
anti-anti-virus 2

1

last time (1)
constructing patterns to match machine code

making pattern matching more efficient
fast scanning for fixed ‘anchor’ strings
head-and-tail scanning — why viruses hide entry points

behavior-based detection
“hooking” OS calls
anomalous executable file layout
apparently looking up library functions by name
…

adversarial context — why not standard ML

2

last time (2)
simple obfuscation transformations

hide functions by split/merging functions
hide control flow with switch xform
general pattern: look to obscure high-level analysis

“encrypted” data
X ?= Y → hash(X) ?= hash(Y)
hiding strings from pattern matching with “encryption”
(not really encryption — key is not secret)

3

encrypted(?) viruses
char encrypted[] = "\x12\x45...";
char key[] = "...";
virusEntryPoint() {

decrypt(encrypted, key);
goto encrypted;

}
decrypt(char *buffer, char *key) {...}

choose a new key each time!

not good encryption — key is there

sometimes mixed with compression

4

example: Cascade decrypter
lea encrypted_code, %si

decrypt:
mov $0x682, %sp // length of body
xor %si, (%si)
xor %sp, (%si)
inc %si
dec %sp
jnz decrypt

encrypted_code:
...

Szor Listing 7.1 5

example: Cascade decrypter
lea encrypted_code, %si

decrypt:
mov $0x682, %sp // length of body
xor %si, (%si)
xor %sp, (%si)
inc %si
dec %sp
jnz decrypt

encrypted_code:
...

Szor Listing 7.1 5

example: Cascade decrypter
lea encrypted_code, %si

decrypt:
mov $0x682, %sp // length of body
xor %si, (%si)
xor %sp, (%si)
inc %si
dec %sp
jnz decrypt

encrypted_code:
...

Szor Listing 7.1 5

exercise: some ideas for handling decrypters?
thinking of some anti-decrypter strategies for Cascade
which of the following strategies most practical? least practical?

A. matching patterns of decrypted malware code in memory while
executables are running
B. marking executables with too much random-looking data in them
C. matching the decrypter in a normal signature scan
D. trying every possible ‘key’ for decryption on every executable and
matching decrypted malware code against it
E. detecting sequence of file operations Cascade makes instead of
its code

6

decrypter
more variations:

nested decrypters, different orders, etc.

still problem: decrypter code is signature

…but harder to distinguish different malware

“disinfection” — want to precisely identify malware

7

decrypter
more variations:

nested decrypters, different orders, etc.

still problem: decrypter code is signature

…but harder to distinguish different malware

“disinfection” — want to precisely identify malware

7

playing mouse
encrypted code? probably still have fast signature from decrypter

goal: make signatures not work or really slow

8

playing mouse
encrypted code? probably still have fast signature from decrypter

goal: make signatures not work or really slow

9

oligomorphic virus/worm
code ‘decrypter’

‘encrypted’ code

decrypter
generator

int KEY = RAND();
write(MOV_OPCODE, ...);
...
for (int i = RAND(); i > 0; −−i)

write(NOP_OPCODE);
...
write(XOR_OPCODE, KEY, ...);
...

10

producing changing malware
‘encrypted’ code can generate new decrypter

not just nop:

switch between synonym instructions
add $4, ..., sub $-4, ...

swap registers

random instructions that manipulate ‘unused’ registers

…

template to generate a bunch of decrypters
Szor calls such malware “oligomorphic”

11

example: W95/Memorial
mov $0x405000, %ebp
mov $0x550, %ecx
lea 0x2e(%ebp), %esi
add 0x29(%ebp), %ecx
mov 0x2d(%ebp), %al

decrypt:
nop
nop
xor %al, (%esi)
inc %esi
nop
inc %al
dec %ecx
jnz decrypt
...

mov $0x550, %ecx
mov $0x13bc000, %ebp
lea 0x2e(%ebp), %esi
add 0x29(%ebp), %ecx
mov 0x2d(%ebp), %al

decrypt:
nop
nop
xor %al, (%esi)
inc %esi
nop
inc %al
loop decrypt
...
...

Szor, Listsings 7.3 and 7.4

change instruction order; location of decryption key/etc.variable choices of loop instructionsSzor: “96 different decryptor patterns”

12

example: W95/Memorial
mov $0x405000, %ebp
mov $0x550, %ecx
lea 0x2e(%ebp), %esi
add 0x29(%ebp), %ecx
mov 0x2d(%ebp), %al

decrypt:
nop
nop
xor %al, (%esi)
inc %esi
nop
inc %al
dec %ecx
jnz decrypt
...

mov $0x550, %ecx
mov $0x13bc000, %ebp
lea 0x2e(%ebp), %esi
add 0x29(%ebp), %ecx
mov 0x2d(%ebp), %al

decrypt:
nop
nop
xor %al, (%esi)
inc %esi
nop
inc %al
loop decrypt
...
...

Szor, Listsings 7.3 and 7.4

change instruction order; location of decryption key/etc.

variable choices of loop instructionsSzor: “96 different decryptor patterns”

12

example: W95/Memorial
mov $0x405000, %ebp
mov $0x550, %ecx
lea 0x2e(%ebp), %esi
add 0x29(%ebp), %ecx
mov 0x2d(%ebp), %al

decrypt:
nop
nop
xor %al, (%esi)
inc %esi
nop
inc %al
dec %ecx
jnz decrypt
...

mov $0x550, %ecx
mov $0x13bc000, %ebp
lea 0x2e(%ebp), %esi
add 0x29(%ebp), %ecx
mov 0x2d(%ebp), %al

decrypt:
nop
nop
xor %al, (%esi)
inc %esi
nop
inc %al
loop decrypt
...
...

Szor, Listsings 7.3 and 7.4

change instruction order; location of decryption key/etc.

variable choices of loop instructions

Szor: “96 different decryptor patterns”

12

example: W95/Memorial
mov $0x405000, %ebp
mov $0x550, %ecx
lea 0x2e(%ebp), %esi
add 0x29(%ebp), %ecx
mov 0x2d(%ebp), %al

decrypt:
nop
nop
xor %al, (%esi)
inc %esi
nop
inc %al
dec %ecx
jnz decrypt
...

mov $0x550, %ecx
mov $0x13bc000, %ebp
lea 0x2e(%ebp), %esi
add 0x29(%ebp), %ecx
mov 0x2d(%ebp), %al

decrypt:
nop
nop
xor %al, (%esi)
inc %esi
nop
inc %al
loop decrypt
...
...

Szor, Listsings 7.3 and 7.4

change instruction order; location of decryption key/etc.variable choices of loop instructions

Szor: “96 different decryptor patterns”

12

more advanced changes?
Szor calls W95/Memorial oligomoprhic

“encrypted” code
plus small changes to decrypter

What about doing more changes to decrypter?
many, many variations

Szor calls doing this polymorphic

polymorphic example: 1260

13

example: 1260 (virus)
inc %si
mov $0x0e9b, %ax
clc
mov $0x12a, %di
nop
mov $0x571, %cx

decrypt:
xor %cx, (%di)
sub %dx, %bx
sub %cx, %bx
sub %ax, %bx
nop
xor %cx, %dx
xor %ax, (%di)
...

mov $0x0a43, %ax
nop
mov $0x15a, %di
sub %dx, %bx
sub %cx, %bx
mov $0x571, %cx
clc

decrypt:
xor %cx, (%di)
xor %cx, %dx
sub %cx, %bx
nop
xor %cx, %bx
xor %ax, (%di)
...

adapted from Szor, Listing 7.5

do-nothing instructionsdifferent decryption “key”

14

example: 1260 (virus)
inc %si
mov $0x0e9b, %ax
clc
mov $0x12a, %di
nop
mov $0x571, %cx

decrypt:
xor %cx, (%di)
sub %dx, %bx
sub %cx, %bx
sub %ax, %bx
nop
xor %cx, %dx
xor %ax, (%di)
...

mov $0x0a43, %ax
nop
mov $0x15a, %di
sub %dx, %bx
sub %cx, %bx
mov $0x571, %cx
clc

decrypt:
xor %cx, (%di)
xor %cx, %dx
sub %cx, %bx
nop
xor %cx, %bx
xor %ax, (%di)
...

adapted from Szor, Listing 7.5

do-nothing instructionsdifferent decryption “key”

14

example: 1260 (virus)
inc %si
mov $0x0e9b, %ax
clc
mov $0x12a, %di
nop
mov $0x571, %cx

decrypt:
xor %cx, (%di)
sub %dx, %bx
sub %cx, %bx
sub %ax, %bx
nop
xor %cx, %dx
xor %ax, (%di)
...

mov $0x0a43, %ax
nop
mov $0x15a, %di
sub %dx, %bx
sub %cx, %bx
mov $0x571, %cx
clc

decrypt:
xor %cx, (%di)
xor %cx, %dx
sub %cx, %bx
nop
xor %cx, %bx
xor %ax, (%di)
...

adapted from Szor, Listing 7.5

do-nothing instructions

different decryption “key”

14

example: 1260 (virus)
inc %si
mov $0x0e9b, %ax
clc
mov $0x12a, %di
nop
mov $0x571, %cx

decrypt:
xor %cx, (%di)
sub %dx, %bx
sub %cx, %bx
sub %ax, %bx
nop
xor %cx, %dx
xor %ax, (%di)
...

mov $0x0a43, %ax
nop
mov $0x15a, %di
sub %dx, %bx
sub %cx, %bx
mov $0x571, %cx
clc

decrypt:
xor %cx, (%di)
xor %cx, %dx
sub %cx, %bx
nop
xor %cx, %bx
xor %ax, (%di)
...

adapted from Szor, Listing 7.5

do-nothing instructionsdifferent decryption “key”

14

example: 1260 (virus)
inc %si
mov $0x0e9b, %ax
clc
mov $0x12a, %di
nop
mov $0x571, %cx

decrypt:
xor %cx, (%di)
sub %dx, %bx
sub %cx, %bx
sub %ax, %bx
nop
xor %cx, %dx
xor %ax, (%di)
...

mov $0x0a43, %ax
nop
mov $0x15a, %di
sub %dx, %bx
sub %cx, %bx
mov $0x571, %cx
clc

decrypt:
xor %cx, (%di)
xor %cx, %dx
sub %cx, %bx
nop
xor %cx, %bx
xor %ax, (%di)
...

adapted from Szor, Listing 7.5

do-nothing instructions

different decryption “key”

14

‘mutation engine’
CopyDecrypter(original_code, new_code) {

for (each instruction in original_code) {
new_code += RandomNumberOfNops();
new_code += PossiblyChooseVariant(instruction)

}
}

15

terminology: packers
programs that decode and run code at runtime called packers

packages exist to do this for non-malware reasons

example motivation: compression

16

handling packers
easiest way to decrypt self-decrypting code — run it!

solution: virtual machine/emulator/debugger in antivirus software

17

handling packers with
debugger/emulator/VM
run program in debugger/emulator/VM for a while

one heuristic: until it jumps to written data

example implementation: unipacker
(https://github.com/unipacker/unipacker)

then scan memory for decrypted machine code

or obtain trace of instructions run

18

unneeded steps
understanding the “encryption” algorithm

more complex encryption algorithm won’t help

extracting the key and encrypted data
making key less obvious won’t help

19

using instruction traces (1)
instruction traces are huge…
0x10: add %rax, %rbx
0x12: mov 0x140(%rbx), %rsi
0x14: mov %rsi, 0x150(%rbx)
0x16: jle 0x10
0x10: add %rax, %rbx /* duplicate of before */
0x12: mov 0x140(%rbx), %rsi
0x14: mov %rsi, 0x150(%rbx)
0x16: jle 0x10
0x18: mov $10, %rcx
...

but can simplify: e.g. remove duplicates (loops)
20

using instruction traces (2)
elegant way to analyze ‘tricky’ techniques

self-modifying code:
0x10: add %rax, %rbx
0x12: mov 0x140, %rax
0x14: mov %rsp, 0x0C

/* modifies code we will execute */
0x16: jle 0x10
0x10: sub %rcx, %rdx
0x12: ...

multiple layers of ‘decrypters’/code generation

…
21

stopping packers
it’s unusual to jump to code you wrote

modern OSs: memory is executable or writable — not both

22

stopping packers
it’s unusual to jump to code you wrote

modern OSs: memory is executable or writable — not both

22

diversion: DEP/W^X
memory executable or writeable — but not both

exists for exploits (later in course), not packers

requires hardware support to be fast (early 2000s+)

various names for this feature:
Data Execution Prevention (DEP) (Windows)
W^X (“write XOR execute”)
NX/XD/XN bit (underlying hardware support)

(No Execute/eXecute Disable/eXecute Never)

special system call to switch modes

23

unusual, but…
binary translation

convert machine code to new machine code at runtime

Java virtual machine, JavaScript implementations
“just-in-time” compilers

dynamic linkers
load new code from a file — same as writing code?

those packed commercial programs

programs need to explicitly ask for write+exec

24

exercise: generic detection limits?
consider strategy of running executable in virtual machine,
waiting until it jumps to code it wrote out
then matching patterns against code it’s about to run

which of these would cause problems with this technique?

which are easiest/hardest to workaround?

A. code decrypter and malicious code run at program exit, not startup
B. code decrypter and malicious code run when user clicks button in
program, not at startup
C. code decrypter allocates random address to write decrypted code to
D. code decrypter exits (without running malicious code) if processor
seems too slow
E. code decrypter decrypts another code decrypter

25

changing bodies
“decrypting” a malware body gives body for “signature”

“just” need to run decrypter

how about avoiding static signatures entirely
despite being self-replicating

called metamorphic
versus polymorphic — only change “decrypter”

26

example: changing bodies
pop %edx
mov $0x4h, %edi
mov %ebp, %esi
mov $0xC, %eax
add $0x88, %edx
mov (%edx), %ebx
mov %ebx, 0x1118(%esi,%eax,4)

pop %eax
mov $0x4h, %ebx
mov %ebp, %esi
mov $0xC, %edi
add $0x88, %eax
mov (%eax), %esi
mov %esi, 0x1118(%esi,%eax,4)

code above: after decryption

every instruction changes

still has good signatures
with alternatives for each possible register selection

but harder to write/slower to match

27

case study: Evol
via Lakhatia et al, “Are metamorphic viruses really invincible?”,
Virus Bulletin, Jan 2005.

“mutation engine”
run as part of propagating the virus

disassemble
instr.

lengths transform relocate

code

code

28

case study: Evol
via Lakhatia et al, “Are metamorphic viruses really invincible?”,
Virus Bulletin, Jan 2005.

“mutation engine”
run as part of propagating the virus

disassemble
instr.

lengths transform relocate

code

code

29

Evol instruction lengths
sounds really complicated?

virus only handles instructions it has:
about 61 opcodes, 32 of them identified by first four bits

e.g. opcode 0x7x – conditional jump

no prefixes, no floating point

only %reg or $constant or offset(%reg)

30

case study: Evol
via Lakhatia et al, “Are metamorphic viruses really invincible?”,
Virus Bulletin, Jan 2005.

“mutation engine”
run as part of propagating the virus

disassemble
instr.

lengths transform relocate

code

code

31

Evol transformations
some stuff left alone

static or random one of N transformations

example:

mov %eax, 8(%ebp)

push %ecx
mov %ebp, %ecx
add $0x12, %ecx
mov %eax, −0xa(%ecx)
pop %ecx

uses more stack space — save temporary
code gets bigger each time

Lakhotia et al., “Are metamorphic viruses really invincible?”, Virus Bulletin, Jan 2005 32

case study: Evol
via Lakhatia et al, “Are metamorphic viruses really invincible?”,
Virus Bulletin, Jan 2005.

“mutation engine”
run as part of propagating the virus

disassemble
instr.

lengths transform relocate

code

code

33

mutation with relocation
problem: mutations mess up jumps/calls

change were targets of jumps/calls are

table mapping old to new locations
list of number of bytes generated by each transformation

list of locations references in original
record relative offset in jump
record absolute offset in original

34

relocation example
mov ...
mov ...

decrypt:
xor %rax, (%rbx)
inc %rbx
dec %rcx
jne decrypt

orig. len new len instr
5 10 mov1
2 3 mov2
2 7 xor1
1 1 inc1
1 5 dec1
3 3 jne1

address loc orig. target new target

10+3+7+1+5+1
(jne1+1) xor1 (5 + 2) xor1 (10 + 3)

35

mutation engines
tools for writing polymorphic viruses

best: no constant bytes, no “no-op” instructions

tedious work to build state-machine-based detector
((almost) a regular expression to match it)
apparently done manually
automatable?

(but probably can…)

pattern: used until reliably detected

36

fancier mutation
Mutate(original_machine_code, new_machine_code) {

for (instruction in original_code) {
new_machine_code += ChooseNewCodeFor(instruction)

}
FixupJumpsIn(new_machine_code);

}

can do mutation on generic machine code

“just” need full disassembler

identify both instruction lengths and addresses

hope machine code not written to rely on machine code sizes, etc.

hope to identify tables of function pointers, etc.

37

fancier mutation
also an infection technique

no “cavity” needed — create one

obviously tricky to implement
need to fix all executable headers
what if you misparse assembly?
what if you miss a function pointer?

example: Simile virus

38

antivirtualization
a lot of malware tries to behave different in a VM

why?
used by antivirus software to handle packers
used to analyze malware
…

39

antivirtualization techniques
query virtual devices

solution: mirror devices of some real machine

time operations that are slower in VM/emulation

solution: virtual clock

use operations not supported by VM

solution: support everything

40

antivirtualization techniques
query virtual devices

solution: mirror devices of some real machine

time operations that are slower in VM/emulation

solution: virtual clock

use operations not supported by VM

solution: support everything

41

virtual devices
VirtualBox device drivers?

VMware-brand ethernet device?

…

42

antivirtualization techniques
query virtual devices

solution: mirror devices of some real machine

time operations that are slower in VM/emulation

solution: virtual clock

use operations not supported by VM

solution: support everything

43

antivirtualization techniques
query virtual devices

solution: mirror devices of some real machine

time operations that are slower in VM/emulation

solution: virtual clock

use operations not supported by VM

solution: support everything

43

slower operations
not-“native” VM:

everything is really slow

otherwise — trigger “callbacks” to VM implementation:
system calls?
allocating and accessing memory?

…and hope it’s reliably slow enough

44

antivirtualization techniques
query virtual devices

solution: mirror devices of some real machine

time operations that are slower in VM/emulation
solution: virtual clock

use operations not supported by VM

solution: support everything

45

antivirtualization techniques
query virtual devices

solution: mirror devices of some real machine

time operations that are slower in VM/emulation
solution: virtual clock

use operations not supported by VM

solution: support everything

45

operations not supported
missing instructions kinds?

FPU instructions
MMX/SSE instructions
undocumented (!) CPU instructions

not handling OS features?
setting up special handlers for segfault
multithreading
system calls that make callbacks
…

antivirus not running system VM to do decryption
needs to emulate lots of the OS itself

46

attacking emulation patience
looking for unpacked virus in VM

…or other malicious activity

when are you done looking?

malware solution: take too long
not hard if emulator uses “slow” implementation

malware solution: don’t infect consistently

malware solution: use more memory, etc.

47

attacking emulation patience
looking for unpacked virus in VM

…or other malicious activity

when are you done looking?

malware solution: take too long
not hard if emulator uses “slow” implementation

malware solution: don’t infect consistently

malware solution: use more memory, etc.

48

attacking emulation patience
looking for unpacked virus in VM

…or other malicious activity

when are you done looking?

malware solution: take too long
not hard if emulator uses “slow” implementation

malware solution: don’t infect consistently

malware solution: use more memory, etc.

49

probability

if (randomNumber() == 4) {
unpackAndRunEvilCode();

}

antivirus emulator:
randomNumber() == 3
looks clean!

real execution #1:
randomNumber() == 2
no infection!

real execution #N :
randomNumber() == 4
infect!

50

attacking emulation patience
looking for unpacked virus in VM

…or other malicious activity

when are you done looking?

malware solution: take too long
not hard if emulator uses “slow” implementation

malware solution: don’t infect consistently

malware solution: use more memory, etc.

51

on goats
analysis and maybe detection uses goat files

“sacrificial goat” to get changed by malware

heuristics can avoid simple goat files, e.g.:
don’t infect small programs
don’t infect huge programs
don’t infect programs with huge amounts of nops
…

52

backup slides

53

encrypted viruses: no signature?
decrypt is a pretty good signature

still need to a way to disguise that code

how about analysis? how does one analyze this?

54

encrypted virus: getting the code?
“encrypted” body

just running objdump not enough…

instead — run debugger, set breakpoint after “decryption”

dump decrypted memory afterwords

observation: can even automate this:
run program in emulator
have emulator look for jump to previously written code
(or jump after certain point, etc.)
example implementation: unipacker
(https://github.com/unipacker/unipacker)

55

	encrypted code
	case study: Cascade
	exercise: handling decrypter
	decrypter variations

	metamorphic, etc. idea
	oligomorphic viruses
	case study: W95/Memorial

	polymorphic viruses
	case study: 1260
	more generic mutation

	terminology: packers
	anti-packer strategies
	generic anti-packers
	packers and W xor X/DEP
	exercise: limitations of generic anti-packer

	metamorphic viruses
	example: changing bodies
	case study: Evol
	handling relocation with mutation
	fancy mutation engines

	anti-virtualization strategies
	basic issues
	automated analysis: lack of patience?

	goats and anti-goat
	backup slides
	signatures and extracting encryptd code?

