
1

Changelog

Corrections made in this version not in first posting:
3 April 2017: Fix ROP with VTable overwrite example (slide 11) to use
%rsi instead of %rdi. I somehow thought *(%rdi) was looking for a
pointer to pointer when it certainly does not

1

last time

ASLR — random addresses
performance/compatibility concerns

write XOR execute — no injecting machine code
minor compatibility concerns

ROP — defeating write XOR execute

2

logistical notes

exam review — questions?

FORMAT

on the final
likely part take-home, part in-class

3

ROP chain
in
cr
ea
sin

g
ad
dr
es
se
s

string to print

pointer to second gadget

address of puts (popped from stack)

return address for vulnerable:
pointer to first gadget

buffer (100 bytes)unused junk

popq %rax
ret

mov %rsp, %rdi
call *%rax

ret (in vulnerable)

4

ROP chain
in
cr
ea
sin

g
ad
dr
es
se
s

string to print

pointer to second gadget

address of puts (popped from stack)

return address for vulnerable:
pointer to first gadget

buffer (100 bytes)unused junk

popq %rax
ret

mov %rsp, %rdi
call *%rax

ret (in vulnerable)

4

ROP chain
in
cr
ea
sin

g
ad
dr
es
se
s

string to print

pointer to second gadget

address of puts (popped from stack)

return address for vulnerable:
pointer to first gadget

buffer (100 bytes)unused junk

popq %rax
ret

mov %rsp, %rdi
call *%rax

ret (in vulnerable)

4

ROP chain
in
cr
ea
sin

g
ad
dr
es
se
s

string to print

pointer to second gadget

address of puts (popped from stack)

return address for vulnerable:
pointer to first gadget

buffer (100 bytes)unused junk

popq %rax
ret

mov %rsp, %rdi
call *%rax

ret (in vulnerable)

4

gadgets generally

bits of machine code that do work, then return or jump

“chain” together, by having them jump to each other

most common: find gadget ending with ret
pops address of next gadget offs tack

can do pretty much anything

5

ROP and ASLR

find a pointer to known thing in libc (or other source of gadgets)
e.g. information leak from use-after-free

use that to compute address of all gadgets

then address randomization doesn’t matter

6

ROP and write XOR execute

all the code we’re running is supposed to be executed

completely defeats write XOR execute

7

ROP and stack canaries

information disclosure reveals canary value if needed, still

full stack canaries should reduce number of gadgets
no real returns without canary checks

…but typically only canaries if stack-allocated buffer

and return opcodes within other instructions

8

ROP without a stack overflow (1)

e.g. VTable overwrite

look for gadget(s) that set %rsp

…based on function argument registers/etc.

9

ROP without stack overflow (2)

example sequence:
push %rdi; call *(%rdx)

forgot to account for call last time
push %rdx; jmp *(%rsi)
pop %rsp; ret

set:
overwritten vtable entry = pointer to first gadget
arg 2: %rsi = pointer to pointer to second gadget
arg 3: %rdx = desired stack pointer

10

VTable overwrite with gadget

class Bar {
char buffer[100];
Foo *foo;
int x, y;
...

};

void Bar::vulnerable() {
gets(buffer);
foo−>some_method(x, y);
// (*foo->vtable[K])(foo, x, y)
// foo == rdi, x == rsi, y == rdx

}

in
cr
ea
sin

g
ad
dr
es
se
s

buffer

foo
x, y

vtable ptr

func. ptrs

some_method

“vtable” ptr

gadget ptr

rsi, rdx values

rdi value

gadget:
push %rdx; jmp *(%rsi)

11

VTable overwrite with gadget

class Bar {
char buffer[100];
Foo *foo;
int x, y;
...

};

void Bar::vulnerable() {
gets(buffer);
foo−>some_method(x, y);
// (*foo->vtable[K])(foo, x, y)
// foo == rdi, x == rsi, y == rdx

}

in
cr
ea
sin

g
ad
dr
es
se
s

buffer

foo
x, y

vtable ptr

func. ptrs

some_method
“vtable” ptr

gadget ptr

rsi, rdx values

rdi value

gadget:
push %rdx; jmp *(%rsi)

11

VTable overwrite with gadget

class Bar {
char buffer[100];
Foo *foo;
int x, y;
...

};

void Bar::vulnerable() {
gets(buffer);
foo−>some_method(x, y);
// (*foo->vtable[K])(foo, x, y)
// foo == rdi, x == rsi, y == rdx

}

in
cr
ea
sin

g
ad
dr
es
se
s

buffer

foo
x, y

vtable ptr

func. ptrs

some_method
“vtable” ptr

gadget ptr

rsi, rdx values

rdi value

gadget:
push %rdx; jmp *(%rsi)

11

VTable overwrite with gadget

class Bar {
char buffer[100];
Foo *foo;
int x, y;
...

};

void Bar::vulnerable() {
gets(buffer);
foo−>some_method(x, y);
// (*foo->vtable[K])(foo, x, y)
// foo == rdi, x == rsi, y == rdx

}

in
cr
ea
sin

g
ad
dr
es
se
s

buffer

foo
x, y

vtable ptr

func. ptrs

some_method
“vtable” ptr

gadget ptr

rsi, rdx values

rdi value

gadget:
push %rdx; jmp *(%rsi)

11

jump-oriented programming

just look for gadgets that end in call or jmp

don’t even need to set stack

harder to find than ret-based gadgets
but almost always as powerful as ret-based gadgets

makes return-oriented programming mitigation hard
can’t just protect all rets (in middle of instruction or not)

12

finding gadgets

find code segments of exectuable/library
look for opcodes of arbitrary jumps:

ret
jmp *register
jmp *(register)
call *register
call *(register)

disassemble starting a few bytes before
invalid instruction? jump before ret? etc. — discard

sort list

automatable
13

programming with gadgets

can usually find gadgets to:
pop from stack into argument register
write register to memory location in another register
clear a register

along with gadget for syscall (make OS call) — can do anything

14

common, reusable ROP sequences

open a command-line — what ROPgadget tool defaults to

make memory executable + jump
generally: just do enough to ignore write XOR execute

often only depend on memory locations in shared library
works across programs — e.g. many programs use the C standard library

15

ROP ideas

incidental existing snippets of code

chain together with non-constant jumps
returns, function pointer calls, computed jumps

snippets form “language”
usually Turing-complete

16

next topic: fixing real problems

we’ve focused on “band-aid” solutions
detect memory corruption; then hope you can do something

first idea everyone has: just add bounds-checking!
Java, Python do it…

17

adding bounds checking

char buffer[42];
memcpy(buffer, attacker_controlled, len);

couldn’t compiler add check for len

modern Linux: it does

18

added bounds checking

char buffer[42];
memcpy(buffer, attacker_controlled, len);

subq $72, %rsp
leaq 4(%rsp), %rdi
movslq len, %rdx
movq attacker_controlled, %rsi
movl $42, %ecx
call __memcpy_chk

length 42 passed to __memcpy_chk

19

_FORTIFY_SOURCE

Linux C standard library + GCC features

adds automatic checking to a bunch of string/array functions

even printf (disable %n unless format string is a constant)

often enabled by default
GCC options:

-D_FORTIFY_SOURCE=1 — enable (backwards-compatible only)
-D_FORTIFY_SOURCE=2 — enable (full)
-U_FORTIFY_SOURCE — disable

20

non-checking library functions

some C library functions make bounds checking hard:
strcpy(destination, source);
strcat(destination, source);
sprintf(destination, format, ...);

bounds-checking versions (added to library later):
/* might not add \0 (!) */
strncpy(destination, source, size);
// destination[size - 1] = '\0';
/* will add \0: */
strncat(destination, source, size);
snprintf(destination, size, format, ...);

21

C++ bounds checking

#include <vector>
...
std::vector<int> data;
data.resize(50);
// undefined behavior:
data[60] = 0;
// throws std::out_of_range exception
data.at(60) = 0;

22

language-level solutions

languages like Python don’t have this problem

couldn’t we do the same thing in C?

23

bounds-checking C

there have been many proposals to add bounds-checking to C

including implementations

brainstorm: why hasn’t this happened?

24

easy bounds-checking

void vulnerable() {
char buffer[100];
int c;
int i = 0;
while ((c = getchar()) != EOF && c != '\n') {

buffer[i] = c;
}

}
void vulnerable_checked() {

char buffer[100];
int c;
int i = 0;
while ((c = getchar()) != EOF && c != '\n') {

CHECK(i >= 100 || i < 0);
buffer[i] = c;

}
} 25

adding bounds-checking — fat pointers

struct MyPtr {
char *pointer;
char *minimum;
char *maximum;

};

26

adding bounds checking — strcpy

MyPtr strcpy(MyPtr dest, const MyPtr src) {
int i;
do {

CHECK(src.pointer + i <= src.maximum);
CHECK(src.pointer + i >= src.minimum);
CHECK(dest.pointer + i <= dest.maximum);
CHECK(dest.pointer + i >= dest.minimum);
src.pointer[i] = dest.pointer[i];
i += 1;
CHECK(src.pointer + i <= src.maximum);
CHECK(src.pointer + i >= src.minimum);

} while (src.pointer[i] != '\0');
return dest;

} 27

speed of bounds checking

two comparisons for every pointer access?

three times as much space for every pointer?

28

research example (2009)

29

baggy bounds checking idea

giant lookup table — one entry for every 16 bytes of memory

table indicates start of object allocated here

check pointer arithmetic:

char p = str[i];
/* becomes: */
CHECK(START_OF[str / 16] == START_OF[&str[i] / 16]);
char p = str[i];

30

baggy bounds trick

table of pointers to starting locations would be huge
add some restrictions:

all object sizes are powers of two
all object starting addresses are a multiple of their size

then, table contains size info only:
table contains i, size is 2i bytes:

char *GetStartOfObject(char *pointer) {
return pointer & ~(1 << TABLE[pointer / 16] − 1);
/* pointer bitwise-and 2^(table entry) - 1 */
/* clear lower (table entry) bits of pointer */

}
31

allocations and lookup table

object allocated in
power-of-two ‘slots’

24

24

25

25

24

24

0
0
26

26

26

26

table

table stores sizes
for each 16 bytes

addresses multiples of size
(may require padding)

sizes are powers of two
(may require padding)

32

allocations and lookup table

object allocated in
power-of-two ‘slots’

24

24

25

25

24

24

0
0
26

26

26

26

table

table stores sizes
for each 16 bytes

addresses multiples of size
(may require padding)

sizes are powers of two
(may require padding)

32

allocations and lookup table

object allocated in
power-of-two ‘slots’

24

24

25

25

24

24

0
0
26

26

26

26

table

table stores sizes
for each 16 bytes

addresses multiples of size
(may require padding)

sizes are powers of two
(may require padding)

32

allocations and lookup table

object allocated in
power-of-two ‘slots’

24

24

25

25

24

24

0
0
26

26

26

26

table

table stores sizes
for each 16 bytes

addresses multiples of size
(may require padding)

sizes are powers of two
(may require padding)

32

allocations and lookup table

object allocated in
power-of-two ‘slots’

24

24

25

25

24

24

0
0
26

26

26

26

table

table stores sizes
for each 16 bytes

addresses multiples of size
(may require padding)

sizes are powers of two
(may require padding)

32

allocations and lookup table

object allocated in
power-of-two ‘slots’

24

24

25

25

24

24

0
0
26

26

26

26

table

table stores sizes
for each 16 bytes

addresses multiples of size
(may require padding)

sizes are powers of two
(may require padding)

32

managing the table

not just done malloc()/new

also for stack allocations:

void vulnerable() {
char buffer[100];
gets(vulnerable);

}

vulnerable:
// make %rsp a multiple
// of 128 (2^7)
andq $0xFFFFFFFFFFFFFF80, %rsp
// allocate 128 bytes
subq $0x80, %rsp
// rax ← rsp / 16
movq $rsp, %rax
shrq $4, %rax
movb $7, TABLE(%rax)
movb $7, TABLE+1(%rax)
...
movq %rsp, %rdi
call gets
ret

33

sparse lookup table

lookup table

unallocated memory (segfault)

allocated part of table

unallocated memory (segfault)

allocated part of table

34

baggy bounds check: added code

35

baggy bounds check: added code

/* bounds lookup */
mov buf, %rax
shr %rax, 4
mov LOOKUP_TABLE(%rax), %al

/* array element address computation */
... // char * p = buf[i];

/* bound check */
mov buf, %rbx
xor p, %rbx
shr %al, %rbx
jz ok
... // handle possible violation

ok:
adapted from paper figure 36

avoiding checks

code not added if not array/pointer accesses to object

code not added when pointer accesses “obviously” safe
author’s implementation: only checked within function

37

alternate approach: pointer tagging

some bits of address are size
replaces table entry/lookup

change code to allocate objects this way

works well on 64-bit — plenty of addresses to use

38

baggy bounds performance

table: 4–72% time overhead (depends on benchmark suite)

table: 11–21% space overhead (depends on benchmark suite)

tagged pointers: slightly better on average

39

baggy bounds performance

40

benign out-of-bounds

baggy bounds also has support for benign bounds violations:
int rawArray[100];
int *array = &rawArray[−1];
// now pretend array's first index is 1

yes, this is done in real C programs

41

missing from baggy bounds

detecting use-after-free bugs
or other cases of type confusion

detecting errors within an object:
struct Foo {

char buffer[100];
void (*danger)();

};

very fancy compiler analyses to eliminate checks

42

2013 memory safety landscape

43

2013 memory safety landscape

44

alternative techniques

memory error detectors — to help with software testing
reliably detect single-byte overwrites, use-after-free
bitmap for every bit of memory — should this be accessed
not suitable for stopping exploits
examples: AddressSanitizer, Valgrind MemCheck

automatic testing tools — run programs to trigger memory bugs
static analysis — analyze programs and either

find likely memory bugs, or
prove absence of memory bugs

better programming languages
45

alternative techniques

memory error detectors — to help with software testing
reliably detect single-byte overwrites, use-after-free
bitmap for every bit of memory — should this be accessed
not suitable for stopping exploits
examples: AddressSanitizer, Valgrind MemCheck

automatic testing tools — run programs to trigger memory bugs
static analysis — analyze programs and either

find likely memory bugs, or
prove absence of memory bugs

better programming languages
45

AddressSanitizer

like baggy bounds:
big lookup table
lookup table set by memory allocations
compiler modification: change stack allocations

unlike baggy bounds:
check reads/writes (instead of pointer computations)

only detect errors that read/write between objects
deliberate padding added to detect errors

no power-of-two restriction
table has info for every single byte (more precise)

46

Valgrind Memcheck

similar to AddressSanitizer — but no compiler modificaitons

instead: is a virtual machine

can’t reliably detect stack errors

but works on unmodified binaries

47

alternative techniques

memory error detectors — to help with software testing
reliably detect single-byte overwrites, use-after-free
bitmap for every bit of memory — should this be accessed
not suitable for stopping exploits
examples: AddressSanitizer, Valgrind MemCheck

automatic testing tools — run programs to trigger memory bugs
static analysis — analyze programs and either

find likely memory bugs, or
prove absence of memory bugs

better programming languages
48

automatic testing tools

basic idea: generate lots of random tests — “fuzzing”

look for segfaults and/or run with memory error detector

blackbox:
just try random testing

whitebox:
generate tests by looking at what program does internally

49

alternative techniques

memory error detectors — to help with software testing
reliably detect single-byte overwrites, use-after-free
bitmap for every bit of memory — should this be accessed
not suitable for stopping exploits
examples: AddressSanitizer, Valgrind MemCheck

automatic testing tools — run programs to trigger memory bugs
static analysis — analyze programs and either

find likely memory bugs, or
prove absence of memory bugs

better programming languages
50

static analysis

analyze program code directly
some overlap with whitebox testing
complete versus sound

complete: no false positive
says memory error — actually a memory error

sound: no false negative
says no memory error — actually no memory errors

many real analyzers neither complete nor sound
sometimes assisted by programmer annotations

e.g. “this pointer should not be null”
51

alternative techniques

memory error detectors — to help with software testing
reliably detect single-byte overwrites, use-after-free
bitmap for every bit of memory — should this be accessed
not suitable for stopping exploits
examples: AddressSanitizer, Valgrind MemCheck

automatic testing tools — run programs to trigger memory bugs
static analysis — analyze programs and either

find likely memory bugs, or
prove absence of memory bugs

better programming languages
52

better programming languages

get better information from programmer

ideal: eliminate memory errors without making program slower

some overlap with static analysis
information used to prove no memory errors

example: “smart pointer” libraries for C++

example: Rust

53

other kinds of bugs?

many of these techniques work for other security bugs

testing, static analysis, programming language improvements

same basic ideas also applicable

54

plans for the future

assignment using a “fuzzing” tool
would like to go over some additional topics:

command injection bugs
web browser security
whitebox fuzzing (‘informed’ random testing)
better programming languages — Rust

I am flexible — different topics you want?
sandboxing (another mitigation)
synchornization-related security bugs
static analysis?
new mitigations proposed in research?
other? 55

	Safe C
	Bounds-checking C standard library
	Language-level solutions
	Extending pointers

