, %di
sub %dx, %bx
sub %cx, %bx
mov $0x571, %cx
clc

decrypt:
xor %cx, (%di)
xor %cx, %dx
sub %cx, %bx
nop
xor %cx, %bx
xor %ax, (%di)
...

adapted from Szor, Listing 7.5

do-nothing instructions

different decryption “key”

42

lots of variation

essentially limitless variations of decrypter
huge number of nop-like sequences
plus reordering non-nop instructions

can’t just make scanner that skips obvious nops

could try to analyze more deeply for nops
could identify when instruction’s result is unused

but attacker can be more sophisticated:
inc %ax; dec %ax
xor %ax, %bx; xor %bx, %ax; xor %ax, %bx
…

43

lots of variation

essentially limitless variations of decrypter
huge number of nop-like sequences
plus reordering non-nop instructions

can’t just make scanner that skips obvious nops

could try to analyze more deeply for nops
could identify when instruction’s result is unused

but attacker can be more sophisticated:
inc %ax; dec %ax
xor %ax, %bx; xor %bx, %ax; xor %ax, %bx
…

43

lots of variation

essentially limitless variations of decrypter
huge number of nop-like sequences
plus reordering non-nop instructions

can’t just make scanner that skips obvious nops

could try to analyze more deeply for nops
could identify when instruction’s result is unused

but attacker can be more sophisticated:
inc %ax; dec %ax
xor %ax, %bx; xor %bx, %ax; xor %ax, %bx
…

43

interlude: anti-packer strategies

44

finding packers

easiest way to decrypt self-decrypting code — run it!

solution: virtual machine in antivirus software

makes antivirtualization/emulation more important

45

finding packers with VM

run program in VM for a while
how long?

then scan memory for known patterns

or detect jumping to written memory

46

stopping packers

it’s unusual to jump to code you wrote

modern OSs: memory is executable or writable —
not both

47

stopping packers

it’s unusual to jump to code you wrote

modern OSs: memory is executable or writable —
not both

47

diversion: DEP/W^X

memory executable or writeable — but not both

exists for exploits (later in course), not packers

requires hardware support to be fast (early 2000s+)

various names for this feature:
Data Execution Prevention (DEP) (Windows)
W^X (“write XOR execute”)
NX/XD/XN bit (underlying hardware support)

(No Execute/eXecute Disable/eXecute Never)

special system call to switch modes

48

unusual, but…

binary translation
convert machine code to new machine code at runtime

Java virtual machine, JavaScript implementations
“just-in-time” compilers

dynamic linkers
load new code from a file — same as writing code?

those packed commercial programs

programs need to explicitly ask for write+exec
49

finding packers

easiest way to decrypt self-decrypting code — run it!

solution: virtual machine in antivirus software

makes antivirtualization/emulation more important

50

antivirtualization techniques

query virtual devices

solution: mirror devices of some real machine

time operations that are slower in VM/emulation

solution: virtual clock

use operations not supported by VM

solution: support everything

51

antivirtualization techniques

query virtual devices

solution: mirror devices of some real machine

time operations that are slower in VM/emulation

solution: virtual clock

use operations not supported by VM

solution: support everything

52

virtual devices

VirtualBox device drivers?

VMware-brand ethernet device?

…

53

antivirtualization techniques

query virtual devices
solution: mirror devices of some real machine

time operations that are slower in VM/emulation

solution: virtual clock

use operations not supported by VM

solution: support everything

54

antivirtualization techniques

query virtual devices

solution: mirror devices of some real machine

time operations that are slower in VM/emulation

solution: virtual clock

use operations not supported by VM

solution: support everything

54

slower operations

not-“native” VM:
everything is really slow

otherwise — trigger “callbacks” to VM
implementation:

system calls?
allocating and accessing memory?

…and hope it’s reliably slow enough

55

antivirtualization techniques

query virtual devices

solution: mirror devices of some real machine

time operations that are slower in VM/emulation
solution: virtual clock

use operations not supported by VM

solution: support everything

56

antivirtualization techniques

query virtual devices

solution: mirror devices of some real machine

time operations that are slower in VM/emulation

solution: virtual clock

use operations not supported by VM

solution: support everything

56

operations not supported

missing instructions kinds?
FPU instructions
MMX/SSE instructions
undocumented (!) CPU instructions

not handling OS features?
setting up special handlers for segfault
multithreading
system calls that make callbacks
…
antivirus not running system VM to do decryption

needs to emulate lots of the OS itself

57

attacking emulation patience

looking for unpacked virus in VM

…or other malicious activity

when are you done looking?

malware solution: take too long
not hard if emulator uses “slow” implementation

malware solution: don’t infect consistently

58

attacking emulation patience

looking for unpacked virus in VM

…or other malicious activity

when are you done looking?

malware solution: take too long
not hard if emulator uses “slow” implementation

malware solution: don’t infect consistently

58

attacking emulation patience

looking for unpacked virus in VM

…or other malicious activity

when are you done looking?

malware solution: take too long
not hard if emulator uses “slow” implementation

malware solution: don’t infect consistently

58

probability

if (randomNumber() == 4) {
unpackAndRunEvilCode();

}

antivirus emulator:
randomNumber() == 3
looks clean!

real execution #1:
randomNumber() == 2
no infection!

real execution #N :
randomNumber() == 4
infect!

59

on goats

analysis (and maybe detection) uses goat files

“sacrificial goat” to get changed by malware

heuristics can avoid simple goat files, e.g.:
don’t infect small programs
don’t infect huge programs
don’t infect programs with huge amounts of nops
…

60

goats as detection

tripwire for malware

touching do-nothing .exe — very likely bad

61

goats as analysis

more important for analysis of changing malware

want examples of multiple versions

want it to be obvious where malware code added
e.g. big cavities to fill in original
e.g. obvious patterns in original code/data

62

changing bodies

“decrypting” a virus body gives body for “signature”
“just” need to run decrypter

how about avoiding static signatures entirely

called metamorphic
versus polymorphic — only change “decrypter”

63

example: changing bodies
pop %edx
mov $0x4h, %edi
mov %ebp, %esi
mov $0xC, %eax
add $0x88, %edx
mov (%edx), %ebx
mov %ebx, 0x1118(%esi,%eax,4)

pop %eax
mov $0x4h, %ebx
mov %ebp, %esi
mov $0xC, %edi
add $0x88, %eax
mov (%eax), %esi
mov %esi, 0x1118(%esi,%eax,4)

code above: after decryption

every instruction changes
still has good signatures

with alternatives for each possible register selection

but harder to write/slower to match
64

case study: Evol

via Lakhatia et al, “Are metamorphic viruses really
invincible?”, Virus Bulletin, Jan 2005.

“mutation engine”
run as part of propagating the virus

disassemble
instr.

lengths transform relocate

code

code

65

case study: Evol

via Lakhatia et al, “Are metamorphic viruses really
invincible?”, Virus Bulletin, Jan 2005.

“mutation engine”
run as part of propagating the virus

disassemble
instr.

lengths transform relocate

code

code

66

Evol instruction lengths

sounds really complicated?

virus only handles instructions it has:
about 61 opcodes, 32 of them identified by first four
bits

e.g. opcode 0x7x – conditional jump

no prefixes, no floating point

only %reg or $constant or offset(%reg)

67

case study: Evol

via Lakhatia et al, “Are metamorphic viruses really
invincible?”, Virus Bulletin, Jan 2005.

“mutation engine”
run as part of propagating the virus

disassemble
instr.

lengths transform relocate

code

code

68

Evol transformations

some stuff left alone
static or random one of N transformations
example:

mov %eax, 8(%ebp)

push %ecx
mov %ebp, %ecx
add $0x12, %ecx
mov %eax, −0xa(%ecx)
pop %ecx

uses more stack space — save temporary
code gets bigger each time

Lakhotia et al., “Are metamorphic viruses really invincible?”, Virus Bulletin, Jan 2005 69

case study: Evol

via Lakhatia et al, “Are metamorphic viruses really
invincible?”, Virus Bulletin, Jan 2005.

“mutation engine”
run as part of propagating the virus

disassemble
instr.

lengths transform relocate

code

code

70

mutation with relocation

table mapping old to new locations
list of number of bytes generated by each
transformation

list of locations references in original
record relative offset in jump
record absolute offset in original

71

relocation example

mov ...
mov ...

decrypt:
xor %rax, (%rbx)
inc %rbx
dec %rcx
jne decrypt

orig. len new len instr
5 10 mov1
2 3 mov2
2 7 xor1
1 1 inc1
1 5 dec1
3 3 jne1

address loc orig. target new target

10+3+7+1+5+1
(jne1+1) xor1 (5 + 2) xor1 (10 + 3)

72

mutation engines

tools for writing polymorphic viruses

best: no constant bytes, no “no-op” instructions

tedious work to build state-machine-based detector
((almost) a regular expression to match it)
apparently done manually
automatable?

pattern: used until reliably detected

73

fancier mutation

can do mutation on generic machine code

“just” need full disassembler

identify both instruction lengths and addresses

hope machine code not written to rely on machien
code sizes, etc.

hope to identify tables of function pointers, etc.

74

fancier mutation

also an infection technique
no “cavity” needed — create one

obviously tricky to implement
need to fix all executable headers
what if you misparse assembly?
what if you miss a function pointer?

example: Simile virus

75

antiantivirus

already covered:
break disassemblers — with packers
break VMs/emulators

break debuggers
make analysis harder

break antivirus software itself
“retrovirus”

76

antiantivirus

already covered:
break disassemblers — with packers
break VMs/emulators

break debuggers
make analysis harder

break antivirus software itself
“retrovirus”

77

diversion: debuggers

we’ll care about two pieces of functionality:

breakpoints
debugger gets control when certain code is reached

single-step
debugger gets control after a single instruction runs

78

diversion: debuggers

we’ll care about two pieces of functionality:

breakpoints
debugger gets control when certain code is reached

single-step
debugger gets control after a single instruction runs

79

implementing breakpoints

idea: change
movq %rax, %rdx
addq %rbx, %rdx // BREAKPOINT HERE
subq 0(%rsp), %r8
...

into
movq %rax, %rdx
jmp debugger_code
subq 0(%rsp), %r8
...

problem: jmp might be bigger than addq?

80

implementing breakpoints

idea: change
movq %rax, %rdx
addq %rbx, %rdx // BREAKPOINT HERE
subq 0(%rsp), %r8
...

into
movq %rax, %rdx
jmp debugger_code
subq 0(%rsp), %r8
...

problem: jmp might be bigger than addq?
80

int 3

x86 breakpoint instruction: int 3
Why 3? fourth entry in table of handlers

one byte instruction encoding: CC

debugger modifies code to insert breakpoint
has copy of original somewhere

invokes handler setup by OS
debugger can ask OS to be run by handler
or changes pointer to handler directly on old OSes

81

int 3 handler

kind of exception handler
recall: exception handler = way for CPU to run OS code

x86 CPU saves registers, PC for debugger

x86 CPU has easy to way to resume debugged code
from handler

82

detecting int 3 directly (1)

checksum running code
mycode:

...
movq $0, %rbx
movq $mycode, %rax

loop:
addq (%rax), %rbx
addq $8, %rax
cmpq $endcode, %rax
jl loop
cmpq %rbx, $EXPECTED_VALUE
jne debugger_found
...

endcode:
83

detecting int 3 directly (2)

query the “handler” for int 3
old OSs only; today: cannot set directly

modern OSs: ask if there’s a debugger attached

…or try to attach as debugger yourself
doesn’t work — debugger present, probably
does work — broke any debugger?

// Windows API function!
if (IsDebuggerPresent()) {

84

modern debuggers

int 3 is the oldest x86 debugging mechanism

modern x86: 4 “breakpoint” registers (DR0–DR3)
contain address of program instructions
need more than 4? sorry

processor triggers exception when address reached
4 extra registers + comparators in CPU?

flag to invoke debugger if debugging registers used
enables nested debugging

85

diversion: debuggers

we’ll care about two pieces of functionality:

breakpoints
debugger gets control when certain code is reached

single-step
debugger gets control after a single instruction runs

86

implementing single-stepping (1)

set a breakpoint on the following instruction?
movq %rax, %rdx
addq %rbx, %rdx // ←− STOPPED HERE
subq 0(%rsp), %r8 // ←− SINGLE STEP TO HERE
subq 8(%rsp), %r8
...

transformed to
movq %rax, %rdx
addq %rbx, %rdx // ←− STOPPED HERE
int 3 // ←− SINGLE STEP TO HERE
subq 8(%rsp), %
...

then jmp to addq

but what about
jmpq *0x1234(%rax,%rbx,8) // ←− STOPPED HERE

87

implementing single-stepping (1)

set a breakpoint on the following instruction?
movq %rax, %rdx
addq %rbx, %rdx // ←− STOPPED HERE
subq 0(%rsp), %r8 // ←− SINGLE STEP TO HERE
subq 8(%rsp), %r8
...

transformed to
movq %rax, %rdx
addq %rbx, %rdx // ←− STOPPED HERE
int 3 // ←− SINGLE STEP TO HERE
subq 8(%rsp), %
...

then jmp to addq
but what about
jmpq *0x1234(%rax,%rbx,8) // ←− STOPPED HERE

87

implementing single-stepping (2)

typically hardware support for single stepping

x86:int 1 handler (second entry in table)

x86: TF flag: execute handler after every instruction

…except during handler (whew!)

88

Defeating single-stepping

try to install your own int 1 handler
(if OS allows)

try to clear TF?
(if debugger doesn’t reset it)

89

unstealthy debuggers

is a debugger installed?
unlikely on Windows, maybe ignore those machines

is a debugger process running (don’t check if it’s
tracing you)

…

90

confusing debuggers

“broken” executable formats
e.g., recall ELF: segments and sections
corrupt sections — program still works
overlapping segments/sections — program still works

use the stack pointer not for the stack
stack trace?

91

antiantivirus

already covered:
break disassemblers — with packers
break VMs/emulators

break debuggers
make analysis harder

break antivirus software itself
“retrovirus”

92

attacking antivirus (1)

how does antivirus software scan new things?
register handlers with OS/applications — new files, etc.

how about registering your own?

93

hooking

hooking — getting a ‘hook’ to run on (OS)
operations

e.g. creating new files

ideal mechanism: OS support

less ideal mechanism: change library loading
e.g. replace ‘open’, ‘fopen’, etc. in libraries

less ideal mechanism: replace OS exception (system
call) handlers

very OS version dependent

94

hooking

hooking — getting a ‘hook’ to run on (OS)
operations

e.g. creating new files

ideal mechanism: OS support

less ideal mechanism: change library loading
e.g. replace ‘open’, ‘fopen’, etc. in libraries

less ideal mechanism: replace OS exception (system
call) handlers

very OS version dependent

95

96

hooking

hooking — getting a ‘hook’ to run on (OS)
operations

e.g. creating new files

ideal mechanism: OS support

less ideal mechanism: change library loading
e.g. replace ‘open’, ‘fopen’, etc. in libraries

less ideal mechanism: replace OS exception (system
call) handlers

very OS version dependent

97

changing library loading

e.g. install new library — or edit loader, but …

not everything uses library functions

what if your wrapper doesn’t work exactly the same?

98

hooking

hooking — getting a ‘hook’ to run on (OS)
operations

e.g. creating new files

ideal mechanism: OS support

less ideal mechanism: change library loading
e.g. replace ‘open’, ‘fopen’, etc. in libraries

less ideal mechanism: replace OS exception (system
call) handlers

very OS version dependent

99

attacking antivirus (2)

just directly modify it
example: IDEA.6155 modifies database of scanned files

preserve checksums
example: HybrisF preserved CRC32 checksums of
infected files
some AV software won’t scan again

100

armored viruses

“encrypted” viruses
not strong encryption — key is there!

self-changing viruses:
encrypted oligiomorphic polymorphic metamorphic

breaking debuggers, antivirus

101

residence

our model of malware — runs when triggered

reality: sometimes keep on running
evade active detection
spread to new programs/files as created/run

102

real signatures: ClamAV

ClamAV: open source email scanning software

signature types:
hash of file
hash of contents of segment of executable

built-in executable, archive file parser
fixed string
basic regular expressions

wildcards, character classes, alternatives
more complete regular expressions

including features that need more than state machines
meta-signatures: match if other signatures match
icon image fuzzy-matching

103

	anti-virus techniques
	review: pattern matching
	new malware?
	heuristic: executable format messes
	heuristic: library call finding
	heuristic: behavior checking
	heuristic detection summary
	heuristic case study

	antiantivirus
	packers
	intro: encrypted data
	intro: encrypted code
	example: Cascade
	decrypter variations

	metamorphic, etc.
	oligomorphic viruses
	mutation engines generally

	heuristics for detecting packers
	DEP

	antivirtualization
	metamorphic virsues
	Evol example

	other antiantivirus
	anti-debugging
	retroviruses

	conclusion
	memory residence
	recall: hooking
	DOS terminate-and-stay-resident
	import table hooking
	driver installation

	stealth
	semistealth — directory breaking
	read stealth

	Backup slides

