
More Buffer Overflows

1

midterm 1

50 60 70 80 90 100

kernel density plot; red lines: 25/50/75th perecentile; green line: mean

2

last time

stack smashing

particular exploit technique for buffer overflows
buffer overflow = out-of-bounds access to array

condition: buffer on the stack

two steps:
insert machine code
overwrite return address to point there

3

stack smashing: the tricky parts

construct machine code that works in any executable
same tricks as writing relocatable virus code
usual idea: just execute shell (command prompt)

construct machine code that’s valid input
machine code usually flexible enough

finding location of return address
fixed offset from buffer

finding location of inserted machine code

4

stack smashing: the tricky parts

construct machine code that works in any executable
same tricks as writing relocatable virus code
usual idea: just execute shell (command prompt)

construct machine code that’s valid input
machine code usually flexible enough

finding location of return address
fixed offset from buffer

finding location of inserted machine code

5

machine code that works anywhere

need relocatable machine code

relative addressing internally

absolute addressing of program

6

stack smashing: the tricky parts

construct machine code that works in any executable
same tricks as writing relocatable virus code
usual idea: just execute shell (command prompt)

construct machine code that’s valid input
machine code usually flexible enough

finding location of return address
fixed offset from buffer

finding location of inserted machine code

7

valid input?

common restrictions: no 0 bytes, no newlines

machine code is flexible enough, but tricky

example: mov $0x100, %rax has 0s in encoding of 0x100
xor %eax, %eax
mov $0x100, %al

8

stack smashing: the tricky parts

construct machine code that works in any executable
same tricks as writing relocatable virus code
usual idea: just execute shell (command prompt)

construct machine code that’s valid input
machine code usually flexible enough

finding location of return address
fixed offset from buffer

finding location of inserted machine code

9

location of return address

easiest part, but …

depends on what compiler does
variable number of saved registers
…

read assembly?

10

stack smashing: the tricky parts

construct machine code that works in any executable
same tricks as writing relocatable virus code
usual idea: just execute shell (command prompt)

construct machine code that’s valid input
machine code usually flexible enough

finding location of return address
fixed offset from buffer

finding location of inserted machine code

11

stack location?

$ cat stackloc.c
#include <stdio.h>
int main(void) {

int x;
printf("%p\n", &x);

}
$./stackloc.exe
0x7ffe8859d964
$./stackloc.exe
0x7ffd4e26ac04
$./stackloc.exe
0x7ffc190af0c4

12

address space layout randomization

vary the location of things in memory

including the stack

designed to make exploiting memory errors harder

will talk more about later

13

disabling ASLR
$ cat stackloc.c
#include <stdio.h>
int main(void) {

int x;
printf("%p\n", &x);

}
$ setarch x86_64 -vRL bash
Switching on ADDR_NO_RANDOMIZE.
Switching on ADDR_COMPAT_LAYOUT.
$./stackloc.exe
0x7fffffffe064
$./stackloc.exe
0x7fffffffe064
$./stackloc.exe
0x7fffffffe064

14

finding stack location

run program in a debugger (e.g., GDB)

set breakpoint at relevant location
b functionName
b *0x12345678 (by address)

output %rsp
p $rsp
info registers

15

stack location? (take 2)

$./stackloc.exe
0x7fffffffe064
$ gdb ./stackloc.exe
...
(gdb) break main
Breakpoint 1 at 0x4005b6
(gdb) run
Starting program: /home/cr4bd/spring2017/cs4630/slides/20170307/stackloc.exe

Breakpoint 1, 0x00000000004005b6 in main ()
(gdb) p $rsp
$1 = (void *) 0x7fffffffdff8
(gdb) continue
0x7fffffffdfe4
[Inferior 1 (process 15441) exited normally]
(gdb)

16

Linux, initial stack
top of stack at

0x7ffffffff000
"HOME=/home/cr4bd"
"PATH=/usr/bin:/bin"

"bar"
"foo"

"./test.exe"
NULL pointer (end of list)
pointer to HOME env. var.
pointer to PATH env. var.
NULL pointer (end of list)

pointer to bar
pointer to foo

pointer to ./test.exe
actual initial stack pointer

./test.exe foo bar
environment variables

command-line arguments

array of pointers to env. vars.

array of pointers to args (argv)

17

on using GDB

cheat sheet on website

18

gdb demo

19

trigger segfault
gdb ./a.out
...
(gdb) run <big-input.txt
Starting program: /path/to/a.out
Program received signal SIGSEGV, Segmentation fault.
0x000000000040053b in vulnerable ()
(gdb) disass
Dump of assembler code for function vulnerable:

0x0000000000400526 <+0>: sub $0x18,%rsp
0x000000000040052a <+4>: mov %rsp,%rdi
0x000000000040052d <+7>: mov $0x0,%eax
0x0000000000400532 <+12>: callq 0x400410 <gets@plt>
0x0000000000400537 <+17>: add $0x18,%rsp

=> 0x000000000040053b <+21>: retq
End of assembler dump.
(gdb) p $rsp
$1 = (void *) 0x7fffffffdff8

20

trigger segfault — stripped

gdb ./a.out
...
(gdb) run <big-input.txt
Starting program: /path/to/a.out
Program received signal SIGSEGV, Segmentation fault.
0x000000000040053b in ?? ()
(gdb) disassemble
No function contains program counter for selected frame.
(gdb) x/i $rip
=> 0x40053b: retq
(gdb)

21

stripping

you can remove debugging information from executables

Linux command: strip

GCC option -s

disassemble can’t tell where function starts

22

disassembly attempts
gdb ./a.out
...
(gdb) run <big-input.txt
Starting program: /path/to/a.out
Program received signal SIGSEGV, Segmentation fault.
0x000000000040053b in ?? ()
(gdb) disassemble $rip-5,$rip+1
Dump of assembler code from 0x400536 to 0x40053c:

0x0000000000400536: decl -0x7d(%rax)
0x0000000000400539: (bad)
0x000000000040053a: sbb %al,%bl

End of assembler dump.
(gdb) disassemble $rip-4,$rip+1
Dump of assembler code from 0x400537 to 0x40053c:

0x0000000000400537: add $0x18,%rsp
=> 0x000000000040053b: retq
End of assembler dump.
(gdb) 23

other notable debugger commands

b *0x12345 — set breakpoint at address
can set breakpoint on machine code on stack

watchpoints — like breakpoints but trigger on change to/read from
value

“when is return address overwritten”

24

debugging demo

25

stopping stack smashing?

how can you stop stack smashing?

stop overrun — bounds-checking

stop return to attacker code

stop execution of attacker code

26

stopping stack smashing?

how can you stop stack smashing?

stop overrun — bounds-checking

stop return to attacker code

stop execution of attacker code

26

exploit mitigations

idea: turn vulnerablity to something less bad

e.g. crash instead of machine code execution

many of these targetted at buffer overflows

27

mitigation agenda

we will look briefly at one mitigation — stack canaries

then look at exploits that don’t care about it

then look at more flexible mitigations

then look at more flexible exploits

28

mitigation priorities

effective? does it actually stop the attacker?

fast? how much does it hurt performance?

generic? does it require a recompile? rewriting software?

recurring theme: stop stack smashing,
but not other buffer overflows

29

stopping stack smashing?

how can you stop stack smashing?

stop overrun — bounds-checking

stop return to attacker code

stop execution of attacker code

30

recall: RE
/* copy value from thread−local storage */

mov %fs:0x28, %rax
/* ... on to stack, before return address */

mov %rax, 0x18(%rsp)
...
...
...

/* copy value from stack */
mov 0x18(%rsp), %rdi

/* xor with value in thread−local storage */
xor %fs:0x28, %rdi

/* if result non−zero, do not return */
jne call_stack_chk_fail
add $0x28, %rsp
ret

call_stack_chk_fail:
call __stack_chk_fail 31

recall: RE
/* copy value from thread−local storage */

mov %fs:0x28, %rax
/* ... on to stack, before return address */

mov %rax, 0x18(%rsp)
...
...
...

/* copy value from stack */
mov 0x18(%rsp), %rdi

/* xor with value in thread−local storage */
xor %fs:0x28, %rdi

/* if result non−zero, do not return */
jne call_stack_chk_fail
add $0x28, %rsp
ret

call_stack_chk_fail:
call __stack_chk_fail 31

recall: RE
/* copy value from thread−local storage */

mov %fs:0x28, %rax
/* ... on to stack, before return address */

mov %rax, 0x18(%rsp)
...
...
...

/* copy value from stack */
mov 0x18(%rsp), %rdi

/* xor with value in thread−local storage */
xor %fs:0x28, %rdi

/* if result non−zero, do not return */
jne call_stack_chk_fail
add $0x28, %rsp
ret

call_stack_chk_fail:
call __stack_chk_fail 31

stack canary

in
cr

ea
sin

g
ad

dr
es

se
s

highest address (stack started here)

lowest address (stack grows here)

return address for vulnerable:
37 fd 40 00 00 00 00 00 (0x40fd37)
canary: b1 ab bd e8 31 15 df 31

unused space (12 bytes)

buffer (100 bytes)

return address for scanf

machine code for the attacker to run

32

stack canary

in
cr

ea
sin

g
ad

dr
es

se
s

highest address (stack started here)

lowest address (stack grows here)

return address for vulnerable:
70 fd ff ff ff ff 00 00 (0x7fff ffff fd70)

canary: ?? ?? ?? ?? ?? ?? ??
unused space (12 bytes)

buffer (100 bytes)

return address for scanf

machine code for the attacker to run

32

stack canary — action

mov %fs:0x28, %rdi // 0xb1 ab bd e8 31 15 df 31 XOR
xor %rdi, 0x112(%rsp) // 0x?? ?? ?? ?? ?? ?? ?? ??

// = 0x?? ?? ?? ?? ?? ?? ?? ??
jne call_stack_check_file // jump if != 0
...
call_stack_chk_fail:
call __stack_chk_fail
...

__stack_chk_fail:
/* print "*** stack smashing detected message" and exit */

33

stack canary hopes

overwrite return address =⇒ overwrite canary

buffer overrun, not some other memory error

canary is secret

chosen at random
program doesn’t output it

34

stack canary hopes

overwrite return address =⇒ overwrite canary
buffer overrun, not some other memory error

canary is secret

chosen at random
program doesn’t output it

34

stack canary hopes

overwrite return address =⇒ overwrite canary
buffer overrun, not some other memory error

canary is secret
chosen at random
program doesn’t output it

34

information disclosure (1)

void process() {
char buffer[8] = "\0\0\0\0\0\0\0\0";
char c = '␣';
for (int i = 0; c != '\n' && i < 8; ++i) {

c = getchar();
buffer[i] = c;

}
printf("You␣input␣%s\n", buffer);

}

input aaaaaaaa

output You input aaaaaaaa(whatever was on stack)
35

information disclosure (2)

struct foo {
char buffer[8];
long *numbers;

};

void process(struct foo* thing) {
...
scanf("%s", thing−>buffer);
...
printf("first␣number:␣%ld\n", thing−>numbers[0]);

}

input: aaaaaaaa(address of canary)
address on stack or where canary is read from in thread-local storage

36

good choices of canary

random — guessing should not be practical
not always — sometimes static or only 215 possible

GNU libc: canary contains:

leading \0 (string terminator)
printf %s won’t print it

a newline
read line functions can’t input it

\xFF
hard to input?

37

stack canaries implementation

“StackGuard” — 1998 paper proposing strategy

GCC: command-line options
-fstack-protector
-fstack-protector-strong
-fstack-protector-all
one of these often default
three differ in how many functions are ‘protected’

Microsoft C/C++ compiler: /GS
on by default

38

stack canary overheads

less than 1% runtime if added to “risky” functions
functions with character arrays, etc.

large overhead if added to all functions
StackGuard paper: 5–20%?

similar space overheads

(for typical applications)
could be much worse: tons of ‘risky’ function calls

39

stack canaries pro/con

pro: no change to calling convention

pro: recompile only — no extra work

con: can’t protect existing executable/library files (without
recompile)

con: doesn’t protect against many ways of exploiting buffer
overflows

con: vulnerable to information leak

40

stack canary summary

stack canary — simplest of many mitigations

key idea: detect corruption of return address

assumption: if return address changed, so is adjacent token

assumption: attacker can’t learn true value of token
often possible with memory bug

later: workarounds to break these assumptions

41

more migitations?

in future lectures

after we talk about other ways of exploiting buffer overflows

42

beyond return addresses

overwriting return address to point to code
“stack smashing”

not the only thing on the stack
easier to overwrite something else?

some buffers are not be on the stack
is something “interesting” next to them in memory?

43

mitigation priorities

effective? does it actually stop the attacker?

fast? how much does it hurt performance?

generic? does it require a recompile? rewriting software?recurring theme: stop stack smashing,
but not other buffer overflows

44

recall: simpler overflow

struct QuizQuestion questions[NUM_QUESTIONS];
int giveQuiz() {

int score = 0;
char buffer[100];
for (int i = 0; i < NUM_QUESTIONS; ++i) {

gets(buffer);
if (checkAnswer(buffer, &questions[i])) {

score += 1;
}

}
return score;

}

45

recall: simpler overflow

struct QuizQuestion questions[NUM_QUESTIONS];
int giveQuiz() {

int score = 0;
char buffer[100];
for (int i = 0; i < NUM_QUESTIONS; ++i) {

gets(buffer);
if (checkAnswer(buffer, &questions[i])) {

score += 1;
}

}
return score;

}

45

recall: simpler overflow: stack

in
cr

ea
sin

g
ad

dr
es

se
s

highest address (stack started here)

lowest address (stack grows here)

return address for giveQuiz

score (4 bytes): 00 00 00 00

buffer (100 bytes)

return address for gets

aaaa…

…aaaa

input: 103 a’s (a = 0x61)

46

recall: simpler overflow: stack

in
cr

ea
sin

g
ad

dr
es

se
s

highest address (stack started here)

lowest address (stack grows here)

return address for giveQuiz

score (4 bytes): 61 61 61 00

buffer (100 bytes)

return address for gets
aaaa…

…aaaa

input: 103 a’s (a = 0x61)

46

but don’t you have to get lucky?

simple overflow seems contrived

stack smashing had big advantages:
every buffer on the stack was a problem
easy to adapt exploit — recall debugger exercise

some more exploit techniques
not as generic as stack smashing
but collectively close

47

article on topic

48

techniques from Pincus and Baker

arc injection AKA return-oriented programming
more detail (+ assignment) later in semester

overwriting data pointers

overwriting function pointers

overwriting pointers to function pointers

(on heap) overwriting malloc’s data structures

49

other buffer overflows?

old example: data on stack

50

techniques from Pincus and Baker

arc injection AKA return-oriented programming
more detail (+ assignment) later in semester

overwriting data pointers

overwriting function pointers

overwriting pointers to function pointers

(on heap) overwriting malloc’s data structures

51

return-to-somewhere

in
cr

ea
sin

g
ad

dr
es

se
s

highest address (stack started here)

lowest address (stack grows here)

return address for vulnerable:
address of do_useful_stuff

unused space (20 bytes)

buffer (100 bytes)

return address for scanf

unused junk

do_useful_stuff
(already in program)

code is already in program???
how often does this happen???

…turns out “usually” — more later in semester

52

return-to-somewhere

in
cr

ea
sin

g
ad

dr
es

se
s

highest address (stack started here)

lowest address (stack grows here)

return address for vulnerable:
address of do_useful_stuff

unused space (20 bytes)

buffer (100 bytes)

return address for scanf

unused junk

do_useful_stuff
(already in program)

code is already in program???
how often does this happen???

…turns out “usually” — more later in semester

52

techniques from Pincus and Baker

arc injection AKA return-oriented programming
more detail (+ assignment) later in semester

overwriting data pointers

overwriting function pointers

overwriting pointers to function pointers

(on heap) overwriting malloc’s data structures

53

pointer subterfuge

void f2b(void *arg, size_t len) {
char buffer[100];
long val = ...; /* assume on stack */
long *ptr = ...; /* assume on stack */
memcpy(buff, arg, len); /* overwrite ptr? */
ptr = val; / arbitrary memory write! */

}

adapted from Pincus and Baker, Figure 2 54

pointer subterfuge

void f2b(void *arg, size_t len) {
char buffer[100];
long val = ...; /* assume on stack */
long *ptr = ...; /* assume on stack */
memcpy(buff, arg, len); /* overwrite ptr? */
ptr = val; / arbitrary memory write! */

}

adapted from Pincus and Baker, Figure 2 54

arbitrary memory write

bunch of scenarios that lead to single arbitrary memory write

how can attacker exploit this?

overwrite return address directly

overwrite other function pointer?

overwrite existing machine code (insert jump?)

overwrite another data pointer — copy more?

55

arbitrary memory write

bunch of scenarios that lead to single arbitrary memory write

how can attacker exploit this?

overwrite return address directly

overwrite other function pointer?

overwrite existing machine code (insert jump?)

overwrite another data pointer — copy more?
55

arbitrary memory write

bunch of scenarios that lead to single arbitrary memory write

how can attacker exploit this?

overwrite return address directly

overwrite other function pointer?

overwrite existing machine code (insert jump?)

overwrite another data pointer — copy more?
55

skipping the canary

in
cr

ea
sin

g
ad

dr
es

se
s

highest address (stack started here)

lowest address (stack grows here)

return address for f2b

stack canary

ptr (8 bytes)
val (8 bytes)

buffer (100 bytes)

return address for scanf

machine code for the attacker to run

56

skipping the canary

in
cr

ea
sin

g
ad

dr
es

se
s

highest address (stack started here)

lowest address (stack grows here)

return address for f2b

stack canary

ptr (8 bytes)
val (8 bytes)

buffer (100 bytes)

return address for scanf

machine code for the attacker to run

56

skipping the canary

in
cr

ea
sin

g
ad

dr
es

se
s

highest address (stack started here)

lowest address (stack grows here)

return address for f2b

stack canary

ptr (8 bytes)
val (8 bytes)

buffer (100 bytes)

return address for scanf

machine code for the attacker to run

56

fragility

problem: need to know exact address of return address

discussed how stack location varies — this is tricky/unreliable

57

	mitigating stack smashing
	debugger tutorial
	stack layout skills
	mitigating stack smashing
	stack canaries

	beyond stack smashing
	arc injection
	pointer subterfuge

