
Anti-anti-malware (part 3) / Stack Smashing

1

last time
various kinds of armored malware

malware that evades analysis

2

logistics: LEX homework
detect push ret pattern

using flex

probably easier than TRICKY

3

upcoming exam
next Wednesday

review next Monday — come with questions

4

armored viruses
“encrypted” malware

not strong encryption — key is there!

self-changing viruses:
encrypted oligiomorphic polymorphic metamorphic

other anti-analysis techniques:
antigoat
antiemulation
antidebugging

5

this time
finish up anti-debugging

“tunnelling viruses”
evade behavior-based detection

memory residence

Nasi article on evading 2014 antivirus

(if time) new topic: exploits and stack-smashing

6

antiantivirus
last time:

break disassemblers — with packers
break VMs/emulators

break debuggers
make analysis harder

break antivirus software itself
“retrovirus”

7

diversion: debuggers
we’ll care about two pieces of functionality:

breakpoints
debugger gets control when certain code is reached

single-step
debugger gets control after a single instruction runs

8

diversion: debuggers
we’ll care about two pieces of functionality:

breakpoints
debugger gets control when certain code is reached

single-step
debugger gets control after a single instruction runs

9

implementing breakpoints
idea: change
movq %rax, %rdx
addq %rbx, %rdx // BREAKPOINT HERE
subq 0(%rsp), %r8
...

into
movq %rax, %rdx
jmp debugger_code
subq 0(%rsp), %r8
...

problem: jmp might be bigger than addq?

10

implementing breakpoints
idea: change
movq %rax, %rdx
addq %rbx, %rdx // BREAKPOINT HERE
subq 0(%rsp), %r8
...

into
movq %rax, %rdx
jmp debugger_code
subq 0(%rsp), %r8
...

problem: jmp might be bigger than addq?
10

int 3
x86 breakpoint instruction: int 3

Why 3? fourth entry in table of handlers

one byte instruction encoding: CC

debugger modifies code to insert breakpoint
has copy of original somewhere

invokes handler setup by OS
debugger can ask OS to be run by handler
or changes pointer to handler directly on old OSes

11

int 3 handler
kind of exception handler

recall: exception handler = way for CPU to run OS code

x86 CPU saves registers, PC for debugger

x86 CPU has easy to way to resume debugged code from handler

12

detecting int 3 directly (1)
checksum running code
mycode:

...
movq $0, %rbx
movq $mycode, %rax

loop:
addq (%rax), %rbx
addq $8, %rax
cmpq $endcode, %rax
jl loop
cmpq %rbx, $EXPECTED_VALUE
jne debugger_found
...

endcode:
13

detecting int 3 directly (2)
query the “handler” for int 3

old OSs only; today: cannot set directly

modern OSs: ask if there’s a debugger attached

…or try to attach as debugger yourself
doesn’t work — debugger present, probably
does work — broke any debugger?

// Windows API function!
if (IsDebuggerPresent()) {

14

modern debuggers
int 3 is the oldest x86 debugging mechanism

modern x86: 4 “breakpoint” registers (DR0–DR3)
contain address of program instructions
need more than 4? sorry

processor triggers exception when address reached
4 extra registers + comparators in CPU?

flag to invoke debugger if debugging registers used
enables nested debugging

15

diversion: debuggers
we’ll care about two pieces of functionality:

breakpoints
debugger gets control when certain code is reached

single-step
debugger gets control after a single instruction runs

16

implementing single-stepping (1)
set a breakpoint on the following instruction? kinda works
movq %rax, %rdx
addq %rbx, %rdx // ←− STOPPED HERE
subq 0(%rsp), %r8 // ←− SINGLE STEP TO HERE
subq 8(%rsp), %r8

transformed to
movq %rax, %rdx
addq %rbx, %rdx // ←− STOPPED HERE
int 3 // ←− SINGLE STEP TO HERE
subq 8(%rsp), %r8

then jmp to addq
17

implementing single-stepping (2)
problem: what about flow control?

jmpq *0x1234(%rax,%rbx,8) // ←− STOPPED HERE

or
retq

or

18

implementing single-stepping (3)
typically hardware support for single stepping

x86:int 1 handler (second entry in table)

x86: TF flag: execute handler after every instruction

…except during handler (whew!)

19

defeating single-stepping
try to install your own int 1 handler

(if OS allows)

try to clear TF?
would take effect on following instruction
…if debugger doesn’t reset it

20

unstealthy debuggers
is a debugger installed?

unlikely on Windows, maybe ignore those machines

is a debugger process running (don’t check if it’s tracing you)

…

21

confusing debuggers
“broken” executable formats

e.g., recall ELF: segments and sections
corrupt sections — program still works
overlapping segments/sections — program still works
what does the loader really use??

“broken” machine code
insert “junk” bytes to break disassembly
skip over junk with jump

use the stack pointer not for the stack
stack trace?

recall anti-virus heuristics looking for this
(though brokness probably not on purpose?)“encrypted” code sophisticated version of this

22

confusing debuggers
“broken” executable formats

e.g., recall ELF: segments and sections
corrupt sections — program still works
overlapping segments/sections — program still works
what does the loader really use??

“broken” machine code
insert “junk” bytes to break disassembly
skip over junk with jump

use the stack pointer not for the stack
stack trace?

recall anti-virus heuristics looking for this
(though brokness probably not on purpose?)

“encrypted” code sophisticated version of this

22

confusing debuggers
“broken” executable formats

e.g., recall ELF: segments and sections
corrupt sections — program still works
overlapping segments/sections — program still works
what does the loader really use??

“broken” machine code
insert “junk” bytes to break disassembly
skip over junk with jump

use the stack pointer not for the stack
stack trace?

recall anti-virus heuristics looking for this
(though brokness probably not on purpose?)

“encrypted” code sophisticated version of this

22

confusing debuggers
“broken” executable formats

e.g., recall ELF: segments and sections
corrupt sections — program still works
overlapping segments/sections — program still works
what does the loader really use??

“broken” machine code
insert “junk” bytes to break disassembly
skip over junk with jump

use the stack pointer not for the stack
stack trace?

recall anti-virus heuristics looking for this
(though brokness probably not on purpose?)“encrypted” code sophisticated version of this

22

antiantivirus
last time:

break disassemblers — with packers
break VMs/emulators

break debuggers
make analysis harder

break antivirus software itself
“retrovirus”

23

terminology
semistealth/stealth — hide from system

tunneling virus — evades behavior-blocking
e.g. detection of modifying system files

retrovirus — directly attacks/disables antivirus software

24

attacking antivirus (1)
how does antivirus software scan new files?

how does antivirus software detect bad behavior?
register handlers with OS/applications — new files, etc.

25

hooking and malware
hooking — getting a ‘hook’ into (OS) operations

e.g. creating new files, opening file
monitoring or changing/stopping behavior

used by antivirus and malware:

stealth virus — hide virus program from normal I/O, etc.

tunneling virus — skip over antivirus’s hook

retrovirus — break antivirus’s hook

26

stealth
/* in virus: */
int OpenFile(const char *filename, ...) {

if (strcmp(filename, "infected.exe") == 0) {
return RealOpenFile("clean.exe", ...);

} else {
return RealOpenFile(filename, ...);

}
}

27

stealth ideas
override “get file modification time” (infected files)

override “get files in directory” (infected files)

override “read file” (infected files)
but not “execute file”

override “get running processes”

28

tunneling ideas
use the “real” write/etc. function

not wrapper from antivirus software

find write/etc. function antivirus software “forgot” to hook

29

retrovirus ideas
empty antivirus signature list

kill antivirus process, remove “hooks”

delete antivirus software, replace with dummy executable

…

30

hooking mechanisms
hooking — getting a ‘hook’ to run on (OS) operations

e.g. creating new files

ideal mechanism: OS support

less ideal mechanism: change library loading
e.g. replace ‘open’, ‘fopen’, etc. in libraries

less ideal mechanism: replace OS exception (system call) handlers
very OS version dependent

31

hooking mechanisms
hooking — getting a ‘hook’ to run on (OS) operations

e.g. creating new files

ideal mechanism: OS support

less ideal mechanism: change library loading
e.g. replace ‘open’, ‘fopen’, etc. in libraries

less ideal mechanism: replace OS exception (system call) handlers
very OS version dependent

32

33

debugging mechanisms
debuggers can stop program at system calls, etc.

another form of OS support, typically

Linux interface: ptrace
has “run program until any system call” mode
and (recently) “ run program until specific system call” mode

34

hooking mechanisms
hooking — getting a ‘hook’ to run on (OS) operations

e.g. creating new files

ideal mechanism: OS support

less ideal mechanism: change library loading
e.g. replace ‘open’, ‘fopen’, etc. in libraries

less ideal mechanism: replace OS exception (system call) handlers
very OS version dependent

35

changing library loading
e.g. install new library — or edit loader, but …

not everything uses library functions

what if your wrapper doesn’t work exactly the same?
“anti-virus breaks my program”

36

hooking mechanisms
hooking — getting a ‘hook’ to run on (OS) operations

e.g. creating new files

ideal mechanism: OS support

less ideal mechanism: change library loading
e.g. replace ‘open’, ‘fopen’, etc. in libraries

less ideal mechanism: replace OS exception (system call) handlers
very OS version dependent

37

changing exception handlers?
mechanism on DOS

track what old exception handler does

“tunneling” technique — find the original, call it instead

38

other holes in behavior blocking
if in library: don’t use library function

e.g. copy of “clean” library
e.g. statically linked

generally: multiple ways to do things?
like VM problem: was something missed?

e.g.. file modifications blocked?

just acccess the disk directly

39

attacking antivirus (2)
mechanisms other than hooking

just directly modify it
example: IDEA.6155 modifies database of scanned files

preserve checksums
example: HybrisF preserved CRC32 checksums of infected files
some AV software won’t scan again
solution: use cryptographically secure hashes instead

40

not just hiding/interfering
our model of malware — runs when triggered

reality: sometimes keep on running
evade active detection
spread to new programs/files as created/run

call resident

41

spreading in memory
hook to hide virus file

not just hiding virus — can propagate!

example: infect any new files

example: reinfect “repaired” files

42

Emeric Nasi article
Emeric Nasi, “Bypass Antivirus Dynamic Analysis: Limitations of
the AV model and how to exploit them”, 2014

terminology “FUD = Fully UnDetectable”

NB — not a peer-reviewed article
“non-traditional literature”

wrote programs, submitted to VirusTotal
aggregator of antivirus software

looking at detection of new malware

43

techniques in Nasi that worked
things 2014 Antivirus VM’s couldn’t handle:

allocate 100 MB

100M increments

un/misimplemented system calls (NUMA, mutex)

check executable name

44

	last time
	antidebugging
	breakpoints
	single stepping
	misc. antidebugging

	retroviruses, etc.
	stealth
	tunneling
	retrovirus
	hooking mechanisms
	misc. retrovirus mechanisms
	memory residence

	Nasi article

