
1

last time
dynamic linking

global offset table
stubs
lazy binding

viruses calling standard library
integrity checking files

tripwire: did it change?
application signing
limitations

malware in scripts
malicious software in “data” files
downloaded software people want to run

searching for patterns
regular expression matching

2

flex: state machines
foo {...}
. {...}
\n {...}

start f fo foo

.
\n

f o o

other\n

(back 1)

(ba
ck

2)

3

flex: state machines
foo {...}
. {...}
\n {...}

start f fo foo

.
\n

f o o

other\n (back 1)

(ba
ck

2)
3

state machine matching
abfoofoabffoo

start f fo foo

.
\n

f o o

other\n (back 1)

(ba
ck

2)
4

state machine matching
abfoofoabffoo

start f fo foo

.
\n

f o o

other\n (back 1)

(ba
ck

2)
4

state machine matching
abfoofoabffoo

start f fo foo

.
\n

f o o

other\n (back 1)

(ba
ck

2)
4

state machine matching
abfoofoabffoo

start f fo foo

.
\n

f o o

other\n (back 1)

(ba
ck

2)
4

state machine matching
abfoofoabffoo

start f fo foo

.
\n

f o o

other\n (back 1)

(ba
ck

2)
4

state machine matching
abfoofoabffoo

start f fo foo

.
\n

f o o

other\n (back 1)

(ba
ck

2)
4

state machine matching
abfoofoabffoo

start f fo foo

.
\n

f o o

other\n (back 1)

(ba
ck

2)
4

state machine matching
abfoofoabffoo

start f fo foo

.
\n

f o o

other\n (back 1)

(ba
ck

2)
4

why this?
one pass matching (except for some backtracking)

can make state machine bigger to avoid some backtracking

basically speed of file I/O

handles multiple patterns well

flexible for “special cases”

real anti-virus: probably custom pattern “engine”

5

why this?
one pass matching (except for some backtracking)

can make state machine bigger to avoid some backtracking

basically speed of file I/O

handles multiple patterns well

flexible for “special cases”

real anti-virus: probably custom pattern “engine”

5

precomputing backtracking
foo {...}
. {...}
\n {...}

start f fo foo

.
\n

f o o

other\n
other

match . once
for f,
goto start

other

match . twice
for fo,
goto start

6

avoiding backtracing?
fox {...}
foo {...}
off {...}
.|\n {/* do nothing */}

start

f fo

fox

foo

o of offother

f
o o

x

o
f f

o o f

7

Vienna patterns (1)
simple Vienna patterns:
/* bytes of fixed part of Vienna sample */
\xFC\x89\xD6\x83\xC6\x81\xc7\x00\x01\x83(etc) {

printf("found Vienna code\n");
}

8

Vienna patterns (2)
simple Vienna patterns:
/* Vienna sample with wildcards for

changing bytes: */
/* push %CX; mov ???, %dx; cld; ... */
\x51\xBA(.|\n)(.|\n)\xFC\x89(etc) {

printf("found Vienna code w/placeholder\n");
}

/* mov $0x100, %di; push %di; xor %di, %di; ret */
\xBF\x00\x01\x57\x31\xFF\xC3 {

printf("found Vienna return code\n");
}

9

Vienna patterns (2)
simple Vienna patterns:
/* Vienna sample with wildcards for

changing bytes: */
/* push %CX; mov ???, %dx; cld; ... */
\x51\xBA(.|\n)(.|\n)\xFC\x89(etc) {

printf("found Vienna code w/placeholder\n");
}

/* mov $0x100, %di; push %di; xor %di, %di; ret */
\xBF\x00\x01\x57\x31\xFF\xC3 {

printf("found Vienna return code\n");
}

9

regular expressions are flexible
for Vienna: lots of flex features we didn’t need

things being repeated variable number of times
one of list of possible characters (bytes)
…

but viruses try to make pattern matching hard

good to think about what we can easily match

10

hard for patterns?
malware makes modificates to evade pattern matching

exercise: suppose we have a pattern for a Vienna-like virus, and a
new version makes the following change. Which of the following is
going to be easiest/hardest to change the pattern for?

A. inserting random number of nops every 8 non-nop instructions of virus
code
B. replacing code at random offset in executable instead of appending
C. registers used for temporaries in virus code chosen at random each
time the virus copies itself
D. instead of appending all the virus code, virus code now split between
cavities with ”loader” appended (the ”loader” reforms code from the
cavities and jumps to them)

11

making scanners efficient
lots of viruses!

huge number of states, tables
copies of every piece of malware pretty large

reading files is slow!

12

making scanners efficient
lots of viruses!

huge number of states, tables
copies of every piece of malware pretty large

reading files is slow!

13

handling volume
storing signature strings is non-trivial

tens of thousands of states???

observation: fixed strings dominate

14

scanning for fixed strings
123456789ABCDEF023456789ABCDEF034567…

16-byte “anchor” malware
204D616C6963696F7573205468696E6720 Virus A
34567890ABCDEF023456789ABCDEFG0345 Virus B
6120766972757320737472696E679090F2 Virus C
… …

(full pattern for Virus B)

4-byte hash
FC923131
34598873
994254A3
…

hash function

15

scanning for fixed strings
123456789ABCDEF023456789ABCDEF034567…

16-byte “anchor” malware
204D616C6963696F7573205468696E6720 Virus A
34567890ABCDEF023456789ABCDEFG0345 Virus B
6120766972757320737472696E679090F2 Virus C
… …

(full pattern for Virus B)

4-byte hash
FC923131
34598873
994254A3
…

hash function

15

scanning for fixed strings
123456789ABCDEF023456789ABCDEF034567…

16-byte “anchor” malware
204D616C6963696F7573205468696E6720 Virus A
34567890ABCDEF023456789ABCDEFG0345 Virus B
6120766972757320737472696E679090F2 Virus C
… …

(full pattern for Virus B)

4-byte hash
FC923131
34598873
994254A3
…

hash function

15

scanning for fixed strings
123456789ABCDEF023456789ABCDEF034567…

16-byte “anchor” malware
204D616C6963696F7573205468696E6720 Virus A
34567890ABCDEF023456789ABCDEFG0345 Virus B
6120766972757320737472696E679090F2 Virus C
… …

(full pattern for Virus B)

4-byte hash
FC923131
34598873
994254A3
…

hash function

15

scanning for fixed strings
123456789ABCDEF023456789ABCDEF034567…

16-byte “anchor” malware
204D616C6963696F7573205468696E6720 Virus A
34567890ABCDEF023456789ABCDEFG0345 Virus B
6120766972757320737472696E679090F2 Virus C
… …

(full pattern for Virus B)

4-byte hash
FC923131
34598873
994254A3
…

hash function

15

making scanners efficient
lots of viruses!

huge number of states, tables
copies of every piece of malware pretty large

reading files is slow!

16

the I/O problem
scanning still requires reading the whole file

can we do better?

17

selective scanning
check entry point and end only

a lot less I/O, maybe

check known offsets from entry point

heuristic: is entry point close to end of file?

18

real signatures: ClamAV
ClamAV: open source (mostly email) scanning software

signature types:
hash of file
hash of contents of segment of executable

built-in executable, archive file parser
fixed string
basic regular expressions

wildcards, character classes, alternatives
more complete regular expressions

including features that need more than state machines
meta-signatures: match if other signatures match
icon image fuzzy-matching

19

example ClamAV signatures (1)
hashes
4b3858c8b35e964a5eb0e291ff69ced6:78454:Xls.Exploit.Agent-4323916-1:73
7873be8fc5e052caa70fdb8f76205892:293376:Win.Trojan.Sality-93158:73
f358d77926045cba19131717a7b15dec:293376:Win.Trojan.Sality-93159:73
48d4c5294357e664bac1a07fce82ea22:450024:Win.Trojan.Sality-93160:73
e4b8442638b3948ab0291447affa6790:293376:Win.Trojan.Sality-93161:73
df36dc207b689a73ab9cf45a06fb71b0:232448:Win.Trojan.Sality-93162:73
baaeeabc7f4be3199af3d82d10c6b39f:293376:Win.Trojan.Sality-93163:73
...

20

example ClamAV signatures (2)
simple regular expressions (with hex, different syntax than flex)…
Win.Trojan.Vienna-1:0:*:5051e8??00{1-255}5b83eb??fc8d37bf0001b90300f3a48bf3558bec83ec7cb430cd21
Win.Trojan.Vienna-2:0:*:be000356c3*50be????8bd6fcb90500bf0001f3a48bfab430cd21
Win.Trojan.Vienna-3:0:*:50ba????8bf283c60090bf0001b90300fcf3a48bfab430cd213c02
Win.Trojan.Vienna-4:0:*:b440b900048bd681eac102cd21721f3d
Win.Trojan.Vienna-5:0:*:b904048bd681ea130352515350b4
...
Win.Trojan.Vienna-129:0:*:51b89b03cd213d01017503e9????ba6d03fc8bf283c60a90b90300bf0001f3a4

21

example ClamAV signatures (3)
‘logical’ signatures: mutliple regexes together:
Andr.Trojan.Pjapps-58;Engine:51-255,

Container:CL_TYPE_ZIP,Target:0;
(6&0&1&(2|3)&(4|5)); // expected patterns of below
3a39303333; // pattern 0
696d6569; // pattern 1
616e64726f69642e6c6f67; // pattern 2
77696e646f772e6c6f67; // pattern 3
4e6f6b69614e373631302d31; // pattern 4
336c676f6167646d66656a656b67666f733974313563686f6a6d; // pattern 5
0:646578 // pattern 6: "0:" means must be found at beginning of file

22

playing cat
harder to fool ways of detecting malware?

goal: small changes to malware preserve detection

ideal: detect new malware

23

detecting new malware
look for anomalies

patterns of code that real executables “won’t” have

identify bad behavior

24

viruses and executable formats
header: machine type, file type, etc.

program header: “segments” to load
(also, some other information)

segment 1 data
segment 2 data

segment 3 data — virus segment

heuristic 1: is entry point in last segment?
(segment usually not code)

heuristic 2: did virus mess up header?
(e.g. do sizes used by linker but not loader disagree)

section names disagree with usage?

25

viruses and executable formats
header: machine type, file type, etc.

program header: “segments” to load
(also, some other information)

length edited by virus
segment 1 data
segment 2 data

virus code + new entry point?
segment 3 data — virus segment

heuristic 1: is entry point in last segment?
(segment usually not code)

heuristic 2: did virus mess up header?
(e.g. do sizes used by linker but not loader disagree)

section names disagree with usage?

25

viruses and executable formats
header: machine type, file type, etc.

program header: “segments” to load
(also, some other information)

length edited by virus
segment 1 data
segment 2 data

virus code + new entry point?
segment 3 data — virus segment

heuristic 1: is entry point in last segment?
(segment usually not code)

heuristic 2: did virus mess up header?
(e.g. do sizes used by linker but not loader disagree)

section names disagree with usage?

25

viruses and executable formats
header: machine type, file type, etc.

program header: “segments” to load
(also, some other information)
new segment added by virus

segment 1 data
segment 2 data

segment 3 data — virus segment

heuristic 1: is entry point in last segment?
(segment usually not code)

heuristic 2: did virus mess up header?
(e.g. do sizes used by linker but not loader disagree)

section names disagree with usage?

25

viruses and executable formats
header: machine type, file type, etc.

program header: “segments” to load
(also, some other information)
new segment added by virus

segment 1 data
segment 2 data

segment 3 data — virus segment
heuristic 1: is entry point in last segment?

(segment usually not code)

heuristic 2: did virus mess up header?
(e.g. do sizes used by linker but not loader disagree)

section names disagree with usage?

25

viruses and executable formats
header: machine type, file type, etc.

program header: “segments” to load
(also, some other information)
new segment added by virus

segment 1 data
segment 2 data

segment 3 data — virus segment

heuristic 1: is entry point in last segment?
(segment usually not code)

heuristic 2: did virus mess up header?
(e.g. do sizes used by linker but not loader disagree)

section names disagree with usage?

25

defeating entry point checking
insert jump in normal code section, set as entry-point

add code to first section instead (perhaps insert new section at
beginning)

“dynamic” heuristic: run code in VM, see if switches sections

26

defeating entry point checking
insert jump in normal code section, set as entry-point

add code to first section instead (perhaps insert new section at
beginning)
“dynamic” heuristic: run code in VM, see if switches sections

26

heuristics: library calls
dynamic linking — functions called by name

how do viruses add to dynamic linking tables?
often don’t! — instead dynamically look-up functions
if do — could mess that up/lots of code

heuristic: look for API function name strings

27

evading library call checking
modify dynamic linking tables

probably tricky to add new entry

reimplement library call manually
Windows system calls not well documented, change

hide names

28

evading library call checking
modify dynamic linking tables

probably tricky to add new entry

reimplement library call manually
Windows system calls not well documented, change

hide names

28

hiding library call names
common approach: store hash of name

runtime: read library, scan list of functions for name

bonus: makes analysis harder

29

behavior-based detection
things malware does that other programs don’t?

modify system files

modifying existing executables

open network connections to lots of random places

…

basic idea: run in virtual machine; and/or monitor all programs

30

behavior-based detection
things malware does that other programs don’t?

modify system files

modifying existing executables

open network connections to lots of random places

…

basic idea: run in virtual machine; and/or monitor all programs

30

hooking
hooking — getting a ‘hook’ to run on (OS) operations

e.g. creating new files
e.g. modifying executable files

ideal mechanism: OS support

less ideal mechanism: change library loading
e.g. replace ‘open’, ‘fopen’, etc. in libraries

less ideal mechanism: replace OS exception (system call) handlers
very OS version dependent

less ideal mechanism: debugger support

31

hooking
hooking — getting a ‘hook’ to run on (OS) operations

e.g. creating new files
e.g. modifying executable files

ideal mechanism: OS support

less ideal mechanism: change library loading
e.g. replace ‘open’, ‘fopen’, etc. in libraries

less ideal mechanism: replace OS exception (system call) handlers
very OS version dependent

less ideal mechanism: debugger support

32

33

hooking
hooking — getting a ‘hook’ to run on (OS) operations

e.g. creating new files
e.g. modifying executable files

ideal mechanism: OS support

less ideal mechanism: change library loading
e.g. replace ‘open’, ‘fopen’, etc. in libraries

less ideal mechanism: replace OS exception (system call) handlers
very OS version dependent

less ideal mechanism: debugger support

34

changing library loading
e.g. install new library — or edit loader, but …

not everything uses library functions

what if your wrapper doesn’t work exactly the same?

35

hooking
hooking — getting a ‘hook’ to run on (OS) operations

e.g. creating new files
e.g. modifying executable files

ideal mechanism: OS support

less ideal mechanism: change library loading
e.g. replace ‘open’, ‘fopen’, etc. in libraries

less ideal mechanism: replace OS exception (system call) handlers
very OS version dependent

less ideal mechanism: debugger support

36

changing exception call handlers (1)
OS data structure tells hardware where program requests go

simpliest mechanism: edit that data structure
and save a copy of what was there before

point to your code
and call what was there before after behavior check

37

heuristics example: DREBIN paper
from 2014 research paper on Android malware: Arp et al, “DREBIN: Effective and
Explainable Detection of Android Malware in Your Pocket”

primary contribution of paper: big dataset of malware
but tried to detect malware, too…
features from applications (without running):

hardware requirements
requested permissions
whether it runs in background, with pushed notifications, etc.
what API calls it uses
network addresses

detect dynamic code generation explicitly
statistics (i.e. machine learning) to determine score

38

heuristics example: DREBIN paper
advantage: Android uses Dalvik bytecode (Java-like)

high-level “machine code”
much easier/more useful to analyze

accuracy?
tested on 131k apps, 94% of malware, 1% false positives
versus best commercial: 96%, < 0.3% false positives

(probably has explicit patterns for many known malware samples)

…but
statistics: training set needs to be typical of malware
cat-and-mouse: what would attackers do in response?

39

machine learning and adversaries
I don’t like most ML-based approaches to malware detection

problem: most machine learning not designed to deal with
adversaries

attack: find factors used to ID benign programs
do all of them as much as possible
inquiry: what might they be in DREBIN case?

attack: provide many malware samples with benign weird behavior
machine learning uses weird behavior to identify malware
may lower effectiveness on ‘normal’ malware

40

anti-anti-virus
defeating signatures:

avoid things compilers/linkers never do

make analysis harder
takes longer to produce signatures
takes longer to produce “repair” program
may evade attempts to automate analysis

make changing viruses
make any one signature less effective

41

some terms
armored viruses

viruses designed to make analysis harder

metamorphic/polymorphic/oligomorphic viruses
viruses that change their code each time
different terms — different types of changes (later)

42

obfuscation, generally
malware often obfuscates (obscures) its code

several reasons for this
prevent their from being signatures
make analysis more difficult
prevent others from modifying+copying

note: many of these technique sometimes employed by commercial
software

intended to prevent copying/reverse-engineering

43

Tigress as example of obfuscation
Tigress — researcher developer obfuscation tool

https://tigress.wtf

includes many transformations typical of real-world obfuscation
we’ll talk about the ideas behind many of them

future assignment: modify code obfuscated with Tigress

44

example Tigress transformations
we’ll look at some simple ones Tigress provides

I’m showing you the pattern,
not the actual code Tigress generates

45

Tigress: provided transform: Merge
void foo(int a) { code for foo }
void bar(int a) { code for bar }

... foo(x) + bar(y) ...

void foo_bar(int s, int a) {
if (s == 0) {

code for foo
} else {

code for bar
}

}

... foo_bar(0, x) + foo_bar(1, y) ...

46

Tigress: provided transform: Split
void foo(int a, int b) {

int x = ...;
code for foo part 1
code for foo part 2

}

void foo1(int *a, int *b, int *x) {
code for foo part 1

}
void foo2(int *a, int *b, int *x) {

code for foo part 2
}
void foo(int a, int b) {

int x;
foo1(&a,&b,&x); foo2(&a,&b,&x);

}

47

Tigress: example transform: Flatten
void foo() {

A;
if (X) {

B;
} else {

C;
}
D;

}

void foo() {
int s = 0;
for (;;) {

switch(s) {
case 0: A; s = X ? 1 : 2; break;
case 1: B; s = 3; break;
case 2: C; s = 3; break;
case 3: D; return;
}

}
} 48

transformations so far?
all can be combined!

annoying for analysis

hard to do without unobfuscated code
can’t easily be redone/changed by self-replicating malware

probably more distinctive than original code for signatures
(just match the transformed version since it won’t change often)

next topic: transformations to avoid signatures
(Tigress supports those, but not our primary examples)

49

obfuscation versus analysis
which of these does obfuscation seem most/least likely to hamper
doing?

A. determining what remote servers some malware contacts

B. determining a password the malware requires to access extra
functionality

C. accessing extra functionality in the malware protected by a
password

D. determining whether the malware will behave differently based
on the time

50

recall: library calls in viruses
viruses making library calls

can’t use normal dynamic linker stuff

common solution: search by name:
char *names[] = GetFunctionNamesFrom("kernel32.dll");
for (int i = 0; i < numFunctions; ++i) {

if (strcmp(names[i], "GetFileAttributesA") == 0) {
return functions[i];

}
}

problem: legit application code won’t do this

easy to look for string ‘GetFileAttributesA’

51

searching for hashes
char *functionNames[] = GetFunctionsFromStandardLibrary();
/* 0xd7c9e758 = hash("GetFileAttributesA") */
unsigned hashOfString = 0xd7c9e758;
for (int i = 0; i < num_functions; ++i) {

unsigned functionHash = 0;
for (int j = 0; j < strlen(functionNames[i]); ++j) {

functionHash = (functionHash * 7 +
functionNames[i][j]);

}
if (functionHash == hashOfString) {

return functions[i];
}

}

52

encrypted(?) data
char obviousString[] =

"Please open this 100%"
" safe attachment";

char lessObviousString[] =
"oSZ^LZ\037POZQ\037KWVL\037\016\017"
"\017\032\037L^YZ\037^KK^\\WRZQK";

for (int i = 0; i < sizeof(lessObviousString) − 1; ++i) {
lessObviousString[i] =

lessObviousString[i] ^ '?';
}

53

encrypted data and signatures
get rid of some easy signatures

especially if ‘key’ changes or hashes used

but not enough:
decryption code is very distinctive

can we do better with this “encryption” idea?

54

encrypted data and signatures
get rid of some easy signatures

especially if ‘key’ changes or hashes used

but not enough:
decryption code is very distinctive

can we do better with this “encryption” idea?

54

encrypted(?) viruses
char encrypted[] = "\x12\x45...";
char key[] = "...";
virusEntryPoint() {

decrypt(encrypted, key);
goto encrypted;

}
decrypt(char *buffer, char *key) {...}

choose a new key each time!

not good encryption — key is there

sometimes mixed with compression

55

encrypted viruses: no signature?
decrypt is a pretty good signature

still need to a way to disguise that code

how about analysis? how does one analyze this?
one way: use a debugger, stop before goto

56

backup slides

57

regular expressions
one method of representing patterns like this:
regular expressions (regexes)

restricted language allows very fast implementations
especially when there’s a long list of patterns to look for

homework assignment next week

58

regular expressions: implementations
multiple implementations of regular expressions

we will target: flex, a parser generator

59

simple patterns
alphanumeric characters match themselves

foo:
matches exactly foo only
does not match Foo
does not match foo
does not match foobar

backslash might be needed for others

C\+\+
matches exactly C++ only

60

metachars (1)
special ways to match characters

\n, \t, \x3C, …— work like in C

[b-fi] — b or c or d or e or f or i

[^b-fi] — any character but b or c or …

. — any character except newline

(.|\n) — any character

61

metachars (2)
a* — zero or more as:

(empty string), a, aa, aaa, …

a{3,5} — three to five as:
aaa, aaaa, aaaaa

(abc){3,5} — three to five abcs: (“grouping”)
abcabcabc, abcabcabcabc, abcabcabcabcabc

ab|cd
ab, cd

(ab|cd){2} — two ab-or-cds:
abab, abcd, cdab, cdcd

62

metachars (3)
\xAB — the byte 0xAB

\x00 — the byte 0x00
flex is designed for text, handles binary fine

\n — newline (and other C string escapes)

63

example regular expressions
match words ending with ing:
[a-zA-Z]*ing

match C /* ... */ comments:
/*([^*]|*[^/])**/

64

flex
flex is a regular expression matching tool

intended for writing parsers

generates C code

parser function called yylex

65

flex example
int num_bytes = 0, num_lines = 0;
int num_foos = 0;

%%
foo {

num_bytes += 3;
num_foos += 1;

}
. { num_bytes += 1; }
\n { num_lines += 1; num_bytes += 1; }
%%
int main(void) {

yylex();
printf("%d bytes, %d lines, %d foos\n",

num_bytes, num_lines, num_foos);
}

three sectionsfirst — declarations for later
C code in output file

patterns, code to run on match
as parser: return “token” here

extra code to include

66

flex example
int num_bytes = 0, num_lines = 0;
int num_foos = 0;

%%
foo {

num_bytes += 3;
num_foos += 1;

}
. { num_bytes += 1; }
\n { num_lines += 1; num_bytes += 1; }
%%
int main(void) {

yylex();
printf("%d bytes, %d lines, %d foos\n",

num_bytes, num_lines, num_foos);
}

three sections

first — declarations for later
C code in output file

patterns, code to run on match
as parser: return “token” here

extra code to include

66

flex example
int num_bytes = 0, num_lines = 0;
int num_foos = 0;

%%
foo {

num_bytes += 3;
num_foos += 1;

}
. { num_bytes += 1; }
\n { num_lines += 1; num_bytes += 1; }
%%
int main(void) {

yylex();
printf("%d bytes, %d lines, %d foos\n",

num_bytes, num_lines, num_foos);
}

three sections

first — declarations for later
C code in output file

patterns, code to run on match
as parser: return “token” here

extra code to include

66

flex example
int num_bytes = 0, num_lines = 0;
int num_foos = 0;

%%
foo {

num_bytes += 3;
num_foos += 1;

}
. { num_bytes += 1; }
\n { num_lines += 1; num_bytes += 1; }
%%
int main(void) {

yylex();
printf("%d bytes, %d lines, %d foos\n",

num_bytes, num_lines, num_foos);
}

three sectionsfirst — declarations for later
C code in output file

patterns, code to run on match
as parser: return “token” here

extra code to include

66

flex example
int num_bytes = 0, num_lines = 0;
int num_foos = 0;

%%
foo {

num_bytes += 3;
num_foos += 1;

}
. { num_bytes += 1; }
\n { num_lines += 1; num_bytes += 1; }
%%
int main(void) {

yylex();
printf("%d bytes, %d lines, %d foos\n",

num_bytes, num_lines, num_foos);
}

three sectionsfirst — declarations for later
C code in output file

patterns, code to run on match
as parser: return “token” here

extra code to include

66

flex: matched text

%%
[aA][a−z]* {

printf("found a−word '%s'\n",
yytext);

}
(.|\n) {} /* default rule: would output text */
%%
int main(void) {

yylex();
}

yytext — text of matched thing

67

flex: matched text

%%
[aA][a−z]* {

printf("found a−word '%s'\n",
yytext);

}
(.|\n) {} /* default rule: would output text */
%%
int main(void) {

yylex();
}

yytext — text of matched thing

67

flex: definitions
A [aA]
LOWERS [a−z]
ANY (.|\n)
%%
{A}{LOWERS}* {

printf("found a−word '%s'\n",
yytext);

}
{ANY} {} /* default rule would

output text */
%%
int main(void) {

yylex();
}

definitions of common patterns
included later

68

flex: definitions
A [aA]
LOWERS [a−z]
ANY (.|\n)
%%
{A}{LOWERS}* {

printf("found a−word '%s'\n",
yytext);

}
{ANY} {} /* default rule would

output text */
%%
int main(void) {

yylex();
}

definitions of common patterns
included later

68

flex: state machines
foo {...}
. {...}
\n {...}

start f fo foo

.
\n

f o o

other\n

(back 1)

(ba
ck

2)

69

flex: state machines
foo {...}
. {...}
\n {...}

start f fo foo

.
\n

f o o

other\n (back 1)

(ba
ck

2)
69

state machine matching
abfoofoabffoo

start f fo foo

.
\n

f o o

other\n (back 1)

(ba
ck

2)
70

state machine matching
abfoofoabffoo

start f fo foo

.
\n

f o o

other\n (back 1)

(ba
ck

2)
70

state machine matching
abfoofoabffoo

start f fo foo

.
\n

f o o

other\n (back 1)

(ba
ck

2)
70

state machine matching
abfoofoabffoo

start f fo foo

.
\n

f o o

other\n (back 1)

(ba
ck

2)
70

state machine matching
abfoofoabffoo

start f fo foo

.
\n

f o o

other\n (back 1)

(ba
ck

2)
70

state machine matching
abfoofoabffoo

start f fo foo

.
\n

f o o

other\n (back 1)

(ba
ck

2)
70

state machine matching
abfoofoabffoo

start f fo foo

.
\n

f o o

other\n (back 1)

(ba
ck

2)
70

state machine matching
abfoofoabffoo

start f fo foo

.
\n

f o o

other\n (back 1)

(ba
ck

2)
70

flex states (1)
%x str
%%
\" { BEGIN(str); }
<str>\" { BEGIN(INITIAL); }
<str>foo { printf("foo in string\n"); }
foo { printf("foo out of string\n"); }
<INITIAL,str>(.|\n) {}
%%
int main(void) {

yylex();
}

declare “state” to track
which state determines what patterns are active

71

flex states (1)
%x str
%%
\" { BEGIN(str); }
<str>\" { BEGIN(INITIAL); }
<str>foo { printf("foo in string\n"); }
foo { printf("foo out of string\n"); }
<INITIAL,str>(.|\n) {}
%%
int main(void) {

yylex();
}

declare “state” to track
which state determines what patterns are active

71

flex states (1)
%x str
%%
\" { BEGIN(str); }
<str>\" { BEGIN(INITIAL); }
<str>foo { printf("foo in string\n"); }
foo { printf("foo out of string\n"); }
<INITIAL,str>(.|\n) {}
%%
int main(void) {

yylex();
}

declare “state” to track
which state determines what patterns are active
“x” — exclusive

71

flex states (2)
%s afterFoo
%%
<afterFoo>foo { printf("later foo\n"); }
foo {

printf("first foo\n");
BEGIN(afterfoo);

}
(.|\n) {}
%%
int main(void) {

yylex();
}

declare non-exclusive state

72

flex states (2)
%s afterFoo
%%
<afterFoo>foo { printf("later foo\n"); }
foo {

printf("first foo\n");
BEGIN(afterfoo);

}
(.|\n) {}
%%
int main(void) {

yylex();
}

declare non-exclusive state

72

finding packers
easiest way to decrypt self-decrypting code — run it!

solution: virtual machine in antivirus software

makes antivirtualization/emulation more important

73

finding packers with VM
run program in VM for a while

how long?

then scan memory for known patterns

or detect jumping to written memory

74

rootkits
rootkit — priviliged malware that hides itself

same ideas as these anti-anti-virus techniques

75

chkrootkit
chkrootkit — Unix program that looks for rootkit signs

how?
tell-tale strings in system programs
overwritten entries in system login records
known suspicious filenames

76

after scanning — disinfection
antivirus software wants to repair

requires specialized scanning
no room for errors
need to identify all
need to find relocated bits of code

77

	flex state machines
	backtracking problems?
	flex: Vienna example
	why the flexibility?
	exercise: what's easy/hard for patterns
	making scanners more efficient
	fixed strings
	selective scanning

	example: ClamAV
	new malware detection?
	heuristics based on executable/library regularity
	behavior based detection
	instrumenting programs

	AI heuristic case study: DREBIN
	machine learning and adversaries

	anti-anti-virus
	other obfuscation
	why obfuscation, generally

	Tigress and its transformations
	obfuscation utility?
	packers
	hashed data
	encrypted data
	encrypted data and signatures
	encrypted code

	backup slides
	regular expressions
	flex example
	flex state machines
	heuristics to find packers
	rootkits and chkrootkit
	aside: disinfection

