
Exam Review

1

logistical note

post-exam stack smashing assignment

due two weeks after spring break (was one on schedule, but…)

likely harder than tricky — will count for more

2

exam format

around 20 question parts

mostly multiple choice or multiple-multiple choice

something similar to RE

something similar to TRICKY

something about antiantivirus strategies, VMs, etc.

3

given information

4

virtual machines

illusion of dedicated machine

possibly different interface:
system VM — interface looks like some physical machine
system VM — OS runs inside VM
process VM — what OS implements
process VM — files instead of hard drives, threads instead of CPUs, etc.
language VM — interface designed for particular programming language
language VM — e.g. Java VM — knows about objects, methods, etc.

5

virtual machine implementation techniques

emulation:
read instruction + giant if/else if/…

binary translation
compile machine code to new machine code

“native”
run natively on hardware in user mode
hardware triggers “exceptions” on special interrupts
exceptions give VM implementation control

6

VM implementation strategies

traditional VM
virtual machine/guest OS

VM monitor
host OS

native CPU

privileged ops
become callbacks

(help from HW+OS)

native instruction set

emulator
virtual machine/guest OS

emulator
host OS

native CPU

interpret/translate

native instruction set

virtual ISA could be different from real ISA
(even excluding privileged operations)virtual ISA same as real ISA

(except for privileged operations)

7

VM implementation strategies

traditional VM
virtual machine/guest OS

VM monitor
host OS

native CPU

privileged ops
become callbacks

(help from HW+OS)

native instruction set

emulator
virtual machine/guest OS

emulator
host OS

native CPU

interpret/translate

native instruction set

virtual ISA could be different from real ISA
(even excluding privileged operations)virtual ISA same as real ISA

(except for privileged operations)

7

VM implementation strategies

traditional VM
virtual machine/guest OS

VM monitor
host OS

native CPU

privileged ops
become callbacks

(help from HW+OS)

native instruction set

emulator
virtual machine/guest OS

emulator
host OS

native CPU

interpret/translate

native instruction set

virtual ISA could be different from real ISA
(even excluding privileged operations)

virtual ISA same as real ISA
(except for privileged operations)

7

VM implementation strategies

traditional VM
virtual machine/guest OS

VM monitor
host OS

native CPU

privileged ops
become callbacks

(help from HW+OS)

native instruction set

emulator
virtual machine/guest OS

emulator
host OS

native CPU

interpret/translate

native instruction set

virtual ISA could be different from real ISA
(even excluding privileged operations)

virtual ISA same as real ISA
(except for privileged operations)

7

system call flow

program

‘guest’ OS

virtual machine monitor

hardware

conceptual layering

user
mode

kernel
mode

pretend
user
mode
pretend
kernel
mode

system call
(exception)

run handler
update memory map

to user mode

run handler

8

system call flow

program

‘guest’ OS

virtual machine monitor

hardware

conceptual layering

user
mode

kernel
mode

pretend
user
mode
pretend
kernel
mode

system call
(exception)

run handler
update memory map

to user mode

run handler

8

system call flow

program

‘guest’ OS

virtual machine monitor

hardware

conceptual layering

user
mode

kernel
mode

pretend
user
mode
pretend
kernel
mode

system call
(exception)

run handler
update memory map

to user mode

run handler

8

system call flow

program

‘guest’ OS

virtual machine monitor

hardware

conceptual layering

user
mode

kernel
mode

pretend
user
mode
pretend
kernel
mode

system call
(exception)

run handler
update memory map

to user mode

run handler

8

system call flow

program

‘guest’ OS

virtual machine monitor

hardware

conceptual layering

user
mode

kernel
mode

pretend
user
mode
pretend
kernel
mode

system call
(exception)

run handler
update memory map

to user mode

run handler

8

system call flow

program

‘guest’ OS

virtual machine monitor

hardware

conceptual layering

user
mode

kernel
mode

pretend
user
mode
pretend
kernel
mode

system call
(exception)

run handler
update memory map

to user mode

run handler

8

VMs and malware

isolate malware from important stuff

sample malware behavior
inspect memory for patterns — counter for metamorphic
look for suspicious behavior generally

9

counter-VM techniques

detect VM-only devices

outrun patience of antivirus VM

unsupported instructions/system calls

…

10

debugger support

hardware support:

breakpoint instruction — debugger edits machine code to add

single-step flag — execute one instruction, jump to OS (debugger)

11

counter-debugger techniques

debuggers — also for analysis of malware

detect changes to machine code in memory

directly look for debugger

broken executables

…

12

AT&T syntax

movq $42, 100(%rbx,%rcx,4)

destination last

constants start with $; no $ is an address

registers start with %

operand length (q = 8; l = 4; w = 2; b = 1)

D(R1,R2,S) = memory at D + R1 + R2 × S

13

weird x86 features

segmentation: old way of dividing memory: %fs:0x28
get segment # from FS register
lookup that entry in a table
add 0x28 to base adddress in table
access memory as usual

rep prefix
repeat instruction until rcx is 0
…decrementing rcx each time

string instructions
memory-to-memory; designed to be used with rep/etc. prefixes

14

executable/object file parts

type of file, entry point address, …

seg# file offset memory loc. size permissions
1 0x0123 0x3000 0x1200 read/exec
2 0x1423 0x5000 0x5000 read/write

machine code + data for segments

symbol table: foobar at 0x2344; barbaz at 0x4432; …
relocations: printf at 0x3333 (type: absolute); …

section table, debug information, etc.
15

relocations?

unknown addresses — “holes” in machine code/etc.

linker lays out machine code

computes all symbol table addresses

uses symbol table addresses to fill in machine code

16

dynamic linking

executables not completely linked — library loaded at runtime

could use same mechanism, but ineffecient

instead: stubs:
0000000000400400 <puts@plt>:
400400: ff 25 12 0c 20 00 jmpq *0x200c12(%rip)

/* 0x200c12+RIP = _GLOBAL_OFFSET_TABLE_+0x18 */
... later in main: ...
40052d: e8 ce fe ff ff callq 400400 <puts@plt>

/* instead of call puts */

17

malware

evil software

various kinds:
viruses
worms
trojan (horse)s
potentially unwanted programs/adware
rootkits
logic bombs

18

worms

malicious program that copies itself

arranges to be run automatically (e.g. startup program)

may spread to other media (USB keys, etc.)

may spread over the network using vulnerabilities

19

viruses

malware that embeds itself in innocent programs/files

spreads (primarily) by:
hoping user shares infected files

20

code placement options

original
executable

virus code
run original from tempfile

original
executable

original
executable

original
executable

virus code

jmp to virus

original
executable

virus code
decompressor

compressed
executable

unused space

original
executable

(w/ cavities)

startup code
code locs

virus part 1
virus part 2
virus part 3

21

entry point choices

entry address
perhaps a bit obvious

overwrite machine code and restore

edit call/jump/ret/etc.
pattern-match for machine code
in dynamic linking “stubs”
in symbol tables
call/ret at end of virus

22

pattern matching

regular expressions — (almost) one-pass

fixed strings with “wildcards”
addresses/etc. that change between instances of malware
insert nops/variations on instructions

23

flex: state machines

foo {...}
. {...}
\n {...}

start f fo foo

.
\n

f o o

other\n

(back 1)

(ba
ck

2)

24

flex: state machines

foo {...}
. {...}
\n {...}

start f fo foo

.
\n

f o o

other\n (back 1)

(ba
ck

2)
24

behavior-based detection/blocking

modifying executables? etc.

must be malicious

25

armored viruses, etc.

evade analysis:
“encrypt” code (break disassembly)
detect/break debuggers
detect/break VMs

evade signatures:
oligomorphic/polymorphic: varying “decrypter”
metamorphic: varying “decrypter” and varying “encrypted” code

evade active detection:
tunnelling — skip anti-virus hooks
stealth — ‘hook’ system calls to say “executable/etc. unchanged”
retroviruses — break/uninstall/etc. anti-virus software

26

case study: Evol

via Lakhatia et al, “Are metamorphic viruses really invincible?”,
Virus Bulletin, Jan 2005.

“mutation engine”
run as part of propagating the virus

disassemble
instr.

lengths transform relocate

code

code

27

hooking mechanisms

hooking — getting a ‘hook’ to run on (OS) operations
e.g. creating new files

ideal mechanism: OS support

less ideal mechanism: change library loading
e.g. replace ‘open’, ‘fopen’, etc. in libraries

less ideal mechanism: replace OS exception (system call) handlers
very OS version dependent

28

software vulnerabilities

unintended program behavior an adversary can use

memory safety bugs
especially buffer overflows

not checking inputs/permissions

injection/etc. bugs

29

exploits

something that uses a vulnerability to do something

example: stack smashing — exploit for stack buffer overflows

30

return-to-stack

in
cr

ea
sin

g
ad

dr
es

se
s

highest address (stack started here)

lowest address (stack grows here)

return address for vulnerable:
70 fd ff ff ff ff 00 00 (0x7fff ffff fd70)

unused space (20 bytes)

buffer (100 bytes)

return address for scanf

machine code for the attacker to run

31

return-to-stack

in
cr

ea
sin

g
ad

dr
es

se
s

highest address (stack started here)

lowest address (stack grows here)

return address for vulnerable:
70 fd ff ff ff ff 00 00 (0x7fff ffff fd70)

unused space (20 bytes)

buffer (100 bytes)

return address for scanf

machine code for the attacker to run

31

	virtual machines
	assembly
	executable formats
	malware definitions
	viruses and virus techniques

	anti-virus and anti-anti-virus techniques
	vulnerabilities
	exploits and stack smashing

