
anti-anti-virus (continued)

1

logistics: TRICKY

HW assignment out

“infecting” an executable

2

last time

anti-virus:
heuristic: malware messing up executables?

key idea: wrong segment of executable?
switching segments of the executable?
weird API calls/names

detecting bad behavior?

anti-anti-virus
“encrypted” data
“encrypted” code: “packers”
oligomorphic and polymorphic: changing “encrypters”

3

today

this time:
metamorphic: changing encrypter and body

also: more anti-anti-virus
anti-virtualization review
anti-debugging
…

4

regular expression cheatsheet

a — matches a
a* — matches (empty string), a, aa, aaa, …
a* — matches the string a*
foo|bar — matches foo, bar
[ab] — matches a, b
[^ab] — matches any byte except a and b
(foo|bar)* —

(empty string), foo, bar, foobar, barfoo, …

(.|\n)* — matches anything whatsoever
5

upcoming assignment: LEX

use flex to write a scanner for the pattern:
push $0x12345678; ret

explain a false positive, propose practical solution

6

example: 1260 (virus)
inc %si
mov $0x0e9b, %ax
clc
mov $0x12a, %di
nop
mov $0x571, %cx

decrypt:
xor %cx, (%di)
sub %dx, %bx
sub %cx, %bx
sub %ax, %bx
nop
xor %cx, %dx
xor %ax, (%di)
...

mov $0x0a43, %ax
nop
mov $0x15a, %di
sub %dx, %bx
sub %cx, %bx
mov $0x571, %cx
clc

decrypt:
xor %cx, (%di)
xor %cx, %dx
sub %cx, %bx
nop
xor %cx, %bx
xor %ax, (%di)
...

adapted from Szor, Listing 7.5 7

example: 1260 (virus)
inc %si
mov $0x0e9b, %ax
clc
mov $0x12a, %di
nop
mov $0x571, %cx

decrypt:
xor %cx, (%di)
sub %dx, %bx
sub %cx, %bx
sub %ax, %bx
nop
xor %cx, %dx
xor %ax, (%di)
...

mov $0x0a43, %ax
nop
mov $0x15a, %di
sub %dx, %bx
sub %cx, %bx
mov $0x571, %cx
clc

decrypt:
xor %cx, (%di)
xor %cx, %dx
sub %cx, %bx
nop
xor %cx, %bx
xor %ax, (%di)
...

adapted from Szor, Listing 7.5 7

example: 1260 (virus)
inc %si
mov $0x0e9b, %ax
clc
mov $0x12a, %di
nop
mov $0x571, %cx

decrypt:
xor %cx, (%di)
sub %dx, %bx
sub %cx, %bx
sub %ax, %bx
nop
xor %cx, %dx
xor %ax, (%di)
...

mov $0x0a43, %ax
nop
mov $0x15a, %di
sub %dx, %bx
sub %cx, %bx
mov $0x571, %cx
clc

decrypt:
xor %cx, (%di)
xor %cx, %dx
sub %cx, %bx
nop
xor %cx, %bx
xor %ax, (%di)
...

adapted from Szor, Listing 7.5 7

example: 1260 (virus)
inc %si
mov $0x0e9b, %ax
clc
mov $0x12a, %di
nop
mov $0x571, %cx

decrypt:
xor %cx, (%di)
sub %dx, %bx
sub %cx, %bx
sub %ax, %bx
nop
xor %cx, %dx
xor %ax, (%di)
...

mov $0x0a43, %ax
nop
mov $0x15a, %di
sub %dx, %bx
sub %cx, %bx
mov $0x571, %cx
clc

decrypt:
xor %cx, (%di)
xor %cx, %dx
sub %cx, %bx
nop
xor %cx, %bx
xor %ax, (%di)
...

adapted from Szor, Listing 7.5 7

example: 1260 (virus)
inc %si
mov $0x0e9b, %ax
clc
mov $0x12a, %di
nop
mov $0x571, %cx

decrypt:
xor %cx, (%di)
sub %dx, %bx
sub %cx, %bx
sub %ax, %bx
nop
xor %cx, %dx
xor %ax, (%di)
...

mov $0x0a43, %ax
nop
mov $0x15a, %di
sub %dx, %bx
sub %cx, %bx
mov $0x571, %cx
clc

decrypt:
xor %cx, (%di)
xor %cx, %dx
sub %cx, %bx
nop
xor %cx, %bx
xor %ax, (%di)
...

adapted from Szor, Listing 7.5 7

multiple versions?

in “encrypted” code:
void generateDecrypter() {

int key = random();
writeRandomNop();
if (random()) {

writeMovKey(key);
writeMovCodeLoc();

} else {
writeMovCodeLoc();
writeMovKey(key);

}
writeRandomNop();
...

}
8

typical polymorphic malware layout

decrypter

“encrypted” code

decrypter generator code

unchanged when copied
except re-“encrypted”

generated from template
in “encrypted” part

9

polymorphic/oligomorphic

only “encrypter” changes

“encrypted” code to generate encrypter

only need to handle what encrypter does

simplest version: just have several versions in
encrypted code

second simplest version: template with holes

never need to read machine code!

10

common theme: run it and see

behavior-based detection:
detect modifications to system files

defeating encrypters
run encrypter, look for results

often requires VM

much slower than pattern matching

has its own countermeasures

11

on goats

analysis — and maybe detection — uses goat files

“sacrificial goat” to get changed by malware

easier to look for than patterns in memory?

12

goats as detection

tripwire for malware

touching do-nothing .exe — very likely bad

13

goats as analysis

more important for analysis of changing malware

want examples of multiple versions

want it to be obvious where malware code added
e.g. big cavities to fill in original
e.g. obvious patterns in original code/data

14

on avoiding goats

heuristics can avoid simple goat files, e.g.:
don’t infect small programs
don’t infect huge programs
don’t infect programs with huge amounts of nops
…

15

finding packers

easiest way to decrypt self-decrypting code — run it!

solution: virtual machine in antivirus software

makes antivirtualization/emulation more important

16

finding packers with VM

run program in VM for a while
how long?

then scan memory for known patterns

defeats entire “strategy”

17

stopping packers

it’s unusual to jump to code you wrote

modern OSs: memory is executable or writable

very rarely executable and writeable

18

stopping packers

it’s unusual to jump to code you wrote

modern OSs: memory is executable or writable

very rarely executable and writeable

18

diversion: DEP/W^X

memory executable or writeable — but not both

exists for exploits (later in course), not packers

requires hardware support to be fast (early 2000s+)

various names for this feature:
Data Execution Prevention (DEP) (Windows)
W^X (“write XOR execute”)
NX/XD/XN bit (underlying hardware support)

(No Execute/eXecute Disable/eXecute Never)

system calls needed to switch modes

19

unusual, but…

binary translation
convert machine code to new machine code at runtime

Java virtual machine, JavaScript implementations
“just-in-time” compilers

dynamic linkers
load new code from a file — same as writing code?

those packed commercial programs

programs need to explicitly ask for write+exec
20

finding packers

easiest way to decrypt self-decrypting code — run it!

solution: virtual machine in antivirus software

makes antivirtualization/emulation more important

21

recurring theme

don’t analyze code — just run it!

avoids the halting problem, kinda

doesn’t matter how much effort spent writing
decrypters, etc.

22

antivirtualization techniques

query virtual devices

solution: mirror devices of some real machine

time operations that are slower in VM/emulation

solution: virtual clock

use operations not supported by VM

solution: support everything

23

antivirtualization techniques

query virtual devices

solution: mirror devices of some real machine

time operations that are slower in VM/emulation

solution: virtual clock

use operations not supported by VM

solution: support everything

24

virtual devices

VirtualBox device drivers?

VMware-brand ethernet device?

…

25

antivirtualization techniques

query virtual devices
solution: mirror devices of some real machine

time operations that are slower in VM/emulation

solution: virtual clock

use operations not supported by VM

solution: support everything

26

antivirtualization techniques

query virtual devices

solution: mirror devices of some real machine

time operations that are slower in VM/emulation

solution: virtual clock

use operations not supported by VM

solution: support everything

26

slower operations

not-“native” VM:
i.e., emulation or binary translation
everything is really slow

otherwise — trigger “callbacks” to VM
implementation:

system calls?
allocating and accessing memory?

…and hope it’s reliably slow enough

27

antivirtualization techniques

query virtual devices

solution: mirror devices of some real machine

time operations that are slower in VM/emulation
solution: virtual clock

use operations not supported by VM

solution: support everything

28

antivirtualization techniques

query virtual devices

solution: mirror devices of some real machine

time operations that are slower in VM/emulation

solution: virtual clock

use operations not supported by VM

solution: support everything

28

operations not supported

missing instructions?
FPU instructions
MMX/SSE instructions
undocumented (!) CPU instructions

not handling OS features?
setting up special handlers for segfault
multithreading
system calls that make callbacks
…

antivirus not running system VM to do decryption
needs to emulate lots of the OS itself

29

operations not supported

missing instructions?
FPU instructions
MMX/SSE instructions
undocumented (!) CPU instructions

not handling OS features?
setting up special handlers for segfault
multithreading
system calls that make callbacks
…
antivirus not running system VM to do decryption

needs to emulate lots of the OS itself

29

attacking virtualization patience

looking for unpacked virus in VM

…or other malicious activity

when are you done looking?

malware solution: take too long
not hard if virtualization uses “slow” implementation
slow? maybe allows more inspection of program
(e.g. switching segments, newly written code)

malware solution: don’t infect consistently

30

attacking virtualization patience

looking for unpacked virus in VM

…or other malicious activity

when are you done looking?

malware solution: take too long
not hard if virtualization uses “slow” implementation
slow? maybe allows more inspection of program
(e.g. switching segments, newly written code)

malware solution: don’t infect consistently

30

attacking virtualization patience

looking for unpacked virus in VM

…or other malicious activity

when are you done looking?

malware solution: take too long
not hard if virtualization uses “slow” implementation
slow? maybe allows more inspection of program
(e.g. switching segments, newly written code)

malware solution: don’t infect consistently
30

probability

if (randomNumber() == 4) {
unpackAndRunEvilCode();

}

antivirus emulator:
randomNumber() == 3
looks clean!

real execution #1:
randomNumber() == 2
no infection!

real execution #N :
randomNumber() == 4
infect!

…

31

signatures in RAM

on disk

decrypter

“encrypted”
code

in memory (after a while)

decrypter

decrypted code
(good signature)

32

changing bodies

“decrypting” a virus body gives body for “signature”
“just” need to run decrypter

how about avoiding static signatures entirely

called metamorphic
versus polymorphic — only change “decrypter”

33

metamorphic versus polymorphic

big change in difficulty

polymorphic: can have “template” with blanks

metamorphic: probably “understand” machine code
could have been doing this with polymorphic, but
probably not

34

example: changing bodies
pop %edx
mov $0x4h, %edi
mov %ebp, %esi
mov $0xC, %eax
add $0x88, %edx
mov (%edx), %ebx
mov %ebx, 0x1118(%esi,%eax,4)

pop %eax
mov $0x4h, %ebx
mov %ebp, %esi
mov $0xC, %edi
add $0x88, %eax
mov (%eax), %esi
mov %esi, 0x1118(%esi,%eax,4)

every instruction changes

likely with machine code parser!
locate register number bits
swap register numbers w/table lookup

35

example: changing bodies
pop %edx
mov $0x4h, %edi
mov %ebp, %esi
mov $0xC, %eax
add $0x88, %edx
mov (%edx), %ebx
mov %ebx, 0x1118(%esi,%eax,4)

pop %eax
mov $0x4h, %ebx
mov %ebp, %esi
mov $0xC, %edi
add $0x88, %eax
mov (%eax), %esi
mov %esi, 0x1118(%esi,%eax,4)

still has good signatures
with alternatives for each possible register selection

but harder to write/slower to match
in addition to running VM to decrypt

35

case study: Evol

via Lakhatia et al, “Are metamorphic viruses really
invincible?”, Virus Bulletin, Jan 2005.

“mutation engine”
run as part of propagating the virus

disassemble
instr.

lengths transform relocate

code

code

36

case study: Evol

via Lakhatia et al, “Are metamorphic viruses really
invincible?”, Virus Bulletin, Jan 2005.

“mutation engine”
run as part of propagating the virus

disassemble
instr.

lengths transform relocate

code

code

37

Evol instruction lengths

sounds really complicated?
instruction prefixes, ModRM byte parsing, …
big table of opcodes?

virus only handles instructions it has:
about 61 opcodes, 32 of them identified by first four
bits
(opcode 0x7x – conditional jump)

no prefixes, no floating point

only %reg or $constant or offset(%reg)

38

case study: Evol

via Lakhatia et al, “Are metamorphic viruses really
invincible?”, Virus Bulletin, Jan 2005.

“mutation engine”
run as part of propagating the virus

disassemble
instr.

lengths transform relocate

code

code

39

Evol transformations

some stuff left alone
static or random one of N transformations
example:

mov %eax, 8(%ebp)

push %ecx
mov %ebp, %ecx
add $0x12, %ecx
mov %eax, −0xa(%ecx)
pop %ecx

uses more stack space — save temporary
code gets bigger each time

Lakhotia et al., “Are metamorphic viruses really invincible?”, Virus Bulletin, Jan 2005 40

case study: Evol

via Lakhatia et al, “Are metamorphic viruses really
invincible?”, Virus Bulletin, Jan 2005.

“mutation engine”
run as part of propagating the virus

disassemble
instr.

lengths transform relocate

code

code

41

mutation with relocation

table mapping old to new locations
list of number of bytes generated by each
transformation

list of locations references in original
record relative offset in jump
record absolute offset in original

42

relocation example

mov ...
mov ...

0x9:
xor %rax, (%rbx)
inc %rbx
dec %rcx
jne 0x9

orig. loc new loc addr
5 10 -- mov
7 13 -- mov
9 20 -- xor
10 21 -- inc
11 26 -- dec
14 29 9 jne

table from transformation

address loc orig. target new target

29+1 (jne1+1) xor1 (9) xor1 (20)

relocation actions

43

relocation example

mov ...
mov ...

0x9:
xor %rax, (%rbx)
inc %rbx
dec %rcx
jne 0x9

orig. loc new loc addr
5 10 -- mov
7 13 -- mov
9 20 -- xor
10 21 -- inc
11 26 -- dec
14 29 9 jne

table from transformation

address loc orig. target new target

29+1 (jne1+1) xor1 (9) xor1 (20)

relocation actions

43

relocation example

mov ...
mov ...

0x9:
xor %rax, (%rbx)
inc %rbx
dec %rcx
jne 0x9

orig. loc new loc addr
5 10 -- mov
7 13 -- mov
9 20 -- xor
10 21 -- inc
11 26 -- dec
14 29 9 jne

table from transformation

address loc orig. target new target

29+1 (jne1+1) xor1 (9) xor1 (20)

relocation actions

43

mutation engines

tools for writing polymorphic viruses

best: no constant bytes, no “no-op” instructions

tedious work to build state-machine-based detector
((almost) a regular expression to match it after any
transform)
apparently done manually
automatable?

malware authors use until reliably detected

44

fancier mutation

can do mutation on generic machine code

“just” need full disassembler

identify both instruction lengths and addresses

hope machine code not written to rely on machien
code sizes, etc.

hope to identify tables of function pointers, etc.

45

fancier mutation

also an infection technique
no “cavity” needed — create one

obviously tricky to implement
need to fix all executable headers
what if you misparse assembly?
what if you miss a function pointer?

example: Simile virus

46

antiantivirus

already covered:
break disassemblers — with packers
break VMs/emulators

break debuggers
make analysis harder

break antivirus software itself
“retrovirus”

47

antiantivirus

already covered:
break disassemblers — with packers
break VMs/emulators

break debuggers
make analysis harder

break antivirus software itself
“retrovirus”

48

diversion: debuggers

we’ll care about two pieces of functionality:

breakpoints
debugger gets control when certain code is reached

single-step
debugger gets control after a single instruction runs

49

diversion: debuggers

we’ll care about two pieces of functionality:

breakpoints
debugger gets control when certain code is reached

single-step
debugger gets control after a single instruction runs

50

implementing breakpoints

idea: change
movq %rax, %rdx
addq %rbx, %rdx // BREAKPOINT HERE
subq 0(%rsp), %r8
...

into
movq %rax, %rdx
jmp debugger_code
subq 0(%rsp), %r8
...

problem: jmp might be bigger than addq?

51

implementing breakpoints

idea: change
movq %rax, %rdx
addq %rbx, %rdx // BREAKPOINT HERE
subq 0(%rsp), %r8
...

into
movq %rax, %rdx
jmp debugger_code
subq 0(%rsp), %r8
...

problem: jmp might be bigger than addq?
51

int 3

x86 breakpoint instruction: int 3
Why 3? fourth entry in table of handlers

one byte instruction encoding: CC

debugger modifies code to insert breakpoint
has copy of original somewhere

invokes handler setup by OS
debugger can ask OS to be run by handler
or changes pointer to handler directly on old OSes

52

int 3 handler

kind of exception handler
recall: exception handler = way for CPU to run OS code

x86 CPU saves registers, PC for debugger

x86 CPU has easy to way to resume debugged code
from handler

53

detecting int 3 directly (1)

checksum running code
mycode:

...
movq $0, %rbx
movq $mycode, %rax

loop:
addq (%rax), %rbx
addq $8, %rax
cmpq $endcode, %rax
jl loop
cmpq %rbx, $EXPECTED_VALUE
jne debugger_found
...

endcode:
54

detecting int 3 directly (2)

query the “handler” for int 3
old OSs only; today: cannot set directly

modern OSs: ask if there’s a debugger attached

…or try to attach as debugger yourself
doesn’t work — debugger present, probably
does work — broke any debugger?

// Windows API function!
if (IsDebuggerPresent()) {

55

modern debuggers

int 3 is the oldest x86 debugging mechanism

modern x86: 4 “breakpoint” registers (DR0–DR3)
contain address of program instructions
need more than 4? sorry

processor triggers exception when address reached
4 extra registers + comparators in CPU?

flag to invoke debugger if debugging registers used
enables nested debugging

56

diversion: debuggers

we’ll care about two pieces of functionality:

breakpoints
debugger gets control when certain code is reached

single-step
debugger gets control after a single instruction runs

57

implementing single-stepping (1)

set a breakpoint on the following instruction?
movq %rax, %rdx
addq %rbx, %rdx // ←− STOPPED HERE
subq 0(%rsp), %r8 // ←− SINGLE STEP TO HERE
subq 8(%rsp), %r8
...

transformed to
movq %rax, %rdx
addq %rbx, %rdx // ←− STOPPED HERE
int 3 // ←− SINGLE STEP TO HERE
subq 8(%rsp), %
...

then jmp to addq

but what about
jmpq *0x1234(%rax,%rbx,8) // ←− STOPPED HERE

58

implementing single-stepping (1)

set a breakpoint on the following instruction?
movq %rax, %rdx
addq %rbx, %rdx // ←− STOPPED HERE
subq 0(%rsp), %r8 // ←− SINGLE STEP TO HERE
subq 8(%rsp), %r8
...

transformed to
movq %rax, %rdx
addq %rbx, %rdx // ←− STOPPED HERE
int 3 // ←− SINGLE STEP TO HERE
subq 8(%rsp), %
...

then jmp to addq
but what about
jmpq *0x1234(%rax,%rbx,8) // ←− STOPPED HERE

58

implementing single-stepping (2)

typically hardware support for single stepping

x86:int 1 handler (second entry in table)

x86: TF flag: execute handler after every instruction

…except during handler (whew!)

59

Defeating single-stepping

try to install your own int 1 handler
(if OS allows)

try to clear TF?
would take effect on following instruction
…if debugger doesn’t reset it

60

unstealthy debuggers

is a debugger installed?
unlikely on Windows, maybe ignore those machines

is a debugger process running (don’t check if it’s
tracing you)

…

61

confusing debuggers

“broken” executable formats
e.g., recall ELF: segments and sections
corrupt sections — program still works
overlapping segments/sections — program still works

use the stack pointer not for the stack
stack trace?

62

antiantivirus

already covered:
break disassemblers — with packers
break VMs/emulators

break debuggers
make analysis harder

break antivirus software itself
“retrovirus”

63

terminology

semistealth/stealth — hide from system

tunneling virus — evades behavior-blocking
e.g. detection of modifying system files

retrovirus — directly attacks/disables antivirus
software

64

attacking antivirus (1)

how does antivirus software scan new files?

how does antivirus software detect bad behavior?
register handlers with OS/applications — new files, etc.

65

hooking and malware

hooking — getting a ‘hook’ into (OS) operations
e.g. creating new files, opening file
monitoring or changing/stopping behavior

used by antivirus and malware:

stealth virus — hide virus program from normal I/O,
etc.

tunneling virus — skip over antivirus’s hook

retrovirus — break antivirus’s hook
66

stealth

/* in virus: */
int OpenFile(const char *filename, ...) {

if (strcmp(filename, "infected.exe") == 0) {
return RealOpenFile("clean.exe", ...);

} else {
return RealOpenFile(filename, ...);

}
}

67

stealth ideas

override “get file modification time” (infected files)

override “get files in directory” (infected files)

override “read file” (infected files)
but not “execute file”

override “get running processes”

68

tunneling ideas

use the “real” write/etc. function
not wrapper from antivirus software

find write/etc. function antivirus software “forgot”
to hook

69

retrovirus ideas

empty antivirus signature list

kill antivirus process, remove “hooks”

delete antivirus software, replace with dummy
executable

…

70

hooking mechanisms

hooking — getting a ‘hook’ to run on (OS)
operations

e.g. creating new files

ideal mechanism: OS support

less ideal mechanism: change library loading
e.g. replace ‘open’, ‘fopen’, etc. in libraries

less ideal mechanism: replace OS exception (system
call) handlers

very OS version dependent

71

hooking mechanisms

hooking — getting a ‘hook’ to run on (OS)
operations

e.g. creating new files

ideal mechanism: OS support

less ideal mechanism: change library loading
e.g. replace ‘open’, ‘fopen’, etc. in libraries

less ideal mechanism: replace OS exception (system
call) handlers

very OS version dependent

72

73

hooking mechanisms

hooking — getting a ‘hook’ to run on (OS)
operations

e.g. creating new files

ideal mechanism: OS support

less ideal mechanism: change library loading
e.g. replace ‘open’, ‘fopen’, etc. in libraries

less ideal mechanism: replace OS exception (system
call) handlers

very OS version dependent

74

changing library loading

e.g. install new library — or edit loader, but …

not everything uses library functions

what if your wrapper doesn’t work exactly the same?

problem both for malware and anti-virus!

75

hooking mechanisms

hooking — getting a ‘hook’ to run on (OS)
operations

e.g. creating new files

ideal mechanism: OS support

less ideal mechanism: change library loading
e.g. replace ‘open’, ‘fopen’, etc. in libraries

less ideal mechanism: replace OS exception (system
call) handlers

very OS version dependent

76

changing exception handlers?

mechanism on DOS

track what old exception handler does

“tunneling” technique — find the original, call it
instead

77

other holes in behavior blocking

if in library: don’t use library function
e.g. copy of “clean” library
e.g. statically linked

generally: multiple ways to do things?
like VM problem: was something missed?

e.g.. file modifications blocked?

just acccess the disk directly

78

attacking antivirus (2)

mechanisms other than hooking

just directly modify it
example: IDEA.6155 modifies database of scanned files

preserve checksums
example: HybrisF preserved CRC32 checksums of
infected files
some AV software won’t scan again

79

not just hiding/interfering

our model of malware — runs when triggered

reality: sometimes keep on running
evade active detection
spread to new programs/files as created/run

call resident

80

spreading in memory

hook to hide virus file

not just hiding virus — propogate!

example: infect any new files

example: reinfect “repaired” files

81

armored viruses

“encrypted” viruses
not strong encryption — key is there!

self-changing viruses:
encrypted oligiomorphic polymorphic metamorphic

82

anti-debugging, tunnelling, etc.

anti-debugging/virtualisation/goat
evade various “run it and check” techniques

tunnelling
evade behavior-blocking/detection

stealth
“hook” system operations (like antivirus)
hide modified files, malware processes, etc.

retrovirus
deliberately break antivirus software

memory residence
infect running OS/programs, not just files
antivirus needs to kill running virus code 83

real signatures: ClamAV

ClamAV: open source email scanning software

signature types:
hash of file
hash of contents of segment of executable

built-in executable, archive file parser
fixed string
basic regular expressions

wildcards, character classes, alternatives
more complete regular expressions

including features that need more than state machines
meta-signatures: match if other signatures match
icon image fuzzy-matching

84

anti-virus techniques

last time: signature-based detection
regular expression-like matching
snippets of virus(-like) code

heuristic detection
look for “suspicious” things

behavior-based detection
look for virus activity

not explicitly mentioned: producing signatures
manual? analysis

not explicitly mentioned: “disinfection”
manual? analysis

85

example heuristics: DREBIN (1)

from 2014 research paper on Android malware: Arp et al,
“DREBIN: Effective and Explainable Detection of Android
Malware in Your Pocket”

features from applications (without running):
hardware requirements
requested permissions
whether it runs in background, with pushed
notifications, etc.
what API calls it uses
network addresses

detect dynamic code generation explicitly
statistics (i.e. machine learning) to determine score 86

example heuristics: DREBIN (2)

advantage: Android uses Dalvik bytecode (Java-like)
high-level “machine code”
much easier/more useful to analyze

accuracy?
tested on 131k apps, 94% of malware, 1% false positives
versus best commercial: 96%, < 0.3% false positives

(probably has explicit patterns for many known malware
samples)

…but
statistics: training set needs to be typical of malware
cat-and-mouse: what would attackers do in response?

87

	anti-virus techniques
	review: pattern matching

	heuristics for detecting packers
	DEP

	antivirtualization
	metamorphic virsues
	Evol example

	other antiantivirus
	anti-debugging
	retroviruses

	conclusion
	Backup slides
	heuristic case study

