
antiantivirus / buffer overflows

1

Changelog
4 Mar 2021: add stack layout exercise answers; metamorphic
section on last time slides

1

last time (1)
“encrypted”/packed code pattern

“decrypter” unpacks code + jumps to it

oligomorphic malware
hide decrypter from pattern matching with multiple variants
generally: template with few blanks

polymorphic malware
generate/mutate decrypter in more generic way
“decrypted” code still unchanged

2

last time (2)
handling packers in antimalware software

generic algorithm: run in emulator/VM, then
examine memory for unpacked code at appropriate time and/or
record list of instructions executed

metamorphic malware
apply “mutation engine” to change entire machine code
avoids leaving signatures in memory after “decrypter” runs

antivirtualization/emulation
query machine devices
unimplemented instructions, features

3

logistical note
LOCATION in LEX: offset in file, please

4

diversion: debuggers
we’ll care about two pieces of functionality:

breakpoints
debugger gets control when certain code is reached

single-step
debugger gets control after a single instruction runs

5

diversion: debuggers
we’ll care about two pieces of functionality:

breakpoints
debugger gets control when certain code is reached

single-step
debugger gets control after a single instruction runs

6

implementing breakpoints
idea: change
movq %rax, %rdx
addq %rbx, %rdx // BREAKPOINT HERE
subq 0(%rsp), %r8
...

into
movq %rax, %rdx
jmp debugger_code
subq 0(%rsp), %r8
...

problem: jmp might be bigger than addq?

7

implementing breakpoints
idea: change
movq %rax, %rdx
addq %rbx, %rdx // BREAKPOINT HERE
subq 0(%rsp), %r8
...

into
movq %rax, %rdx
jmp debugger_code
subq 0(%rsp), %r8
...

problem: jmp might be bigger than addq?

7

int 3
x86 breakpoint instruction: int 3

one byte instruction encoding: CC

debugger modifies code to insert breakpoint
has copy of original somewhere

invokes handler setup by OS
debugger can ask OS to be run by handler
or changes pointer to handler directly on old OSes

8

int 3 handler
kind of exception handler

exception handler = way for CPU to run OS code
(despite no actual normal jmp/etc. to OS code)

x86 CPU saves registers, PC for debugger

x86 CPU has easy to way to resume debugged code from handler

9

detecting int 3 directly (1)
checksum running code
mycode:

...
/* RBX = current sum; RAX = pointer to code */

movq $0, %rbx // Intel: mov RBX, 0
movq $mycode, %rax // Intel: mov RAX, OFFSET MYCODE

loop:
addq (%rax), %rbx // Intel: add RBX, [RAX]
addq $8, %rax // Intel: add 8, RAX

/* current sum += *code_ptr; code_ptr += ... */
cmpq $endcode, %rax
jl loop
cmpq %rbx, $EXPECTED_VALUE
jne debugger_found // if sum wrong, panic
...

endcode:
10

detecting int 3 directly (2)
query the “handler” for int 3

old OSs only; today: cannot set directly

modern OSs: ask if there’s a debugger attached

…or try to attach as debugger yourself
doesn’t work — debugger present, probably
does work — broke any debugger?

// Windows API function!
if (IsDebuggerPresent()) { ... }

11

modern debuggers
int 3 is the oldest x86 debugging mechanism

modern x86: 4 “breakpoint” registers (DR0–DR3)
contain address of program instructions
need more than 4? sorry

probably fall back to int 3 technique

processor triggers exception when address reached
4 extra registers + comparators in CPU?

flag to invoke debugger if debugging registers used
enables nested debugging

12

diversion: debuggers
we’ll care about two pieces of functionality:

breakpoints
debugger gets control when certain code is reached

single-step
debugger gets control after a single instruction runs

13

anti-single-step
x86: single-stepping implemented with processor flag

causes OS to run after every instruction

can read flag normally with common debugger configurations
more modern systems may support hiding better

could also check timing

could also try to replace OS’s single-step handler

14

emulation based obfuscation
so far: always producing machine code and running it

analyzing machine code with virtual machine, debugger, etc.

alternate idea: invent a new instruction set

convert program to that instruction set

include interpreter for that instruction set

15

example: Tigress Virtualize transform (1)
input:
int example(int x) {

if (x > 10) {
printf("Yes!\n");

}
}

Tigress generates instruction set for stack-based machine
uses little stack instad of registers for most instructions
same design used by, e.g., Java VM

instructions can pop+push from stack for temporaries

16

example: Tigress Virtualize transform (2)
instruction set for example

call OPERAND=funcId with arguments LOCALS[1]
pop t1, pop t2, push t1>t2
push OPERAND
push table[OPERAND]

different variants for int, string, …
pop t1, LOCALS[OPERAND] = t1
pop t1, if (t1) goto OPERAND
return

customized for this function

each instruction has opcode, variable length (if operands)

17

example: Tigress Virtualize transform (3)
int example(int x) {

if (x > 10) {
printf("Yes!\n");

}
}

each line below one “instruction”
(actually encoded as part of array of bytes)
push OPERAND=10
push table[OPERAND=…] (argument x)
pop t1 pop t2 push t1>t2
pop t1, if (t1) goto OPERAND=OUT
push table[OPERAND=…] (string "Yes!")
pop t1, LOCALS[OPERAND=1] = t1
call OPERAND=…(printf) with arguments LOCAL1
OUT: …

18

example: Tigress emulator
_1_example_$sp[0] = _1_example_$stack[0];
_1_example_$pc[0] = _1_example_$array[0];
while (1) {

switch (*(_1_example_$pc[0])) {
...
}

}

pc variable representing emulated stack
switch statement based on opcode

sp variable representing emulated stack

19

effectiveness of this transformation?
huge performance impact

can do analysis on new instruction set
how much more difficult than working with original machine code?

instruction traces still helpful
about as easy to get record of everything done

20

attacking antivirus (1)
one common virus idea: interfere directly with antivirus

just modify antivirus software databases, etc.

preserve file checksums
so some AV software thinks file is unchanged
(doesn’t work with cryptographic hashes, but…)

register own handlers to filter antivirus/sysadmin calls

21

attacking antivirus (1)
one common virus idea: interfere directly with antivirus

just modify antivirus software databases, etc.

preserve file checksums
so some AV software thinks file is unchanged
(doesn’t work with cryptographic hashes, but…)

register own handlers to filter antivirus/sysadmin calls

21

stealth
/* in virus: */
int OpenFile(const char *filename, ...) {

if (strcmp(filename, "infected.exe") == 0) {
return RealOpenFile("clean.exe", ...);

} else {
return RealOpenFile(filename, ...);

}
}

22

other stealth ideas
override “get file modification time” (infected files)

override “get files in directory” (infected files)

override “read file” (infected files)
but not “execute file”

override “get running processes”

23

rootkits
rootkit — priviliged malware that hides itself

same ideas as these anti-anti-virus techniques

24

chkrootkit
chkrootkit — Unix program that looks for rootkit signs

tell-tale strings in system programs
e.g. file, process, network connection listing programs changed

disagreement between process list, other ways of detecting processes

disagreement between file lists, other ways of counting files

overwritten entries in system login records

known suspicious filenames
hidden exes in temporary, data directories, etc.

25

26

vulnerabilities
for viruses, worms

for trojans + PUP that do more than is supposed to do be allowed
e.g. getting location information without “permission”

software vulnerability

unintended program behavior
that can be used by an adversary

27

vulnerability example
website able to install software without prompting

not intended behavior of web browser

28

software vulnerability classes (1)
memory safety bugs

problems with pointers
big topic in this course

“injection” bugs — type confusion
commands/SQL within name, label, etc.

integer overflow/underflow

…

29

software vulnerability classes (2)
not checking inputs/permissions

http://webserver.com/../../../../file-I-shouldn'
t-get.txt

almost any ’s “undefined behavior” in C/C++

synchronization bugs: time-to-check to time-of-use

… more?

30

http://webserver.com/../../../../file-I-shouldn't-get.txt
http://webserver.com/../../../../file-I-shouldn't-get.txt

vulnerability versus exploit
exploit — something that uses a vulnerability to do something

proof-of-concept — something = demonstration the exploit is there
example: open a calculator program

31

typical buffer overflow pattern
cause program to write past the end of a buffer

that somehow causes different code to run

(usually code the attacker wrote)

32

why buffer overflows?
for a long time, most common vulnerability

common results in arbitrary code execution

related to other memory-management vulnerabilities
which usually also result in arbitrary code execution

33

network worms and overflows
worms that connect to vulnerable servers:

Morris worm included some buffer overflow exploits
Morris worm: first self-replicating malware
in mail servers, user info servers

2001: Code Red worm that spread to web servers (running
Microsoft IIS)

34

overflows without servers
bugs dealing with corrupt files:

Adobe Flash (web browser plugin)

PDF readers

web browser JavaScript engines

image viewers

movie viewers

decompression programs

…
35

simpler overflow
struct QuizQuestion questions[NUM_QUESTIONS];
int giveQuiz() {

int score = 0;
char buffer[100];
for (int i = 0; i < NUM_QUESTIONS; ++i) {

gets(buffer);
if (checkAnswer(buffer, &questions[i])) {

score += 1;
}

}
return score;

}

36

simpler overflow
struct QuizQuestion questions[NUM_QUESTIONS];
int giveQuiz() {

int score = 0;
char buffer[100];
for (int i = 0; i < NUM_QUESTIONS; ++i) {

gets(buffer);
if (checkAnswer(buffer, &questions[i])) {

score += 1;
}

}
return score;

}

36

simpler overflow: stack

in
cr

ea
sin

g
ad

dr
es

se
s

highest address (stack started here)

lowest address (stack grows here)

return address for giveQuiz

score (4 bytes): 00 00 00 00

buffer (100 bytes)

return address for gets

aaaa…

…aaaa

input: 103 a’s (a = 0x61)

37

simpler overflow: stack

in
cr

ea
sin

g
ad

dr
es

se
s

highest address (stack started here)

lowest address (stack grows here)

return address for giveQuiz

score (4 bytes): 61 61 61 00

buffer (100 bytes)

return address for gets
aaaa…

…aaaa

input: 103 a’s (a = 0x61)

37

Stack Smashing
original, most common buffer overflow exploit

worked for most buffers on the stack
(“worked”? we’ll talk later)

38

Aleph1, Smashing the Stack for Fun and
Profit
“non-traditional literature”; released 1996

by Aleph1 AKA Elias Levy
.oO Phrack 49 Oo.

Volume Seven, Issue Forty-Nine

File 14 of 16

BugTraq, r00t, and Underground.Org
bring you

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Smashing The Stack For Fun And Profit
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

by Aleph One
aleph1@underground.org

39

exercise: stack layout
int GradeAssignment(FILE *in) {

int scores[10]; char buffer[16];
for (int i = 0; i < 10; ++i) {

gets(buffer);
scores[i] =

GradeAnswer(buffer, i);
}
Process(scores);

}

GradeAssignment:
pushq %rbp
pushq %rbx
xorl %ebx, %ebx
subq $72, %rsp
leaq 8(%rsp), %rbp

for_loop:
movq %rbp, %rdi
call gets
movl %ebx, %esi
movq %rbp, %rdi
call GradeAnswer
leaq 24(%rsp), %rdi
movl %eax, (%rdi,%rbx,4)
incq %rbx
cmpq $10, %rbx
jne for_loop
call Process
...

exercise: how many bytes after
buffer[0] is the first byte
of scores[0]?

40

exercise: stack layout
int GradeAssignment(FILE *in) {

int scores[10]; char buffer[16];
for (int i = 0; i < 10; ++i) {

gets(buffer);
scores[i] =

GradeAnswer(buffer, i);
}
Process(scores);

}

GradeAssignment:
pushq %rbp
pushq %rbx
xorl %ebx, %ebx
subq $72, %rsp
leaq 8(%rsp), %rbp

for_loop:
movq %rbp, %rdi
call gets
movl %ebx, %esi
movq %rbp, %rdi
call GradeAnswer
leaq 24(%rsp), %rdi
movl %eax, (%rdi,%rbx,4)
incq %rbx
cmpq $10, %rbx
jne for_loop
call Process
...

exercise: how many bytes after
buffer[0] is the first byte
of scores[0]? answer: 16

40

exercise: overflow?
int GradeAssignment(FILE *in) {

int scores[10]; char buffer[16];
for (int i = 0; i < 10; ++i) {

gets(buffer);
scores[i] =

GradeAnswer(buffer, i);
}
Process(scores);

}

GradeAssignment:
pushq %rbp
pushq %rbx
xorl %ebx, %ebx
subq $72, %rsp
leaq 8(%rsp), %rbp

for_loop:
movq %rbp, %rdi
call gets
movl %ebx, %esi
movq %rbp, %rdi
call GradeAnswer
leaq 24(%rsp), %rdi
movl %eax, (%rdi,%rbx,4)
incq %rbx
cmpq $10, %rbx
jne for_loop
call Process
...

exercise: if input into buffer is
50 copies of the character '1'
what is value of scores[0]?

41

exercise: overflow?
int GradeAssignment(FILE *in) {

int scores[10]; char buffer[16];
for (int i = 0; i < 10; ++i) {

gets(buffer);
scores[i] =

GradeAnswer(buffer, i);
}
Process(scores);

}

GradeAssignment:
pushq %rbp
pushq %rbx
xorl %ebx, %ebx
subq $72, %rsp
leaq 8(%rsp), %rbp

for_loop:
movq %rbp, %rdi
call gets
movl %ebx, %esi
movq %rbp, %rdi
call GradeAnswer
leaq 24(%rsp), %rdi
movl %eax, (%rdi,%rbx,4)
incq %rbx
cmpq $10, %rbx
jne for_loop
call Process
...

exercise: if input into buffer is
50 copies of the character '1'
what is value of scores[0]? answer: 0x31313131

41

backup slides

42

unstealthy debuggers
is a debugger installed?

unlikely on Windows, maybe ignore those machines

is a debugger process running (don’t check if it’s tracing you)

…

43

confusing debuggers
“broken” executable formats

e.g., recall ELF: segments and sections
corrupt sections — program still works
overlapping segments/sections — program still works

use the stack pointer not for the stack
stack trace?

44

recall: virus code
leal string(%rip), %edi
pushq $0x4004e0 /* address of puts */
retq

string:
.asciz "You have been infected with a virus!"

opcode for lea
ModRM byte:

32-bit displacement; %rdi
32-bit offset from instruction

opcode for push 32-bit constant
32-bit constant (extended to 64-bits)

45

recall: virus code
leal string(%rip), %edi
pushq $0x4004e0 /* address of puts */
retq

string:
.asciz "You have been infected with a virus!"

8d 3d 06 00 00 00 (leal) opcode for lea
ModRM byte:

32-bit displacement; %rdi
32-bit offset from instruction

opcode for push 32-bit constant
32-bit constant (extended to 64-bits)

45

recall: virus code
leal string(%rip), %edi
pushq $0x4004e0 /* address of puts */
retq

string:
.asciz "You have been infected with a virus!"

8d 3d 06 00 00 00 (leal)
68 e0 04 40 00 (pushq)

opcode for lea
ModRM byte:

32-bit displacement; %rdi
32-bit offset from instruction

opcode for push 32-bit constant
32-bit constant (extended to 64-bits)

45

recall: virus code
leal string(%rip), %edi
pushq $0x4004e0 /* address of puts */
retq

string:
.asciz "You have been infected with a virus!"

8d 3d 06 00 00 00 (leal)
68 e0 04 40 00 (pushq)
c3 (retq)

opcode for lea
ModRM byte:

32-bit displacement; %rdi
32-bit offset from instruction

opcode for push 32-bit constant
32-bit constant (extended to 64-bits)

45

virus code to shell-code (1)
leaq string(%rip), %rdi
pushq $0x4004e0 /* address of puts */
retq

string:
.asciz "You have been infected with a virus!"

48 8d 3d 06 00 00 00 (leaq)
68 e0 04 40 00 (pushq)
c3 (retq)

REX prefix for 64-bit
opcode for lea
ModRM byte: 32-bit displacement; %rdi
32-bit offset from instruction

leaq not leal
stack address > 0xFFFF FFFF
problem: what if we don’t know
where puts is?

46

virus code to shell-code (1)
leaq string(%rip), %rdi
pushq $0x4004e0 /* address of puts */
retq

string:
.asciz "You have been infected with a virus!"

48 8d 3d 06 00 00 00 (leaq)
68 e0 04 40 00 (pushq)
c3 (retq)

REX prefix for 64-bit
opcode for lea
ModRM byte: 32-bit displacement; %rdi
32-bit offset from instruction

leaq not leal
stack address > 0xFFFF FFFF

problem: what if we don’t know
where puts is?

46

virus code to shell-code (1)
leaq string(%rip), %rdi
pushq $0x4004e0 /* address of puts */
retq

string:
.asciz "You have been infected with a virus!"

48 8d 3d 06 00 00 00 (leaq)
68 e0 04 40 00 (pushq)
c3 (retq)

REX prefix for 64-bit
opcode for lea
ModRM byte: 32-bit displacement; %rdi
32-bit offset from instruction

leaq not leal
stack address > 0xFFFF FFFF

problem: what if we don’t know
where puts is?

46

virus code to shell-code (2)
/* Linux system call (OS request):

write(1, string, length)
*/
leaq string(%rip), %rsi
movl $1, %eax
movl $37, %edi
/* "request to OS" instruction */
syscall

string:
.asciz "You have been infected with a virus!\n"

48 8d 35 0c 00 00 00 (leaq)
b8 01 00 00 00 (movq %eax)
bf 25 00 00 00 (movq %edi)
0f 05 (syscall)

problem: after syscall — crash!

47

virus code to shell-code (2)
/* Linux system call (OS request):

write(1, string, length)
*/
leaq string(%rip), %rsi
movl $1, %eax
movl $37, %edi
/* "request to OS" instruction */
syscall

string:
.asciz "You have been infected with a virus!\n"

48 8d 35 0c 00 00 00 (leaq)
b8 01 00 00 00 (movq %eax)
bf 25 00 00 00 (movq %edi)
0f 05 (syscall)

problem: after syscall — crash!

47

virus code to shell-code (3)

/* Linux system call (OS request):
write(1, string, length)

*/
leaq string(%rip), %rsi
movl $1, %eax
movl $37, %edi
syscall
/* Linux system call:

exit_group(0)
*/
movl $231, %eax
xor %edi, %edi
syscall

string:
.asciz "You have been infected with a virus!\n"

tell OS to exit

48

virus code to shell-code (3)

/* Linux system call (OS request):
write(1, string, length)

*/
leaq string(%rip), %rsi
movl $1, %eax
movl $37, %edi
syscall
/* Linux system call:

exit_group(0)
*/
movl $231, %eax
xor %edi, %edi
syscall

string:
.asciz "You have been infected with a virus!\n"

tell OS to exit

48

diversion: debuggers
we’ll care about two pieces of functionality:

breakpoints
debugger gets control when certain code is reached

single-step
debugger gets control after a single instruction runs

49

implementing single-stepping (1)
set a breakpoint on the following instruction?
movq %rax, %rdx
addq %rbx, %rdx // ←- STOPPED HERE
subq 0(%rsp), %r8 // ←- SINGLE STEP TO HERE
subq 8(%rsp), %r8
...

transformed to
movq %rax, %rdx
addq %rbx, %rdx // ←- STOPPED HERE
int 3 // ←- SINGLE STEP TO HERE
subq 8(%rsp), %
...

then jmp to addq

but what about
jmpq *0x1234(%rax,%rbx,8) // ←- STOPPED HERE

50

implementing single-stepping (1)
set a breakpoint on the following instruction?
movq %rax, %rdx
addq %rbx, %rdx // ←- STOPPED HERE
subq 0(%rsp), %r8 // ←- SINGLE STEP TO HERE
subq 8(%rsp), %r8
...

transformed to
movq %rax, %rdx
addq %rbx, %rdx // ←- STOPPED HERE
int 3 // ←- SINGLE STEP TO HERE
subq 8(%rsp), %
...

then jmp to addq
but what about
jmpq *0x1234(%rax,%rbx,8) // ←- STOPPED HERE 50

implementing single-stepping (2)
typically hardware support for single stepping

x86:int 1 handler (second entry in table)

x86: TF flag: execute handler after every instruction

…except during handler (whew!)

51

Defeating single-stepping
try to install your own int 1 handler

(if OS allows)

try to clear TF?
would take effect on following instruction
…if debugger doesn’t reset it

52

	anti-debugging
	breaking breakpoints
	aside: modern breakpoints

	breaking single-stepping (short)

	emulation-based obfuscation
	retroviruses / direct antiantivirus
	hiding
	chkrootkit

	review: vulnerability classes
	buffer overflows, generally
	simple overflow
	stack smashing, high-level
	exercise

	backup slides
	misc debugger detection and confusion
	old virus to shellcode slides
	breaking single stepping

