
bug-finding

1



logistics: ROP assignment

2



2013 memory safety landscape

3



2013 memory safety landscape

4



different design points

memory safety most extreme — disallow out of bounds
usually even making out-of-bounds pointers

relaxations:

separate ‘safe’ data like buffers and ‘unsafe’ data like return
addresses

instead of all objects from each other

check only writes or only reads

…
5



the mitigations

things the OS/compiler can do

assume software won’t or can’t be fixed

goal: make programs better despite lack of effort by developers

in practice: hard to get >10% overhead mitigations deployed

what else can we do?

6



alternative techniques

memory error detectors — to help with software testing
reliably detect single-byte overwrites, use-after-free
bitmap for every bit of memory — should this be accessed
not suitable for stopping exploits
examples: AddressSanitizer, Valgrind MemCheck

automatic testing tools — run programs to trigger memory bugs
static analysis — analyze programs and either

find likely memory bugs, or
prove absence of memory bugs

better programming languages
7



alternative techniques

memory error detectors — to help with software testing
reliably detect single-byte overwrites, use-after-free
bitmap for every bit of memory — should this be accessed
not suitable for stopping exploits
examples: AddressSanitizer, Valgrind MemCheck

automatic testing tools — run programs to trigger memory bugs
static analysis — analyze programs and either

find likely memory bugs, or
prove absence of memory bugs

better programming languages
7



recall: baggy bounds

check on pointer manipulation

make sure pointer maps to same object

more typical solution: check on read/write

goal was to run programs safely — can also find bounds errors

8



testing workflow

use a tool like baggy bounds to make errors crash

run thorough tests of software; fix any crashes

idea: overhead is okay when debugging

9



can you use Baggy Bounds?

not released in useable form as far as I know

but there are alternative tools that are available

…which are better fits for testing

10



AddressSanitizer

like baggy bounds:
big lookup table
lookup table set by memory allocations
compiler modification: change stack allocations

unlike baggy bounds:
check reads/writes (instead of pointer computations)
only detect errors that read/write between objects
object sizes not padded to power of two
table has info for every single byte (more precise)

11



adding bounds-checking example

void vulnerable(long value, int offset) {
long array[10] = {1,2,3,4,5,6,7,8,9,10};
// generated code: (added by AddressSanitizer)
if (!lookup_table[&array[offset]] == VALID) FAIL();
array[offset] = value;
do_something_with(array);

}

AddressSanitizer: crashes only if array[offset] isn’t part of any
object

but no extra space — single-byte precision

12



adding bounds-checking example

void vulnerable(long value, int offset) {
long array[10] = {1,2,3,4,5,6,7,8,9,10};
// generated code: (added by AddressSanitizer)
if (!lookup_table[&array[offset]] == VALID) FAIL();
array[offset] = value;
do_something_with(array);

}

AddressSanitizer: crashes only if array[offset] isn’t part of any
object

but no extra space — single-byte precision

12



AddressSanitizer stack layout

return address (for vulernable())

≈ array[0x13]

≈ array[0xa]

saved %rbp
saved %r13
saved %r12
saved %rbx

“red zone”

array
array[9]

valid
valid
valid
valid
valid
invalid
invalid
invalid
invalid
valid
valid
…

lookup table

13



AddressSanitizer stack layout

return address (for vulernable()) ≈ array[0x13]

≈ array[0xa]

saved %rbp
saved %r13
saved %r12
saved %rbx

“red zone”

array
array[9]

valid
valid
valid
valid
valid
invalid
invalid
invalid
invalid
valid
valid
…

lookup table

13



AddressSanitizer stack layout

return address (for vulernable())

≈ array[0x13]

≈ array[0xa]

saved %rbp
saved %r13
saved %r12
saved %rbx

“red zone”

array
array[9]

valid
valid
valid
valid
valid
invalid
invalid
invalid
invalid
valid
valid
…

lookup table

13



AddressSanitizer versus Baggy Bounds

pros vs baggy bounds:
you can actually use it (comes with GCC/Clang)
byte-level precision — no “padding” on objects
detects use-after-free a lot of the time

cons vs baggy bounds:
doesn’t prevent out-of-bounds “targetted” accesses
requires extra space between objects
usually slower

14



Valgrind Memcheck

similar to AddressSanitizer — but no compiler modificaitons

instead: is a virtual machine (plus alternate malloc/new
implementation)

only (reliably) detects errors on heap

but works on unmodified binaries

15



alternative techniques

memory error detectors — to help with software testing
reliably detect single-byte overwrites, use-after-free
bitmap for every bit of memory — should this be accessed
not suitable for stopping exploits
examples: AddressSanitizer, Valgrind MemCheck

automatic testing tools — run programs to trigger memory bugs
static analysis — analyze programs and either

find likely memory bugs, or
prove absence of memory bugs

better programming languages
16



on testing

challenges with testing for security:

security bugs use “unrealistic” inputs — e.g. > 8000 character name

memory errors often don’t crash

bounds checking, etc. tools will fix

17



on testing

challenges with testing for security:

security bugs use “unrealistic” inputs — e.g. > 8000 character name

memory errors often don’t crash
bounds checking, etc. tools will fix

17



automatic testing tools

basic idea: generate lots of random inputs — “fuzzing”
easy to generate weird inputs

look for memory errors
segfaults, or
use memory error detector, or
add (slow) ‘assertions’ or other checks to code

one of the most common ways to find security bugs

18



‘blackbox’ fuzzing

void fuzzTestImageParser(std::vector<byte> &originalImage) {
for (int i = 0; i < NUM_TRIES; ++i) {
std::vector<byte> testImage;
testImage = originalImage;
int numberOfChanges = rand() % MAX_CHANGES;
for (int j = 0; j < numberOfChanges; ++j) {

/* flip some random bits */
testImage[rand() % testImage.size()] ^= rand() % 256;

}
int result = TryToParseImage(testImage);
if (result == CRASH) ...

}
}

19



‘blackbox’ fuzzing

void fuzzTestImageParser(std::vector<byte> &originalImage) {
for (int i = 0; i < NUM_TRIES; ++i) {
std::vector<byte> testImage;
testImage = originalImage;
int numberOfChanges = rand() % MAX_CHANGES;
for (int j = 0; j < numberOfChanges; ++j) {

/* flip some random bits */
testImage[rand() % testImage.size()] ^= rand() % 256;

}
int result = TryToParseImage(testImage);
if (result == CRASH) ...

}
}

19



‘blackbox’ fuzzing

void fuzzTestImageParser(std::vector<byte> &originalImage) {
for (int i = 0; i < NUM_TRIES; ++i) {
std::vector<byte> testImage;
testImage = originalImage;
int numberOfChanges = rand() % MAX_CHANGES;
for (int j = 0; j < numberOfChanges; ++j) {

/* flip some random bits */
testImage[rand() % testImage.size()] ^= rand() % 256;

}
int result = TryToParseImage(testImage);
if (result == CRASH) ...

}
}

19



blackbox fuzzing pros

works with unmodified software
even with embedded assembly, etc.

works with many kinds of input
don’t need to understand input format

easy to parallelize

has actually found lots of bugs

20



‘blackbox’?

the program is a “black box” — can’t look inside

we only run it, see if it works

for memory errors — works ≈ doesn’t crash

21



fuzz testing to find security holes

common way to find security holes

start with crash, then use debugger

how much control does attacker have?

is out-of-bounds/etc. overwriting important things?
return address? object with VTable? …

22



fuzzing challenges

isolation:
need to detect crashes/etc. reliably
want reproducible test cases
need to distinguish hangs from “machine is randomly slow”

speed:
need to run many millions of tests
application startup times are a problem

completeness:
might have to get really lucky to make interesting input

23



fuzzing challenges

isolation:
need to detect crashes/etc. reliably
want reproducible test cases
need to distinguish hangs from “machine is randomly slow”

speed:
need to run many millions of tests
application startup times are a problem

completeness:
might have to get really lucky to make interesting input

23



completeness problem

let’s say we’re testing an HTML parser

what code is usually going to when we flip random bits?
(or remove/add random bytes)

how often are we going to generate tags not in starting document?

how often are we going to generate new almost-valid documents?

24



completeness problem

let’s say we’re testing an HTML parser

what code is usually going to when we flip random bits?
(or remove/add random bytes)

how often are we going to generate tags not in starting document?

how often are we going to generate new almost-valid documents?

24



HTML with changes

<html><head><title>A</title></head><body>B</body></html>
<html*<head><title>A</title></head><body>B</body></html>
<html><iead><title>C</title></head><body>B</body></html>

25



fuzzing from format knowledge (1)

make a random document generator
before: small number of manually chosen examples (often 1)

String RandomHTML() {
if (random() > 0.2) {

String tag = GetRandomTag();
if (random() > 0.2) {

return "<" + tag + ">" + RandomHTML() +
"</" + tag + ">";

} else {
return "<" + tag + ">";

}
} else

return RandomText();
} 26



fuzzing from format knowledge (2)

other fuzzing strategies

identify interesting fields to fuzz
description of grammar/protocol/etc.
test different values seperately

(default to) filling in sizes, checksums, type information
avoid most inputs getting rejected from being malformed
test specific parts of a larger program

27



thinking about testing

void expand(char *arg) {
if (arg[0] == '[') {

if (arg[2] != '-') {
putchar('[');

} else {
for (int i = arg[1]; i <= arg[3]; ++i) {

putchar(i);
}

}
} else if (arg[0] != '\0') {

putchar(arg[0]);
}

}

28



coverage

“coverage”: metric for how good tests are

% of code reached

easy to measure

correlates with bugs found
but not the same thing as finding all bugs

29



automated test generation

conceptual idea: look at code, go down all paths

seems automatable?
just need to identify conditions for each path

30



symbolic execution

have an emulator/virtual machine

but represent input values as symbolic variables
like in algebra

choose a path through the program, track constraints
what values did input need to have to get here?

then solve constraints based on variables to create real test case
no solution? impossible path
find solution? test case

31



example

void foo(int a, int b) {
if (a != 0) {
b −= 2;
a += b;

}
if (b < 5) {
b += 4;

}
assert(a + b != 5);

}

true

true false

false

true false

a: α, b: β

a != 0

α 6= 0
a: α + β − 2, b: β − 2

b < 5

α 6= 0; β − 2 < 5
a: α + β − 2, b: β + 2

α 6= 0; β − 2 < 5;
α + 2β = 5?
can happen: (α, β) = (5, 0)

α 6= 0; β − 2 ≥ 5
a: α + β − 2, b: β − 2

α = 0
a: α, b: β

b < 5

a = 0; β < 5
a: α, b: β + 4

a = 0; β ≥ 5
a: α, b: β

every variable represented as an equation
final step: generate solution for each path

100% test coverage

Adapted from Hicks, “Symbolic Execution for Finding Bugs” 32



example

void foo(int a, int b) {
if (a != 0) {
b −= 2;
a += b;

}
if (b < 5) {
b += 4;

}
assert(a + b != 5);

}

true

true false

false

true false

a: α, b: β

a != 0

α 6= 0
a: α + β − 2, b: β − 2

b < 5

α 6= 0; β − 2 < 5
a: α + β − 2, b: β + 2

α 6= 0; β − 2 < 5;
α + 2β = 5?
can happen: (α, β) = (5, 0)

α 6= 0; β − 2 ≥ 5
a: α + β − 2, b: β − 2

α = 0
a: α, b: β

b < 5

a = 0; β < 5
a: α, b: β + 4

a = 0; β ≥ 5
a: α, b: β

every variable represented as an equation
final step: generate solution for each path

100% test coverage Adapted from Hicks, “Symbolic Execution for Finding Bugs” 32



example

void foo(int a, int b) {
if (a != 0) {
b −= 2;
a += b;

}
if (b < 5) {
b += 4;

}
assert(a + b != 5);

}

true

true false

false

true false

a: α, b: β

a != 0

α 6= 0
a: α + β − 2, b: β − 2

b < 5

α 6= 0; β − 2 < 5
a: α + β − 2, b: β + 2

α 6= 0; β − 2 < 5;
α + 2β = 5?
can happen: (α, β) = (5, 0)

α 6= 0; β − 2 ≥ 5
a: α + β − 2, b: β − 2

α = 0
a: α, b: β

b < 5

a = 0; β < 5
a: α, b: β + 4

a = 0; β ≥ 5
a: α, b: β

every variable represented as an equation
final step: generate solution for each path

100% test coverage

Adapted from Hicks, “Symbolic Execution for Finding Bugs” 32



example

void foo(int a, int b) {
if (a != 0) {
b −= 2;
a += b;

}
if (b < 5) {
b += 4;

}
assert(a + b != 5);

}

true

true false

false

true false

a: α, b: β

a != 0

α 6= 0
a: α + β − 2, b: β − 2

b < 5

α 6= 0; β − 2 < 5
a: α + β − 2, b: β + 2

α 6= 0; β − 2 < 5;
α + 2β = 5?
can happen: (α, β) = (5, 0)

α 6= 0; β − 2 ≥ 5
a: α + β − 2, b: β − 2

α = 0
a: α, b: β

b < 5

a = 0; β < 5
a: α, b: β + 4

a = 0; β ≥ 5
a: α, b: β

every variable represented as an equation
final step: generate solution for each path

100% test coverage

Adapted from Hicks, “Symbolic Execution for Finding Bugs” 32



example

void foo(int a, int b) {
if (a != 0) {
b −= 2;
a += b;

}
if (b < 5) {
b += 4;

}
assert(a + b != 5);

}

true

true false

false

true false

a: α, b: β

a != 0

α 6= 0
a: α + β − 2, b: β − 2

b < 5

α 6= 0; β − 2 < 5
a: α + β − 2, b: β + 2

α 6= 0; β − 2 < 5;
α + 2β = 5?
can happen: (α, β) = (5, 0)

α 6= 0; β − 2 ≥ 5
a: α + β − 2, b: β − 2

α = 0
a: α, b: β

b < 5

a = 0; β < 5
a: α, b: β + 4

a = 0; β ≥ 5
a: α, b: β

every variable represented as an equation
final step: generate solution for each path

100% test coverage

Adapted from Hicks, “Symbolic Execution for Finding Bugs” 32



example

void foo(int a, int b) {
if (a != 0) {
b −= 2;
a += b;

}
if (b < 5) {
b += 4;

}
assert(a + b != 5);

}

true

true false

false

true false

a: α, b: β

a != 0

α 6= 0
a: α + β − 2, b: β − 2

b < 5

α 6= 0; β − 2 < 5
a: α + β − 2, b: β + 2

α 6= 0; β − 2 < 5;
α + 2β = 5?
can happen: (α, β) = (5, 0)

α 6= 0; β − 2 ≥ 5
a: α + β − 2, b: β − 2

α = 0
a: α, b: β

b < 5

a = 0; β < 5
a: α, b: β + 4

a = 0; β ≥ 5
a: α, b: β

every variable represented as an equation
final step: generate solution for each path

100% test coverage

Adapted from Hicks, “Symbolic Execution for Finding Bugs” 32



example

void foo(int a, int b) {
if (a != 0) {
b −= 2;
a += b;

}
if (b < 5) {
b += 4;

}
assert(a + b != 5);

}

true

true false

false

true false

a: α, b: β

a != 0

α 6= 0
a: α + β − 2, b: β − 2

b < 5

α 6= 0; β − 2 < 5
a: α + β − 2, b: β + 2

α 6= 0; β − 2 < 5;
α + 2β = 5?
can happen: (α, β) = (5, 0)

α 6= 0; β − 2 ≥ 5
a: α + β − 2, b: β − 2

α = 0
a: α, b: β

b < 5

a = 0; β < 5
a: α, b: β + 4

a = 0; β ≥ 5
a: α, b: β

every variable represented as an equation
final step: generate solution for each path

100% test coverage

Adapted from Hicks, “Symbolic Execution for Finding Bugs” 32



example

void foo(int a, int b) {
if (a != 0) {
b −= 2;
a += b;

}
if (b < 5) {
b += 4;

}
assert(a + b != 5);

}

true

true false

false

true false

a: α, b: β

a != 0

α 6= 0
a: α + β − 2, b: β − 2

b < 5

α 6= 0; β − 2 < 5
a: α + β − 2, b: β + 2

α 6= 0; β − 2 < 5;
α + 2β = 5?
can happen: (α, β) = (5, 0)

α 6= 0; β − 2 ≥ 5
a: α + β − 2, b: β − 2

α = 0
a: α, b: β

b < 5

a = 0; β < 5
a: α, b: β + 4

a = 0; β ≥ 5
a: α, b: β

every variable represented as an equation
final step: generate solution for each path

100% test coverage

Adapted from Hicks, “Symbolic Execution for Finding Bugs” 32



symbolic execution challenges

‘solving’ a path’s conditions

generating way too many paths

33



equation solving

can generate formula with bounded inputs

can always be solved by trying all possibilities

but actually solving is NP-hard (i.e. not generally possible)

luck: there exists solvers that are often good enough

…for small programs

…with lots of additional heuristics to make it work
34



way too many paths

loops mean often really huge number of paths

dealing with array accesses?
easiest way — new path for each index

need ways to quickly eliminate impossible paths

won’t explore all paths; need to prioritize

can try to similar paths; process together

35



paths for memory errors

void foo(int a, int b) {
char buffer[10];
if (a <= 10) {

// added bounds-checking:
assert(inBounds(buffer+a+b));
buffer[a + b] = b;

}
}

true

true false

false

a: α, b: β, buffer: unset

a <= 10

α ≤ 10
a: α, b: β

in-bounds?

α 6= 0; 0 ≤ β + α ≤ 9
a: α, b: β, buffer[α + β]: β

α ≤ 10; β + α > 10 or < 0
a: α, b: β

α > 10
a: α, b: β

add bounds checking assertions — try to solve to satisfy
36



tricky parts in symbolic execution

dealing with pointers?
one method: one path for each valid value of pointer

solving equations?
NP-hard (boolean satisfiablity) — not practical in general
“good enough” for small enough programs/inputs
…after lots of tricks

how many paths?
< 100% coverage in practice
small input sizes (limited number of variables)

37



real symbolic execution

not yet used much outside of research

old technique (1970s), but recent resurgence
equation solving (‘SAT solvers’) is now better

useful for more than test-case generation

example usable tool: KLEE (test case generating)

38



a compromise: coverage-guided fuzzing

idea: generate random test cases based on good test cases

test case goodness based on what code is run

39



coverage-guided example
void foo(int a, int b) {

if (a != 0) {
// W
b −= 2;
a += b;

} else {
// X

}
if (b < 5) {

// Y
b += 4;
if (a + b > 50) {

// Q
...

}
} else {

// Z
}

}

initial test case A:
a = 0x17, b = 0x08; covers: WZ

generate random tests based on A
a = 0x37, b = 0x08; covers: WZ
a = 0x15, b = 0x08; covers: WZ
a = 0x17, b = 0x0c; covers: WZ
a = 0x13, b = 0x08; covers: WZ
a = 0x17, b = 0x08; covers: WZ
…
a = 0x17, b = 0x00; covers: WY

found test case B:
a = 0x17, b = 0x00; covers: WY

generate random tests based on A, B

a = 0x37, b = 0x08; covers: WZ
a = 0x04, b = 0x00; covers: WY
a = 0x17, b = 0x01; covers: WZ
a = 0x16, b = 0x00; covers: WY
…
a = 0x97, b = 0x00; covers: WYQ
…
a = 0x00, b = 0x08; covers: XY

40



coverage-guided example
void foo(int a, int b) {

if (a != 0) {
// W
b −= 2;
a += b;

} else {
// X

}
if (b < 5) {

// Y
b += 4;
if (a + b > 50) {

// Q
...

}
} else {

// Z
}

}

initial test case A:
a = 0x17, b = 0x08; covers: WZ

generate random tests based on A
a = 0x37, b = 0x08; covers: WZ
a = 0x15, b = 0x08; covers: WZ
a = 0x17, b = 0x0c; covers: WZ
a = 0x13, b = 0x08; covers: WZ
a = 0x17, b = 0x08; covers: WZ
…
a = 0x17, b = 0x00; covers: WY

found test case B:
a = 0x17, b = 0x00; covers: WY

generate random tests based on A, B

a = 0x37, b = 0x08; covers: WZ
a = 0x04, b = 0x00; covers: WY
a = 0x17, b = 0x01; covers: WZ
a = 0x16, b = 0x00; covers: WY
…
a = 0x97, b = 0x00; covers: WYQ
…
a = 0x00, b = 0x08; covers: XY

40



coverage-guided example
void foo(int a, int b) {

if (a != 0) {
// W
b −= 2;
a += b;

} else {
// X

}
if (b < 5) {

// Y
b += 4;
if (a + b > 50) {

// Q
...

}
} else {

// Z
}

}

initial test case A:
a = 0x17, b = 0x08; covers: WZ

generate random tests based on A
a = 0x37, b = 0x08; covers: WZ
a = 0x15, b = 0x08; covers: WZ
a = 0x17, b = 0x0c; covers: WZ
a = 0x13, b = 0x08; covers: WZ
a = 0x17, b = 0x08; covers: WZ
…
a = 0x17, b = 0x00; covers: WY

found test case B:
a = 0x17, b = 0x00; covers: WY

generate random tests based on A, B

a = 0x37, b = 0x08; covers: WZ
a = 0x04, b = 0x00; covers: WY
a = 0x17, b = 0x01; covers: WZ
a = 0x16, b = 0x00; covers: WY
…
a = 0x97, b = 0x00; covers: WYQ
…
a = 0x00, b = 0x08; covers: XY

40



coverage-guided example
void foo(int a, int b) {

if (a != 0) {
// W
b −= 2;
a += b;

} else {
// X

}
if (b < 5) {

// Y
b += 4;
if (a + b > 50) {

// Q
...

}
} else {

// Z
}

}

initial test case A:
a = 0x17, b = 0x08; covers: WZ

generate random tests based on A
a = 0x37, b = 0x08; covers: WZ
a = 0x15, b = 0x08; covers: WZ
a = 0x17, b = 0x0c; covers: WZ
a = 0x13, b = 0x08; covers: WZ
a = 0x17, b = 0x08; covers: WZ
…
a = 0x17, b = 0x00; covers: WY

found test case B:
a = 0x17, b = 0x00; covers: WY

generate random tests based on A, B

a = 0x37, b = 0x08; covers: WZ
a = 0x04, b = 0x00; covers: WY
a = 0x17, b = 0x01; covers: WZ
a = 0x16, b = 0x00; covers: WY
…
a = 0x97, b = 0x00; covers: WYQ
…
a = 0x00, b = 0x08; covers: XY

40



american fuzzy lop

one example of a fuzzer that uses this strategy
“whitebox fuzzing”

assembler wrapper to record computed/conditional jumps:
CoverageArray[Hash(JumpSource, JumpDest)]++;

use values from coverage array to distinguish cases

outputs only unique test cases

goal: test case for every possible jump source/dest
42



american fuzzy lop heuristics

american fuzzy lop does some deterministic testing
try flipping every bit, every 2 bits, etc. of base input
overwrite bytes with 0xFF, 0x00, etc.
etc.

has many strategies for producing new inputs
bit-flipping
duplicating important-looking keywords
combining existing inputs

43



automatically simplifying test cases

same idea as fuzzing
but look for same result/coverage
systematic simplifications:

try removing every character (one-by-one)
try decrementing every byte
…

keep simplifications that don’t change result
AFL uses some of this strategy to help get better ‘base’ tests

also has tool to do this on a found test
prefers simpler ‘base’ tests

44



simplification/keyword finding

see if each character changes coverage

find group of characters which matter — “keyword”?

example: <html> versus <xtml> etc.

find characters that don’t matter — remove

45



AFL: manual keywords

AFL supports a dictionary
list of things to add to create test cases
example: all possible HTML tags

other strategy: test-case template

other strategy: test postprocessing (fix checksums, etc.)

46



other uses of fuzzing tools

easiest to find crashes

but can check correctness if you have a way

example: fuzz-testing of C compilers versus other C compilers
Yang et al, “Finding and Understanding Bugs in C compilers”, 2011
79 GCC, 209 Clang bugs
about one third “wrong generated code”

47



fuzzing assignment

target: a program that reindents C source files

tool: american fuzzy lop

along with AddressSanitizer — find crashes
probably buffer overflows

crashes are easy to find — so won’t have to fuzz for long
but in real scenario would run fuzzer for hours/days

48



coverage-guided example
void foo(unsigned a,

unsigned b,
unsigned c) {

if (a != 0) {
b −= c; // W

}
if (b < 5) {

if (a > c) {
a += b; // X

}
b += 4; // Y

} else {
a += 1; // Z

}
assert(a + b != 7);

}

initial test case A:
a = 0x17, b = 0x08, c = 0x00; covers: WZ

generate random tests based on A
a = 0x37, b = 0x08, c = 0x00; covers: WZ
a = 0x15, b = 0x08, c = 0x02; covers: WZ
a = 0x17, b = 0x0c, c = 0x00; covers: WZ
a = 0x13, b = 0x08, c = 0x40; covers: WZ
a = 0x17, b = 0x08, c = 0x10; covers: WZ
…
a = 0x17, b = 0x00, c = 0x01; covers: WXY

found test case B:
a = 0x17, b = 0x00, c = 0x01; covers: WXY

generate random tests based on A, B

a = 0x37, b = 0x08, c = 0x00; covers: WZ
a = 0x17, b = 0x00, c = 0x03; covers: WXY
a = 0x17, b = 0x0c, c = 0x00; covers: WZ
a = 0x37, b = 0x00, c = 0x03; covers: WXY
a = 0x17, b = 0x08, c = 0x10; covers: WZ
…
a = 0x17, b = 0x00, c = 0x81; covers: WY

49



coverage-guided example
void foo(unsigned a,

unsigned b,
unsigned c) {

if (a != 0) {
b −= c; // W

}
if (b < 5) {

if (a > c) {
a += b; // X

}
b += 4; // Y

} else {
a += 1; // Z

}
assert(a + b != 7);

}

initial test case A:
a = 0x17, b = 0x08, c = 0x00; covers: WZ

generate random tests based on A
a = 0x37, b = 0x08, c = 0x00; covers: WZ
a = 0x15, b = 0x08, c = 0x02; covers: WZ
a = 0x17, b = 0x0c, c = 0x00; covers: WZ
a = 0x13, b = 0x08, c = 0x40; covers: WZ
a = 0x17, b = 0x08, c = 0x10; covers: WZ
…
a = 0x17, b = 0x00, c = 0x01; covers: WXY

found test case B:
a = 0x17, b = 0x00, c = 0x01; covers: WXY

generate random tests based on A, B

a = 0x37, b = 0x08, c = 0x00; covers: WZ
a = 0x17, b = 0x00, c = 0x03; covers: WXY
a = 0x17, b = 0x0c, c = 0x00; covers: WZ
a = 0x37, b = 0x00, c = 0x03; covers: WXY
a = 0x17, b = 0x08, c = 0x10; covers: WZ
…
a = 0x17, b = 0x00, c = 0x81; covers: WY

49



coverage-guided example
void foo(unsigned a,

unsigned b,
unsigned c) {

if (a != 0) {
b −= c; // W

}
if (b < 5) {

if (a > c) {
a += b; // X

}
b += 4; // Y

} else {
a += 1; // Z

}
assert(a + b != 7);

}

initial test case A:
a = 0x17, b = 0x08, c = 0x00; covers: WZ

generate random tests based on A
a = 0x37, b = 0x08, c = 0x00; covers: WZ
a = 0x15, b = 0x08, c = 0x02; covers: WZ
a = 0x17, b = 0x0c, c = 0x00; covers: WZ
a = 0x13, b = 0x08, c = 0x40; covers: WZ
a = 0x17, b = 0x08, c = 0x10; covers: WZ
…
a = 0x17, b = 0x00, c = 0x01; covers: WXY

found test case B:
a = 0x17, b = 0x00, c = 0x01; covers: WXY

generate random tests based on A, B

a = 0x37, b = 0x08, c = 0x00; covers: WZ
a = 0x17, b = 0x00, c = 0x03; covers: WXY
a = 0x17, b = 0x0c, c = 0x00; covers: WZ
a = 0x37, b = 0x00, c = 0x03; covers: WXY
a = 0x17, b = 0x08, c = 0x10; covers: WZ
…
a = 0x17, b = 0x00, c = 0x81; covers: WY

49



coverage-guided example
void foo(unsigned a,

unsigned b,
unsigned c) {

if (a != 0) {
b −= c; // W

}
if (b < 5) {

if (a > c) {
a += b; // X

}
b += 4; // Y

} else {
a += 1; // Z

}
assert(a + b != 7);

}

initial test case A:
a = 0x17, b = 0x08, c = 0x00; covers: WZ

generate random tests based on A
a = 0x37, b = 0x08, c = 0x00; covers: WZ
a = 0x15, b = 0x08, c = 0x02; covers: WZ
a = 0x17, b = 0x0c, c = 0x00; covers: WZ
a = 0x13, b = 0x08, c = 0x40; covers: WZ
a = 0x17, b = 0x08, c = 0x10; covers: WZ
…
a = 0x17, b = 0x00, c = 0x01; covers: WXY

found test case B:
a = 0x17, b = 0x00, c = 0x01; covers: WXY

generate random tests based on A, B

a = 0x37, b = 0x08, c = 0x00; covers: WZ
a = 0x17, b = 0x00, c = 0x03; covers: WXY
a = 0x17, b = 0x0c, c = 0x00; covers: WZ
a = 0x37, b = 0x00, c = 0x03; covers: WXY
a = 0x17, b = 0x08, c = 0x10; covers: WZ
…
a = 0x17, b = 0x00, c = 0x81; covers: WY

49


	Memory Safety Research Overview
	Debugging memory error detectors
	Backup Slides

