
More Buffer Overflows

1

on the homework

due Friday + 1 week

questions?

big hint in assignment: gets is what does buffer overflow

reading the assembly should be fairly straightforward
probably easiest strategy in this case

debugger can find stack addresses you need

2

3

techniques from Pincus and Baker

arc injection AKA return-oriented programming
more detail (+ assignment) later in semester

overwriting data pointers

overwriting function pointers

overwriting pointers to function pointers

(on heap) overwriting malloc’s data structures

4

other buffer overflows?

examples last time:

luck: “score” for quiz on stack next to answer

“arc injection” — return to existing code

data pointer on stack

5

techniques from Pincus and Baker

arc injection AKA return-oriented programming
more detail (+ assignment) later in semester

overwriting data pointers

overwriting function pointers

overwriting pointers to function pointers

(on heap) overwriting malloc’s data structures

6

return-to-somewhere

in
cr

ea
sin

g
ad

dr
es

se
s

highest address (stack started here)

lowest address (stack grows here)

return address for vulnerable:
address of do_useful_stuff

unused space (20 bytes)

buffer (100 bytes)

return address for scanf

unused junk

do_useful_stuff
(already in program)

code is already in program???
how often does this happen???

…turns out “usually” — more later in semester

7

return-to-somewhere

in
cr

ea
sin

g
ad

dr
es

se
s

highest address (stack started here)

lowest address (stack grows here)

return address for vulnerable:
address of do_useful_stuff

unused space (20 bytes)

buffer (100 bytes)

return address for scanf

unused junk

do_useful_stuff
(already in program)

code is already in program???
how often does this happen???

…turns out “usually” — more later in semester

7

techniques from Pincus and Baker

arc injection AKA return-oriented programming
more detail (+ assignment) later in semester

overwriting data pointers

overwriting function pointers

overwriting pointers to function pointers

(on heap) overwriting malloc’s data structures

8

pointer subterfuge

void f2b(void *arg, size_t len) {
char buffer[100];
long val = ...; /* assume on stack */
long *ptr = ...; /* assume on stack */
memcpy(buff, arg, len); /* overwrite ptr? */
ptr = val; / arbitrary memory write! */

}

adapted from Pincus and Baker, Figure 2 9

pointer subterfuge

void f2b(void *arg, size_t len) {
char buffer[100];
long val = ...; /* assume on stack */
long *ptr = ...; /* assume on stack */
memcpy(buff, arg, len); /* overwrite ptr? */
ptr = val; / arbitrary memory write! */

}

adapted from Pincus and Baker, Figure 2 9

arbitrary memory write

bunch of scenarios that lead to single arbitrary memory write

how can attacker exploit this?

overwrite return address directly

overwrite other function/code address pointer?

overwrite existing machine code (insert jump?)

overwrite another data pointer — copy more?

10

arbitrary memory write

bunch of scenarios that lead to single arbitrary memory write

how can attacker exploit this?

overwrite return address directly

overwrite other function/code address pointer?

overwrite existing machine code (insert jump?)

overwrite another data pointer — copy more?
10

arbitrary memory write

bunch of scenarios that lead to single arbitrary memory write

how can attacker exploit this?

overwrite return address directly

overwrite other function/code address pointer?

overwrite existing machine code (insert jump?)

overwrite another data pointer — copy more?
10

skipping the canary

in
cr

ea
sin

g
ad

dr
es

se
s

highest address (stack started here)

lowest address (stack grows here)

return address for f2b

stack canary

ptr (8 bytes)
val (8 bytes)

buffer (100 bytes)

return address for scanf

machine code for the attacker to run

11

skipping the canary

in
cr

ea
sin

g
ad

dr
es

se
s

highest address (stack started here)

lowest address (stack grows here)

return address for f2b

stack canary

ptr (8 bytes)
val (8 bytes)

buffer (100 bytes)

return address for scanf

machine code for the attacker to run

11

skipping the canary

in
cr

ea
sin

g
ad

dr
es

se
s

highest address (stack started here)

lowest address (stack grows here)

return address for f2b

stack canary

ptr (8 bytes)
val (8 bytes)

buffer (100 bytes)

return address for scanf

machine code for the attacker to run

11

fragility

problem: need to know exact address of return address

discussed how stack location varies — this is tricky/unreliable

12

arbitrary memory write

bunch of scenarios that lead to single arbitrary memory write

how can attacker exploit this?

overwrite return address directly

overwrite other function/code address pointer?

overwrite existing machine code (insert jump?)

overwrite another data pointer — copy more?
13

function pointers?

int (*compare)(char *, char *);

if (sortCaseSensitive) {
compare = compareStringsExactly;

} else {
compare = compareStringsInsensitive;

}
...
if ((*compare)(string1, string2) == CMP_LESS) {

...
}

14

function pointers are common?

used in dynamic linking (stubs!)

in large C projects

used to implement C++ virtual functions

15

dynamic linking stubs

00000000004004a0 <__printf_chk@plt>:
4004a0: ff 25 82 0b 20 00 jmpq *0x200b82(%rip)

601028 <_GLOBAL_OFFSET_TABLE_+0x28>
4004a6: 68 02 00 00 00 pushq $0x2
4004ab: e9 c0 ff ff ff jmpq 400470 <_init+0x28>

jumps to _GLOBAL_OFFSET_TABLE[5]

_GLOBAL_OFFSET_TABLE[5] always at address 0x601028

_GLOBAL_OFFSET_TABLE[5] is probably writeable
if lazy binding — normally updated first time printf called

16

attacking the GOT

in
cr

ea
sin

g
ad

dr
es

se
s

highest address (stack started here)

lowest address (stack grows here)

return address for f2b

stack canary

ptr (8 bytes)
val (8 bytes)

buffer (100 bytes)

return address for scanf

global offset table
GOT entry: printf
GOT entry: fopen
GOT entry: exit

machine code for the attacker to run

17

attacking the GOT

in
cr

ea
sin

g
ad

dr
es

se
s

highest address (stack started here)

lowest address (stack grows here)

return address for f2b

stack canary

ptr (8 bytes)
val (8 bytes)

buffer (100 bytes)

return address for scanf

global offset table
GOT entry: printf
GOT entry: fopen
GOT entry: exit

machine code for the attacker to run

17

attacking the GOT

in
cr

ea
sin

g
ad

dr
es

se
s

highest address (stack started here)

lowest address (stack grows here)

return address for f2b

stack canary

ptr (8 bytes)
val (8 bytes)

buffer (100 bytes)

return address for scanf

global offset table
GOT entry: printf
GOT entry: fopen
GOT entry: exit

machine code for the attacker to run

17

function pointers are common?

used in dynamic linking (stubs!)

in large C projects

used to implement C++ virtual functions

18

function pointer tables: Linux kernel (1)

struct file {
union {

struct llist_node fu_llist;
struct rcu_head fu_rcuhead;

} f_u;
struct path f_path;
struct inode *f_inode; /* cached value */
const struct file_operations *f_op;

/*
* Protects f_ep_links, f_flags.
* Must not be taken from IRQ context.
*/

spinlock_t f_lock;
atomic_long_t f_count;
...

};

19

function pointer tables: Linux kernel (2)

struct file_operations {
struct module *owner;
loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char __user *,

size_t, loff_t *);
ssize_t (*write) (struct file *, const char __user *,

size_t, loff_t *);
ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);
ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
int (*iterate) (struct file *, struct dir_context *);
...

};

20

function pointers are common?

used in dynamic linking (stubs!)

in large C projects

used to implement C++ virtual functions

21

C++ inheritence
class InputStream {
public:

virtual int get() = 0;
// Java: abstract int get();
...

};
class SeekableInputStream : public InputStream {
public:

virtual void seek(int offset) = 0;
virtual int tell() = 0;

};
class FileInputStream : public InputStream {
public:

int get();
void seek(int offset);
int tell();
...

}; 22

C++ inheritence: memory layout

vtable pointer
InputStream

vtable pointer
SeekableInputStream

vtable pointer
file_pointer

FileInputStream

slot for get slot for get
slot for seek
slot for tell

FileInputStream::get
FileinputStream::seek
FileInputStream::tell

23

C++ implementation (pseudo-code)
struct InputStream_vtable {

int (*get)(InputStream* this);
};

struct InputStream {
InputStream_vtable *vtable;

};

...

InputStream *s = ...;
int c = (s−>vtable−>get)(s);

24

C++ implementation (pseudo-code)
struct SeekableInputStream_vtable {

struct InputStream_vtable as_InputStream;
void (*seek)(SeekableInputStream* this, int offset);
int (*tell)(SeekableInputStream* this);

};

struct FileInputStream {
SeekableInputStream_vtable *vtable;
FILE *file_pointer;

};

...

FileInputStream file_in = { the_FileInputStream_vtable, ... };
InputStream *s = (InputStream*) &file_in;

25

C++ implementation (pseudo-code)
SeekableInputStream_vtable the_FileInputStream_vtable = {

&FileInputStream_get,
&FileInputStream_seek,
&FileInputStream_tell,

};

...

FileInputStream file_in = { the_FileInputStream_vtable, ... };
InputStream *s = (InputStream*) &file_in;

26

attacking function pointer tables

option 1: overwrite table entry directly
required/easy for Global Offset Table — fixed location
usually not possible for VTables — read-only memory

option 2: create table in buffer (big list of pointers to shellcode),
point to buffer

useful when table pointer next to buffer
(e.g. C++ object on stack next to buffer)

27

case study (simplified)

bug in NTPd (Network Time Protocol Daemon)
via Stepher Röttger, “Finding and exploiting ntpd vulnerabilities”
static void
ctl_putdata(
const char *dp,
unsigned int dlen,
int bin /* set to 1 when data is binary */
) {
...
memmove((char *)datapt, dp, (unsigned)dlen);
datapt += dlen;
datalinelen += dlen;

} 28

the target

memmove((char *)datapt, dp, (unsigned)dlen);

datapt (global variable)
(other global variables)

buffer (global array)

strlen GOT entry

system() stub

29

more context

memmove((char *)datapt, dp, (unsigned)dlen);
...
...
strlen(some_user_supplied_string)
/* calls strlen@plt

looks up global offset table entry! */

30

the target

memmove((char *)datapt, dp, (unsigned)dlen);

datapt (global variable)
(other global variables)

buffer (global array)
strlen GOT entry

system() stub

31

overall exploit

overwrite datapt to point to strlen GOT entry

overwrite value of strlen GOT entry

example target: system function
executes command-line command specified by argument

supply string to provide argument to “strlen”

32

the target

memmove((char *)datapt, dp, (unsigned)dlen);

datapt (global variable)
(other global variables)

buffer (global array)
strlen GOT entry

system() stub

33

the target

memmove((char *)datapt, dp, (unsigned)dlen);

datapt (global variable)
(other global variables)

buffer (global array)
strlen GOT entry

system() stub

33

overall exploit: reality

real exploit was more complicated

needed to defeat more mitigations

needed to deal with not being able to write \0

actually tricky to send things that trigger buffer write
(meant to be local-only)

34

beyond normal buffer overflows

pretty much every memory error is a problem

will look at exploiting:

off-by-one buffer overflows (!)

heap buffer overflows

double-frees

use-after-free

integer overflows in size calculations
35

beyond normal buffer overflows

pretty much every memory error is a problem

will look at exploiting:

off-by-one buffer overflows (!)

heap buffer overflows

double-frees

use-after-free

integer overflows in size calculations
36

preliminaries

frame pointers are commonly used in addition to stack pointers

not something we’ve seen in x86-64 assembly

37

frame pointers
in

cr
ea

sin
g

ad
dr

es
se

s return address for foo

saved %rbp

local variables for foo

%rbp within foo

%rsp within foo

38

frame pointer code

foo:
// prologue
pushq %rbp
movq %rsp, %rbp
subq $120, %rsp
...
...
...
movq %rbp, %rsp
popq %rbp
ret

foo:
// prologue
pushq %rbp
enter $120, $1
...
...
...
leave
ret

foo:
// prologue
sub $120, %rsp
...
...
...
add $120, %rsp
ret

39

stack layout: two functions
in

cr
ea

sin
g

ad
dr

es
se

s return address for foo
saved %rbp

local variables in foo
%rbp (foo)

%rsp (foo)return address for bar
saved %rbp

local variables for bar

%rbp (bar)

%rsp (bar)

40

stack layout: two functions
in

cr
ea

sin
g

ad
dr

es
se

s return address for foo
saved %rbp

local variables in foo
%rbp (foo)

%rsp (foo)return address for bar
saved %rbp

local variables for bar

%rbp (bar)

%rsp (bar)

40

why frame pointers?

makes writing debuggers easier
otherwise: need table of info about stack allocations
(just to get a stack trace)

easier for manual assembly writing
no need to track how large stack frame is

allows ‘dynamic’ allocation in middle of function

41

why not frame pointers?

wastes a register

debugging information is more sophisticated

compiler has no trouble matching sizes in prologue/epilogue

we use the heap, not the stack for dynamic allocations

GCC option:
-fomit-frame-pointer
-fno-omit-frame-pointer

42

off-by-one-byte

int vulnerable(
const char *attacker_controlled,
int len) {

char buffer[100];
for (int i = 0; i <= 100 && i <= len; ++i) {

buffer[i] = attacker_controlled[i];
}

}

int other() {
...
vulnerable(...);

}

43

off-by-one-byte

int vulnerable(
const char *attacker_controlled,
int len) {

char buffer[100];
for (int i = 0; i <= 100 && i <= len; ++i) {

buffer[i] = attacker_controlled[i];
}

}

int other() {
...
vulnerable(...);

}

43

vulnerable stack layout
in

cr
ea

sin
g

ad
dr

es
se

s return address for other
saved %rbp

local variables in other
%rbp (other)

%rsp (other)return address for vulnerable
saved %rbp

buffer

%rbp (vulnerable)

%rsp (vulnerable)

%rbp (other)
return address for other

saved %rbp

44

vulnerable stack layout
in

cr
ea

sin
g

ad
dr

es
se

s return address for other
saved %rbp

local variables in other
%rbp (other)

%rsp (other)return address for vulnerable
saved %rbp

buffer

%rbp (vulnerable)

%rsp (vulnerable)

%rbp (other)
return address for other

saved %rbp

44

vulnerable stack layout
in

cr
ea

sin
g

ad
dr

es
se

s return address for other
saved %rbp

local variables in other
%rbp (other)

%rsp (other)return address for vulnerable
saved %rbp

buffer

%rbp (vulnerable)

%rsp (vulnerable)

%rbp (other)
return address for other

saved %rbp

44

vulnerable stack layout
in

cr
ea

sin
g

ad
dr

es
se

s return address for other
saved %rbp

local variables in other
%rbp (other)

%rsp (other)return address for vulnerable
saved %rbp

buffer

%rbp (vulnerable)

%rsp (vulnerable)
%rbp (other)

return address for other
saved %rbp

44

off-by-one frame pointer

little endian: change least sig. bit of frame pointer

off-by-one byte: max adjustment 256
question: is that attacker controlled space?

what if you can only write 0 to last byte?
moves frame pointer to lower address
often attacker-controlled address!

45

frame pointer control

after controlling frame pointer, set return address of other

then same idea as stack smashing — point to attacker controlled
machine code

can also control local variables of calling function
potentially useful even with stack canaries/no info. disclosure

46

vulnerable code (real)

realpath — ../foo → /home/cr4bd/foo
remotely exploitable in wu-FTPd (File Transfer Protocol server)

bad length check — accounted for extra “/” wrong
char resolved[MAXPATHLEN];
...
if (strlen(resolved) + strlen(wbuf) + rootd + 1 > MAXPATHLEN) {

errno = ENAMETOOLONG;
goto err1;

}
if (rootd == 0)

(void) strcat(resolved, "/");
(void) strcat(resolved, wbuf);
...

47

vulnerable code (real)

realpath — ../foo → /home/cr4bd/foo
remotely exploitable in wu-FTPd (File Transfer Protocol server)

bad length check — accounted for extra “/” wrong
char resolved[MAXPATHLEN];
...
if (strlen(resolved) + strlen(wbuf) + rootd + 1 > MAXPATHLEN) {

errno = ENAMETOOLONG;
goto err1;

}
if (rootd == 0)

(void) strcat(resolved, "/");
(void) strcat(resolved, wbuf);
...

47

beyond normal buffer overflows

pretty much every memory error is a problem

will look at exploiting:

off-by-one buffer overflows (!)

heap buffer overflows

double-frees

use-after-free

integer overflows in size calculations
48

easy heap overflows

struct foo {
char buffer[100];
void (*func_ptr)(void);

};

in
cr

ea
sin

g
ad

dr
es

se
s

buffer

func_ptr

49

heap overflow: adjacent allocations

class V {
char buffer[100];

public:
virtual void ...;
...

};
...
V *first = new V(...);
V *second = new V(...);
strcpy(first−>buffer,

attacker_controlled);

the heap

in
cr

ea
sin

g
ad

dr
es

se
s second’s buffer

second’s vtable

first’s buffer

first’s vtable

result of
overflowing
buffer

50

heap overflow: adjacent allocations

class V {
char buffer[100];

public:
virtual void ...;
...

};
...
V *first = new V(...);
V *second = new V(...);
strcpy(first−>buffer,

attacker_controlled);

the heap

in
cr

ea
sin

g
ad

dr
es

se
s second’s buffer

second’s vtable

first’s buffer

first’s vtable

result of
overflowing
buffer

50

heap smashing

“lucky” adjancent objects

same things possible on stack

but stack overflows had nice generic “stack smashing”

is there an equivalent for the heap?

yes (mostly)

51

diversion: implementing malloc/new

many ways to implement malloc/new

we will talk about one common technique +

52

heap object

struct AllocInfo {
bool free;
int size;
AllocInfo *prev;
AllocInfo *next;

};

free space

next
prev

size/free

alloc’d object

size/free

free space

next
prev

size/free

free free space

next
prev

size/free

53

implementing free()

int free(void *object) {
...
if (block_after−>free) {

/* unlink from list */
new_block−>size += block_after−>size;
block_after−>prev−>next = block_after−>next;
block_after−>next−>prev = block_after−>prev;

}
...

}

arbitrary memory write
also other list management operations

54

implementing free()

int free(void *object) {
...
if (block_after−>free) {

/* unlink from list */
new_block−>size += block_after−>size;
block_after−>prev−>next = block_after−>next;
block_after−>next−>prev = block_after−>prev;

}
...

}

arbitrary memory write
also other list management operations 54

vulnerable code

char *buffer = malloc(100);
...
strcpy(buffer, attacker_supplied);
...
free(buffer);
free(other_thing);
...

free space

next
prev

size/free

alloc’d object

size/free

free space

next
prev

size/free

GOT entry: free
GOT entry: malloc
GOT entry: printf
GOT entry: fopen

shellcode
(or system()?)

size/free
prev
next

55

vulnerable code

char *buffer = malloc(100);
...
strcpy(buffer, attacker_supplied);
...
free(buffer);
free(other_thing);
...

free space

next
prev

size/free

alloc’d object

size/free

free space

next
prev

size/free

GOT entry: free
GOT entry: malloc
GOT entry: printf
GOT entry: fopen

shellcode
(or system()?)

size/free
prev
next

55

vulnerable code

char *buffer = malloc(100);
...
strcpy(buffer, attacker_supplied);
...
free(buffer);
free(other_thing);
...

free space

next
prev

size/free

alloc’d object

size/free

free space

next
prev

size/free

GOT entry: free
GOT entry: malloc
GOT entry: printf
GOT entry: fopen

shellcode
(or system()?)

size/free
prev
next

55

beyond normal buffer overflows

pretty much every memory error is a problem

will look at exploiting:

off-by-one buffer overflows (!)

heap buffer overflows

double-frees

use-after-free

integer overflows in size calculations
56

double-frees

free(thing);
free(thing);
char *p = malloc(...);
// p points to next/prev
// on list of avail.
// blocks
strcpy(p, attacker_controlled);
malloc(...);
char *q = malloc(...);
// q points to attacker−
// chosen address
strcpy(q, attacker_controlled2);
...

free space

next
prev
size

alloc’d object

size
alloc’d object

thing

prev
next

size

malloc returns something still on free list
because double-free made loop in linked list

57

double-frees

free(thing);
free(thing);
char *p = malloc(...);
// p points to next/prev
// on list of avail.
// blocks
strcpy(p, attacker_controlled);
malloc(...);
char *q = malloc(...);
// q points to attacker−
// chosen address
strcpy(q, attacker_controlled2);
...

free space

next
prev
size

alloc’d object

size
alloc’d object
thing/p

prev
next

size

malloc returns something still on free list
because double-free made loop in linked list

57

double-frees

free(thing);
free(thing);
char *p = malloc(...);
// p points to next/prev
// on list of avail.
// blocks
strcpy(p, attacker_controlled);
malloc(...);
char *q = malloc(...);
// q points to attacker−
// chosen address
strcpy(q, attacker_controlled2);
...

free space

next
prev
size

alloc’d object

size
alloc’d object
thing/p

prev
next

size

malloc returns something still on free list
because double-free made loop in linked list

57

double-free expansion

// free/delete 1:
double_freed−>next = first_free;
first_free = chunk;
// free/delete 2:
double_freed−>next = first_free;
first_free = chunk
// malloc/new 1:
result1 = first_free;
first_free = first_free−>next;
// + overwrite:
strcpy(result1, ...);
// malloc/new 2:
first_free = first_free−>next;
// malloc/new 3:
result3 = first_free;
strcpy(result3, ...);

next / double free’d object

size

first_free
(global)

(original first free)

GOT entry: free

first/second malloc

third malloc

58

double-free expansion

// free/delete 1:
double_freed−>next = first_free;
first_free = chunk;
// free/delete 2:
double_freed−>next = first_free;
first_free = chunk
// malloc/new 1:
result1 = first_free;
first_free = first_free−>next;
// + overwrite:
strcpy(result1, ...);
// malloc/new 2:
first_free = first_free−>next;
// malloc/new 3:
result3 = first_free;
strcpy(result3, ...);

next / double free’d object

size

first_free
(global)

(original first free)

GOT entry: free

first/second malloc

third malloc

58

double-free expansion

// free/delete 1:
double_freed−>next = first_free;
first_free = chunk;
// free/delete 2:
double_freed−>next = first_free;
first_free = chunk
// malloc/new 1:
result1 = first_free;
first_free = first_free−>next;
// + overwrite:
strcpy(result1, ...);
// malloc/new 2:
first_free = first_free−>next;
// malloc/new 3:
result3 = first_free;
strcpy(result3, ...);

next / double free’d object

size

first_free
(global)

(original first free)

GOT entry: free

first/second malloc

third malloc

58

double-free expansion

// free/delete 1:
double_freed−>next = first_free;
first_free = chunk;
// free/delete 2:
double_freed−>next = first_free;
first_free = chunk
// malloc/new 1:
result1 = first_free;
first_free = first_free−>next;
// + overwrite:
strcpy(result1, ...);
// malloc/new 2:
first_free = first_free−>next;
// malloc/new 3:
result3 = first_free;
strcpy(result3, ...);

next / double free’d object

size

first_free
(global)

(original first free)

GOT entry: free

first/second malloc

third malloc

58

double-free expansion

// free/delete 1:
double_freed−>next = first_free;
first_free = chunk;
// free/delete 2:
double_freed−>next = first_free;
first_free = chunk
// malloc/new 1:
result1 = first_free;
first_free = first_free−>next;
// + overwrite:
strcpy(result1, ...);
// malloc/new 2:
first_free = first_free−>next;
// malloc/new 3:
result3 = first_free;
strcpy(result3, ...);

next / double free’d object

size

first_free
(global)

(original first free)

GOT entry: free

first/second malloc

third malloc
58

double-free notes

this attack has apparently not been possible for a while

most malloc/new’s check for double-frees explicitly
(e.g., look for a bit in size data)

prevents this issue — also catches programmer errors

pretty cheap

59

beyond normal buffer overflows

pretty much every memory error is a problem

will look at exploiting:

off-by-one buffer overflows (!)

heap buffer overflows

double-frees

use-after-free

integer overflows in size calculations
60

vulnerable code
class Foo {

...
};
Foo *the_foo;
the_foo = new Foo;
...
delete the_foo;
...
something_else = new Bar(...);
the_foo−>something();

something_else likely where the_foo was

vtable ptr (Foo)

data for Foo

vtable ptr (Bar)?
other data?

data for Bar

61

vulnerable code
class Foo {

...
};
Foo *the_foo;
the_foo = new Foo;
...
delete the_foo;
...
something_else = new Bar(...);
the_foo−>something();

something_else likely where the_foo was

vtable ptr (Foo)

data for Foo

vtable ptr (Bar)?
other data?

data for Bar

61

C++ inheritence: memory layout

vtable pointer
InputStream

vtable pointer
SeekableInputStream

vtable pointer
file_pointer

FileInputStream

slot for get slot for get
slot for seek
slot for tell

FileInputStream::get
FileinputStream::seek
FileInputStream::tell

62

exploiting use after-free

trigger many “bogus” frees; then

allocate many things of same size with “right” pattern
pointers to shellcode?
pointers to pointers to system()?
objects with something useful in VTable entry?

trigger use-after-free thing

63

use-after-free easy cases

common problem for JavaScript implementations

use-after-free’d object often some complex C++ object
example: representation of video stream

exploits can choose type of object that replaces
allocate that kind of object in JS

can often arrange to read/write vtable pointer
depends on layout of thing created
easy examples: string, array of floating point numbers

64

beyond normal buffer overflows

pretty much every memory error is a problem

will look at exploiting:

off-by-one buffer overflows (!)

heap buffer overflows

double-frees

use-after-free

integer overflows in size calculations
65

integer overflow example
item *load_items(int len) {

int total_size = len * sizeof(item);
if (total_size >= LIMIT) {

return NULL;
}
item *items = malloc(total_size);
for (int i = 0; i < len; ++i) {

int failed = read_item(&items[i]);
if (failed) {
free(items);
return NULL;

}
}
return items;

}

len = 0x4000 0001
sizeof(item) = 0x10

total_size =
0x4 0000 0010

66

integer overflow example
item *load_items(int len) {

int total_size = len * sizeof(item);
if (total_size >= LIMIT) {

return NULL;
}
item *items = malloc(total_size);
for (int i = 0; i < len; ++i) {

int failed = read_item(&items[i]);
if (failed) {
free(items);
return NULL;

}
}
return items;

}

len = 0x4000 0001
sizeof(item) = 0x10

total_size =
0x4 0000 0010

66

making this reliable

run program with malloc, free that output parameters

knowledge of how malloc/etc. handles different sized objects

“heap spray”
32-bit systems — just have your shellcode or target address everywhere
hope “random” address matches

global variables (fixed addresses) — good place for shellcode

67

control hijacking generally

usually: need to know/guess program addresses

usually: need to insert executable code

usually: need to overwrite code addresses

next topic: countermeasures against these

later topic: defeating those

later later topic: secure programming languages
68

first mitigation: stack canaries

saw: stack canaries

tries to stop:
overwriting code addresses
(as long it’s return addresses)

by assuming:
compile-in protection
attacker can’t read off the stack
attacker can’t “skip” parts of the stack

69

second mitigation: address space
randomization

problem for the stack smashing assignment

tries to stop:
know/guess programming addresses

by assuming:
program doesn’t “leak” addresses
relevant addresses can be changed (not hard-coded in progrma)

70

next time

comparing mitigations
what do they assume the attacker can do?
effect on performance?
recompilation? rewriting code?

71

	Continuing beyond stacking smashing
	arc injection
	pointer subterfuge

	NTP Exploit Case Study

