Sandboxing

logistics

CHALLENGE assignment — take-home portion of the final

next class — final exam review

CHALLENGE (1)

expect to release before Saturday; due by written final

probably complete all but two

five of seven or four of six
(waiting for TA feedback to callibrate difficulty)

similar format to “attack” homeworks
create a program that produces input

you are responsible for figuringout what scenario applies

CHALLENGE (2)

some very similar to prior HWSs, some not

reference solutions to OVER, ROP, FORMAT will be available

you may modify and use these

you can ask about general strategies, but not specific challenges

e.g. ask TAs/students to go through examples of how to do stack
smashing

e.g. ask TAs/students how to tell if pointer subterfuge would work

web page

web security summary (1)

browser as OS:
websites are like programs

cross-site scripting
command injection for the web
not just stuff to display — program code for website
problem: runs with website permissions (e.g. cookies)

web security summary (2)

isolation mechanism: same origin policy
decision: everything on domain name is “the same”

cross-site request forgery
consequence of statelessness
all requests send cookie (password-equivalent)
extra token to distinguish “user initiated” or not

on user tracking

embedding one web page in another enables tracking users across
website

example: multiple webpages include iframe with a google ad

your browser sends request to Google with same cookie
Google reliably gets excerpt of web history

reason: websites cooperated with Google
users often don't like this

what can browsers do about this?

changing the cookie policy (1)

idea: no “third-party” cookies

only send cookies for URL in address bar

changing the cookie policy (1)

idea: no “third-party” cookies

only send cookies for URL in address bar

now embedded Google calendar can’t use my credentials

what about websites that use multiple domains?

changing the cookie policy (2)

current Firefox “tracking protection” approach:
manually(?) created list of sites that do tracking

..and can be ignored without breaking things

10

changing the cookie policy (3)

EFF Privacy Badger: heuristic apporach

create score using

amount of info in cookies
number of places third-party appears

block requests to third-party or filter cookies if score too high

hard-coded exceptions for common false positives/tricky caes

‘surrogate’ code to avoid breaking website by blocking
tracking code has callbacks to third-party

e.g. facebook.com and fbcdn.com

11

tracking without cookies

websites can do tracking even with no cookies

information in URLs — add ?sessionID to all links
other forms of browser storage — e.g. via Flash

websites can “fingerprint” browser and machine

version, fonts, screen resolution, plugins, graphics features, ...
caching of previously downloaded resources
almost unique a surprising amount of the time

have IP addresses, too — very good hints

12

tracking without cookies

websites can do tracking even with no cookies

information in URLs — add ?sessionID to all links
other forms of browser storage — e.g. via Flash

websites can “fingerprint” browser and machine

version, fonts, screen resolution, plugins, graphics features, ...
caching of previously downloaded resources
almost unique a surprising amount of the time

have IP addresses, too — very good hints

12

Web Frameworks

tools for making writing interactive websites help

e.g. Django (Python):

default to anti-embedding HT TP header (no clickjacking)
default to HttpOnly cookies

default to requiring CSRF token for POSTs
usually provide “templates” which escape HTML properly by default

template: <p>Name: {{name}} (placeholder in {{..}})
if name is <script>... resultis

<p>Name: <script>...

13

recall: UAF triggering code

earlier in semester: exploit in Chrome browser itself

// in HTML near this JavaScript:
// <video id="vid'"> (video player element)
function source_opened() {
buffer = ms.addSourceBuffer('video/webm;_codecs="vorbis,vp8""');
vid.parentNode.removeChild(vid);
gc(); // force garbage collector to run now
// garbage collector frees unreachable objects
// (would be run automatically, eventually, too)
// buffer now internally refers to delete'd player object
buffer.timestampOffset = 42;
}

ms = new WebKitMediaSource();
ms.addEventListener ('webkitsourceopen', source_opened);

vid.src = window.URL.createObjectURL(ms);
14

recall: UAF triggering code

earlier in semester: exploit in Chrome browser itself

// in HTML near this JavaScript:
// <video id="vid'"> (video player element)
function source_opened() {
buffer = ms.addSourceBuffer('video/webm;_codecs="vorbis,vp8""');
vid.parentNode.removeChild(vid) ;
gc(); // force garbage collector to run now
// garbage collector frees unreachable objects
// (would be run automatically, eventually, too)
// buffer now internally refers to delete'd player object
buffer.timestampOffset = 42;
}

ms = new WebKitMediaSource();
ms.addEventListener ('webkitsourceopen', source_opened);

vid.src = window.URL.createObjectURL(ms);
14

recall: UAF triggering code

earlier in semester: exploit in Chrome browser itself

// in HTML near this JavaScript:
// <video id="vid'"> (video player element)
function source_opened() {
buffer = ms.addSourceBuffer('video/webm;_codecs="vorbis,vp8""');
vid.parentNode.removeChild(vid);
gc(); // force garbage collector to run now
// garbage collector frees unreachable objects
// (would be run automatically, eventually, too)
// buffer now internally refers to delete'd player object
buffer.timestampOffset = 42;
by

ms = new WebKitMediaSource();
ms.addEventListener ('webkitsourceopen', source_opened);

vid.src = window.URL.createObjectURL(ms);
14

recall: UAF triggering code

earlier in semester: exploit in Chrome browser itself

// in HTML near this JavaScript:
// <video id="vid'"> (video player element)
function source_opened() {
buffer = ms.addSourceBuffer('video/webm;_codecs="vorbis,vp8""');
vid.parentNode.removeChild(vid);
gc(); // force garbage collector to run now
// garbage collector frees unreachable objects
// (would be run automatically, eventually, too)
// buffer now internally refers to delete'd player object
buffer.timestampOffset = 42;
by

ms = new WebKitMediaSource();
ms.addEventListener ('webkitsourceopen', source_opened);

vid.src = window.URL.createObjectURL(ms);
14

browsers and exploits

browsers are in a particularly dangerous position for exploits
routinely run untrusted code (JavaScript on websites)

huge amounts of code, often written in C/C++
WebKit (part of Chrome, Safari) has millions of lines of code

15

malvertising

could trick user into visiting your website

or pay for ad — embed your webpage in another!
can run whatever script you like

Readers of popular websites targeted by
stealthy Stegano exploit kit hiding in pixels of
malicious ads

BY ESET RESEARCH POSTED & DEC 2016 - 12:00PM

EXPLOITKIT

16

modern advertising landscape (1)

website ads are often sold in realtime

conceptual idea: mini-auction for every ad

major concerns about fraud
are you really showing my ad?

ad operators want to do own tracking
get better idea what to show/bid

17

modern advertising landscape (2)

website operators typically don’t host ads

don't build own realtime auction infrastructure
not trusted to report number of ad views correctly

ads often sold indirectly

middleman handles bidding/etc.
website operators sell to multiple ad operators

18

browsers and exploit mitigations

modern browsers employ many of the mitigations we talked about

full ASLR
write XOR execute (with exceptions for runtime-compiled code)
stack canaries

also some other mitigations

19

least privilege

why can code running for a webpage install software?

never needs to do that

concept: let's run it without those permissions

20

multi-user OSs

cr4bd@labunix0l:~$ cp myprogram.exe /bin/1ls
cp: cannot create regular file ‘/bin/1ls’

programs have limited privileges

Permission denied

21

permission enforcement

struct Process {
int user_1id;

}3
int handle_open_system_call(char xfilename, ...) {
Process* currentProcess = GetCurrentProcess();
Filex file = GetFileByFilename(filename);
if (!file->UserCanAccess(currentProcess->user_id)) {
return ERROR_PERMISSION_DENIED;
+

22

multi-user OSs

cr4bd@labunix0l:~$ cp myprogram.exe /bin/1ls
cp: cannot create regular file ‘/bin/1ls’ : Permission denied

programs have limited privileges
OS tracks “user” of running every program

result: malware | installed shouldn’t be able to effect other users

idea 1: reuse this support for web browsers

webpage should run as “different user”
malware should only affect web browser?

23

things browsers need

what things should browser be able to do?

24

things browsers need

Bookmark This Link
SavelLink As...

save files

have your webmail password

25

the privilege separation idea

can't make whole browser run as “different user”
still need to save files, read password, etc.

how about just the parts that are “dangerous”?
part that runs scripts, parses HTML

26

simple privilege separation

simple example: want to show videos

video decoding library is tens of thousands of lines of code
often buggy, includes hard-to-check hand-written assembly

what does video decoding library do?
read video file as input
output images as output

27

simple privilege seperation

setup: create new user

start video decoder as new user

communicate via “pipes”
like terminal to be used by program

28

simple privilege seperation

/* dangerous video decoder to isolate */
int main() {
/* switch to right user *x/
SetUserTo("user-without-privileges"));
while (fread(videoData, sizeof(videoData), 1, stdin) > 0) {
doDangerousVideoDecoding(videoData, -imageData);
fwrite(imageData, sizeof(imageData), 1, stdout);

}

/* code that uses it *x/
FILE xfh = RunProgramAndGetFileHandle("./video-decoder");
for (535) {
fﬁ?ite(getNextVideoData(), SIZE, 1, fh);
fread(image, sizeof(image), 1, fh)
displayImage(image);

)

29

issues with privilege separation (1)

“other user” can still do too much
read unprotected files
most of them?
write temporary files?
open network connections

use all your memory

30

issues with privilege separation (2)

awkward to do

switching users requires special permissions

seperate user for each video decoder, audio decoder, web page
renderer?

users can debug processes from same user

slowdown — extra copying

31

recall: process virtual machine

process has isolated memory + CPU

communicating outside? needs system calls
analagous to using |/O devices

OS controls what process can do

32

Linux system call filtering API

privilege seperation support: system call filtering

simple APl: seccomp (SECCOMP_SET_MODE_STRICT, 0, 0)

“The only system calls the calling thread is permitted to make are
read, write, _exit, and sigreturn. Other system calls [kill
the program].”

read /write only work on already open files

33

“sandboxing”

result of filtering called a “sandbox”
idea: attacker can play in sandbox as much as they want

can't do anything harmful

34

Chrome architecture

Rendering
Engine

G()Ugli,’
HTML, 15, ... Rendered Bitmap

Browser Kernel

Figure 1: The browser kernel treats the rendering
engine as a black box that parses web content and
emits bitmaps of the rendered document.

35

talking to the sandbox

browser kernel sends commands to sandbox
sandbox sends commands to browser kernel

idea: commands only allow necessary things

36

original Chrome sandbox interface

sandbox to browser “kernel”
show this image on screen
(using shared memory for speed)
make request for this URL
download files to local FS
upload user requested files

browser “kernel” to sandbox
send user input

37

original Chrome sandbox interface

sandbox to browser “kernel”
show this image on screen
(using shared memory for speed)

make request_for this URL

download files}%
upload user requested fi

| needs filtering — at least no file: (local file) URLs

browser

send user input

37

original Chrome sandbox interface

sandbox to browser “kernel”
show this image on screen
(using shared memory for speed)
make request_for this URL
download files to | FS
upload user requeste

can still read any website!
browser “kernel” to sar still sends normal cookies!
send user input

37

original Chrome sandbox interface

sandbox to browser “kernel”
show this image on screen
(using shared memory for speed)
make request for this URL
download_files to local FS

upload user requ :
P M files go to download directory only

can't choose arbitrary filenames

browser “kernel” t

send user input

37

original Chrome sandbox interface

sandbox to browser “kernel”
show this image on screen
(using shared memory for speed)
make request for this URL
download files to local FS
upload_user requested files

browser “kernel” to hav

send user input browser ke.rnel. displays file choser
only permits files selected by user

37

process per site
Chrome almost does process-per-site
idea: one sandbox process per site

with one huge exception

recall: same-origin policy

38

recall: operations not requiring same origin

loading images, stylesheets (CSS), video, audio

loading scripts
but not getting syntax errors

accessing with “permission” of other website
submitting forms to other webpages

displaying other webpages (but not reading contents)

39

browser kernel security

the browser kernel is not simple
needs to securely implement special protocol

Ul, networking code overall more complicated than before

hope: writing secure browser kernel easier than secure whole-browser

40

OpenSSH privilege seperation

OpenSSH uses privilege seperation for its SSH server

what runs on the lab machines when you log into them

separate network processing code from authentication code

seperate process per connection — users don't share

41

OpenSSH privsep protocol

sandboxed process tells “monitor” to:

perform cryptographic operations

long-term keys never in sandboxed process
commands to ask for cryptographic messages they need

ask to switch to user — if given user password, etc.
monitor process verifies login information

after authentication: new process running as logged-in user
(normally) no issues with special privileges

42

privilege seperation overall

large application changes

OpenSSH: 3k lines of code for communication/etc. added
OpenSSH: 2% of existing code (950 of 44k lines) changed
(but most changes simple)

lots of application knowledge
what is a meaningful separation of ‘privileged’ and ‘unprivileged'?

better application design anyways?

43

application confinement

confining whole browsers was hard
we trust them to do a lot of things — e.g. write arbitrary files

but maybe we can do this for simpler applications?

idea 1: applications send system calls to OS

limit syscalls like we limited browser kernel commands
constructing command language “in reverse”

44

filtering system calls?

example: video player VLC playing a local file on my laptop
uses 73 unique system calls

opens many files that are not the video file
libraries
fonts
configuration files
translations of messages

can | limit the files my video player can read?

how do | come up with a useful filter?

45

OS X sandboxing

OS X (tries to) implement system call filtering

main challenge: what about files?
user can open a file anywhere — we expect that to work

46

OS X sandboxing

OS X (tries to) implement system call filtering

main challenge: what about files?
user can open a file anywhere — we expect that to work

OS X solution: OS service displays file-open dialog
OS knows user really choose a file

application can ask to remember file was chosen previously

not chosen/remembered — can’t access
requires changes to how applications open files

46

another sandboxing OS: Qubes

Qubes: heavily sandboxed OS
runs seperate VMs instead of filtering syscalls

Ul that clearly shows what VM each window is from

advantage: easier to gaurentee isolation
many, many more bugs in system call filtering than VMs

disadvantage: harder to share between VMs

disadvantage: much more runtime overhead

47

Qubes screenshot

L) B R [sefvers uard Exensio. || 1 aubes i wanager W user@work~ % o alllin @) 33[[]J 10erna osise

Software Guard Extensions Programming Refer..

IDomo] Qubes VM Manager
System VM View About

© ® 5
e, x ®©O® oHG VY A\ o
e 5
e v o e oot - Name state Netwm <Pu Graph wem
- domo o a 2598 1B
523 Resuming Executionafter AEX
@ @ wenet . e so1me
A s oo s sl sttt st el sor ot an xl 0 s Q- "
g sys-firewall . sys-net 301 MB
B e -
e Cran or 2 fout and ve Eetibgbouiing a v . sys-firewall 979 MB
R R
uzaulmw In order ‘the enclave at 3 work-web . sys-firewall 173me
o e
& workmut . sys-rewall 04
@ keysitbemail . - a7a e
3231 ERESUME nteaction
ERESUMErstores gt cepncin o he e f e cnclove (32 64t Q v . sysfrowa o7
2t e GER A D1 5L 0yl 3 s ey et €0 £ 1 0 Q versons . syssreual

the upper 32 hsmmwcmmg‘smmm‘ Tk reoters (38 | R13) wrelan
* In6a.bit mode (1132 EFER), 3l 61 bits nfivaganari\ processor regsters (RAX, RBX.
R RO rop B 11 ROl RS 15, 1P and RFLAGS ar oades

P the crent 554

frame. The ayout of the x37 arca daperds an the current vales of 132, EFER LA and C5 L

* IAs2_EFER LA =0 || CS.
32.btload inthe same formt that XSAVE/FXSAVE uses with these values,

* IAT2_EFER.LMA= 166C5.L~

vith

CALLING ENCLAVE PROCEDURES

Calling Convention

being
aware o

Because endiave, staccocated s manner.

For example. the {0 those parame.

e those rouines hand-coded or compiir genersted

332 Register Preservation

s ith most systemms, it reuninga
Valde. This s comsisent ofegister

48

quick review

part 1: malware and anti-malware
part 2: (memory) vulnerabilities and exploits and mitigations

part 3: bug-finding/prevention and misc. vulnerabilities and exploits

49

malware — evil software

tricks itself onto victim machines

e.g. masquarde as useful software

e.g. embed in legitimate software (viruses)

e.g. attack vulnerabilities in software to spread
e.g. arrange to run automatically on disk insert

cat-and-mouse game — antivirus software to detect malware

patterns, heuristics to detect
tricks to appear like normal software

50

memory vulnerabilities and exploits

buffer overflow/underflow — program writes outside of array

if “important” data, attacker can gain control
usual goal: overwrite pointer to code

use-after-free — program uses data as wrong type

attacker controls data as one type
ideally, misinterpreted (via dangling pointer) to contain pointer to code

51

memory exploit mitigations

bounds-checking — don't allow outside-of-array writes

doesn't solve use-after-free
single object with array and pointers?

stack canaries — detect writes next to return addresses

ASLR — make it so program can’t make up useful pointers?
problem: memory bugs can print out pointers

W xor X — make it so attacker can’t write new code
problem: attack can reuse existing code (return-oriented programming)

52

bug-finding

systematic testing — find crashes (& vulnerability)

fuzz testing — generate random tests
coverage-guided fuzz-testing — random tests, weighted by what runs
symbolic execution — solve for input to reach each possibility

static analysis — look for dangerous patterns

usually false positives and/or negatives
typically examine potential paths through program

53

bug-prevention

ownership — enforceable rule to prevent use-after-free
never free while object is owned
one writer (could be changing internal pointers) or many readers
readers and writers can borrow from owner
language (e.g. Rust) can track borrowing lifetimes to make safe

alternate safe policies — reference counting, etc.
have runtime overhead, but can be used only when needed

escape hatch — only check small amount of unsafe code

ideally implements policies that make sense
at least limits the code one needs to check

54

command injection/web security

command injection — type confusion problems

try to embed constant/etc., end up embedding commands
lots of languages to embed in — command line, SQL, HTML, ..

web security
same origin policy (SOP) — isolate by domain name (mostly)
XSS — command injection for the web
trusting client inputs — the attacker controls their browser
CSRF — innocent browser submits bad request (w/ cookies) for attacker
clickjacking — “steal” user’s click to make request

55

next time

final exam review: bring questions

56

	Summary
	User Tracking
	Web Frameworks
	client security
	browser exploit mitigations

