pointer subterfuge / memory protection

Changelog

15 March 2021 (after lecture): add URL for “finding and exploiting
ntpd vulnerabilities” blog post; correct author name spelling

last time
integer overflow
stack canaries
information leaks

non-contiguous overwrites

format string exploits
reading the stack
%n — writing conversion specifier

pointer overwrite targets
virtual function tables for inheritence

arbitrary memory write

bunch of scenarios that lead to single arbitrary memory write
format exploits are one, but we'll find more!!

typical result: arbitrary code execution

how?

arbitrary memory write

bunch of scenarios that lead to single arbitrary memory write
format exploits are one, but we'll find more!!

typical result: arbitrary code execution
how?

overwrite existing machine code (insert jump?)
problem: usually not writable

overwrite return address directly
observation: don't care about stack canaries — skip them

overwrite other function pointer?

overwrite another data pointer — copy more?

arbitrary memory write

bunch of scenarios that lead to single arbitrary memory write
format exploits are one, but we'll find more!!

typical result: arbitrary code execution
how?

overwrite existing machine code (insert jump?)
problem: usually not writable

overwrite return address directly
observation: don't care about stack canaries — skip them

overwrite other function pointer?

overwrite another data pointer — copy more?

C++ inheritence

class InputStream {
public:
virtual int get() = 0;
// Java: abstract int get();

I
class SeekableInputStream : public InputStream {
public:
virtual void seek(int offset) = 0;
virtual int tell() = 0;
b5
class FileInputStream : public InputStream {
public:
int get();
void seek(int offset);
int tell();

}s

C++ inheritence: memory layout

InputStream

SeekablelnputStream

FilelnputStream

lvtable pointer

lvtable pointer

vtable pointer

file pointer

slot for get

slot for get

FileInputStream::get
slot for seek FileinputStream: :seek
slot for tell FileInputStream::tell

C++ implementation (pseudo-code)

struct InputStream_vtable {
int (*get) (InputStream* this);
}s5

struct InputStream {
InputStream_vtable *vtable;
s

InputStream *s = ...;
int ¢ = (s—>vtable—>get) (s);

C++ implementation (pseudo-code)

struct SeekableInputStream_vtable {
struct InputStream_vtable as_InputStream;
void (*seek) (SeekableInputStream* this, 1int offset);
int (*tell) (SeekableInputStream* this);

b

struct FileInputStream {
SeekableInputStream_vtable *vtable;
FILE *file_pointer;

b3

FileInputStream file_in = { the_FileInputStream_vtable,
InputStream *s = (InputStream*) &file_in;

}s

C4++ |mPIementatlon (Pseudo-code
SeekableInputStream_vtable the_FileInputStream_vtable = {
&FileInputStream_get,
&FileInputStream_seek,
&FileInputStream_tell,

b5

FileInputStream file_in = { the_FileInputStream_vtable,
InputStream *s = (InputStream*) &file_in;

}s

attacking function pointer tables

option 1: overwrite table entry directly

required/easy for Global Offset Table — fixed location
usually not possible for VTables — read-only memory

option 2: create table in buffer (big list of pointers to shellcode),
point to buffer

useful when table pointer next to buffer
(e.g. C++ object on stack next to buffer)

option 3: find suitable pointer elsewhere
e.g. point to wrong part of vtable to run different function

exercise

objArray
vtable pointer [— class VulnerableClass {
public:
buffer char buffer[100];
vtable pointer virtual void foo();

virtual void bar();

}.
ValnerableClass objArray[10];

slot for foo
slot for bar

if we can overflow objArray[0].buffer to change array[1]'s

vtable pointer and know array[1].foo() will be called; finish the plan:
buffer[0]: . shellcode
buffer[50]: . address of buffer[0]
array[1]'s vtable pointer: address of buffer[50]

. address of original vtable

. address of objArray[0]'s vtable

. address of objArray[1]'s vtable pointer10

mmoOw >

arbitrary memory write

bunch of scenarios that lead to single arbitrary memory write
format exploits are one, but we'll find more!!

typical result: arbitrary code execution

how?

overwrite existing machine code (insert jump?)
problem: usually not writable

overwrite return address directly
observation: don't care about stack canaries — skip them

overwrite other function pointer?

overwrite another data pointer — copy more?
11

pointer subterfuge

void f2b(void *arg, size_t len) {
char buffer[100];
long val = ...; /* assume on stack */
long *ptr = ...; /* assume on stack */
memcpy (buff, arg, len); /* overwrite ptr? */
ptr = val; / arbitrary memory write! */

adapted from Pincus and Baker, Figure 2 12

pointer subterfuge

void f2b(void *arg, size_t len) {
char buffer[100];
long val = ...; /* assume on stack */
long *ptr = ...; /* assume on stack */
memcpy (buff, arg, len); /* overwrite ptr? */
ptr = val; / arbitrary memory write! */

adapted from Pincus and Baker, Figure 2 12

skipping the canary

highest address (stack started here)

return address for f2b

stack canary

ptr (8 bytes)

val (8 bytes)

buffer (100 bytes)

return address for scanf

lowest address (stack grows here)

increasing addresses

13

skipping the canary

highest address (stack started here)

return address for f2b

stack canary

ptr (8 bytes)

val (8 bytes)

buffer (100 bytes)

return address for scanf

lowest address (stack grows here)

increasing addresses

13

skipping the canary

highest address (stack started here)

return address for f2b ==

stack canary

ptr (8 bytes)

val (8 bytes)

-

machine code for tif¥f6%PHE un

return address for scanf

lowest address (stack grows here)

increasing addresses

13

attacking the GOT

highest address (stack started here)

return address for f2b

stack canary

ptr (8 bytes)

val (8 bytes)

buffer (100 bytes)

return address for scanf

lowest address (stack grows here)

increasing addresses

global offset table

GOT entry: printf

GOT entry: fopen

GOT entry: exit

14

attacking the GOT

highest address (stack started here)

return address for f2b

stack canary

ptr (8 bytes)

val (8 bytes)

buffer (100 bytes)

return address for scanf

lowest address (stack grows here)

global offset table

- GOT entry: printf
GOT entry: fopen
GOT entry: exit

increasing addresses

14

attacking the GOT

highest address (stack started here)

return address for f2b

stack canary

ptr (8 bytes)

val (8 bytes)

-

machine code fHERELRRS) to run

ncreasing addresses

global offset table

© GOT entry: printf |

GOT entry: fopen

GOT entry: exit

return address for scanf

lowest address (stack grows here)

14

laying out stack to avoid subterfuge

highest address (stack started here)

return address for f2b

stack canary

buffer (100 bytes)

ptr (8 bytes)

val (8 bytes)

return address for scanf

lowest address (stack grows here)

increasing addresses

15

laying out stack to avoid subterfuge

highest address (stack started here)

return address for f2b

stack canary

buffer (100 bytes)

ptr (8 bytes)

val (8 bytes)

return address for scanf

lowest address (stack grows here)

increasing addresses

15

laying out stack to avoid subterfuge
highest address (stack started here)

return address for f2b ==

stack canary

buffer (100 bytes)

increasing addresses

machine code for the mEtE@hgtedo run

¢ wual L0 Lo

vaT (U oy coJI)

return address for scanf

lowest address (stack grows here)

15

other subterfuge cases (1)

struct Command {

highest address

CommandType type;
int values[MAX_VALUES];
int *active_value;

};...

. w0
more struct fields 4 Q
w0
)
) -
- o
active_value o
(¢4}
)
=
@
values &
) -
)
=
type

lowest address

16

other subterfuge cases (2)

Command *current_command;

highest address

char +dinput_buffer[4096];

void run_next_command() {
if (!current_command) {
current_command =

getNext();
}

current_command—> ...

(V]
more globals to
(V]
)
| -
o
current_command e
)
£
. (7]
input__buffer S
| -
O
£
more globals

lowest address

17

so far overwrites

once we found a way to overwrite function pointer
easiest solution seems to be: direct to our code

..but alterante places to direct it to

18

return-to-somewhere
highest address (stack started here)

return address for vulnerable:
address of do_useful_stuff .

unused junk

>

incrBasing addresses

return address for scanf

lowest address (stack grows here)

do_useful _stuff
(already in program)

19

return-to-somewhere
highest address (stack started here)

return address for vulnerable:
address of do_useful_stuff _ T

SSES

code is already in program?7?7?
how often does this happen?7?
..turns out “usually” — more later in semester

a)

‘ [9]
)

incr

return address for scanf

lowest address (stack grows here)

19

example: system()

NAME
system — execute a shell command

SYNOPSIS
#include <stdlib.h>

int system(const char *command) ;
part of C standard library

in any program that dynamically links to libc

challenge: need to hope argument register (rdi) set usefully

20

locating system() Linux

$ 1ldd /bin/1s
linux—vdso.so.1l (Ox00002aaaaaade00O)
libselinux.so.1l => /1ib/x86_64—Llinux—gnu/libselinux.so.1l (0x00002aaaaab3at00)
libc.so.6 => /1lib/x86_64—1inux—gnu/libc.so.6 (Ox00002aaaaab65000)
libpcre2—8.s0.0 => /usr/1lib/x86_64—Llinux—gnu/libpcre2—8.s0.0 (0x00002aaaaad57000)
libdl.s0.2 => /1ib/x86_64—1inux—gnu/libdl.so0.2 (Ox00002aaaaade7000)
/1ib64/1d—1inux—x86—64.s50.2 (Ox00002aaaaaaab00bn)
libpthread.so.0 => /1ib/x86_64—Llinux—gnu/libpthread.so.0 (0x00002aaaaaded000)
$ objdump —dynamic—syms /1ib/x86_64—1linux—gnu/libc.so.6 | grep system
0000000000156a80 g DF .text 0000000000000067 GLIBC_2.2.5 svcerr_systemerr
0000000000055410 g DF .text 000000000000002d GLIBC_PRIVATE __Tlibc_system
0000000000055410 w DF .text 000000000000002d GLIBC_2.2.5 system

if address randomization disabled:
address should be 0x00002aaaaab650 + 0x55410

1dd — “what libraries does this load and where?”
similar tools for other OSes

21

case study (simplified)
bug in NTPd (Network Time Protocol Daemon)

via Stephen Rottger, “Finding and exploiting ntpd vulnerabilities”
https://googleprojectzero.blogspot.com/2015/01/
finding-and-exploiting-ntpd.html
static void
ctl_putdata(
const char *dp,
unsigned 1int dlen,
int bin /* set to 1 when data is binary */

) |

memmove ((char *)datapt, dp, (unsigned)dlen);
datapt += dlen;
datalinelen += dlen;

22

https://googleprojectzero.blogspot.com/2015/01/finding-and-exploiting-ntpd.html
https://googleprojectzero.blogspot.com/2015/01/finding-and-exploiting-ntpd.html

the target

memmove ((char *)datapt, dp, (unsigned)dlen);

datapt (global variable)

(other global variables)

buffer (global array)

23

more context

memmove ((char *)datapt, dp, (unsigned)dlen);

strlen(some_user_supplied_string)
/* calls strlen@plt
looks up global offset table entry! */

24

the target

memmove ((char *)datapt, dp, (unsigned)dlen);

datapt (global variable)

(other global variables)

| strlen GOT entry |

buffer (global array)

25

overall exploit
overwrite datapt to point to strlen GOT entry
overwrite value of strlen GOT entry

example target: system function
executes command-line command specified by argument

supply string to provide argument to “strlen”

26

the target

memmove ((char *)datapt, dp, (unsigned)dlen);

datapt (global variable)

(other global variables)

"»[strlen GOT entry |

buffer (global array)

27

the target

memmove ((char *)datapt, dp, (unsigned)dlen);

datapt (global variable)

(other global variables)

buffer (global array)

"»[strlen GOT entry |

\
| system() stub |

27

overall exploit: reality
real exploit was more complicated
needed to defeat more mitigations
needed to deal with not being able to write \ 0

actually tricky to send things that trigger buffer write
(meant to be local-only)

28

subterfuge exercise

struct Student {
char email[128];
struct Assignment *assignments[16];

15

struct Assignment {
char submission_file[128];
char regrade_request[1024];

}s

void SetEmail(Student *s, char *new_email) { strcpy(s—>email, new_email); }

void AddRegradeRequest(Student *s, {dnt dindex, char *request) {
strcpy(s—>assignments[index]—>regrade_request, request);

}
void vulnerable(char *STRINGl, char *STRING2) {

SetEmail(s, STRING1l); AddRegradeRequest(s, 0, STRING2);
}

exercise: to set 0x1020304050 to OXxAABBCCDD, what should
STRING1, STRING2 be?

(assume 64-bit pointers, no padding in structs, little-endian)

29

easy heap overflows

struct foo {

s

char buffer[100];
void (*func_ptr) (void);

increasing addresses

»

func_ptr

buffer

30

heap overflow: adjacent allocations

class V {

char buffer[100];
public:

virtual void ...;

};...

V *first = new V(...);

V *second = new V(...);

strcpy(first—>buffer,
attacker_controlled);

»

increasing addresses

the heap

second’s buffer

second’s vtable

first's buffer

first's vtable

31

heap overflow: adjacent allocations

class V {
char buffer[100];
public:

virtual void ...;

};...

V *first = new V(...);

V *second = new V(...);

strcpy(first—>buffer,
attacker_controlled);

addresses

increasing

»

the heap

second’s buffer

\\first%\nabm

| result of

overflowing

buffer

31

heap structure
where does malloc, free, new, delete, etc. keep info?

often in data structures next to objects on the heap

special case of adjacent heap objects problem

topic for later

32

recall(?): virtual memory

illuision of dedicated memory

real memory

Program A mapping Program A code

addresses (set by OS) ‘ Program B code

Program A data

Program B mapping |/ “> Program B data

addresses (set by OS) N

OS data

trigger error

the mapping (set by OS)

program address range
Ox0000 —--- OXOFFF
0x1000 --- OX1FFF

0x40 0000 ———- Ox40 OFFF
0x40 1000 ——- 0x40 1FFF
0x40 2000 ——- Ox40 2FFF

OX60 0000 ——-- Ox60 OFFF
OX60 1000 --- Ox60 1FFF

0x7FFF FF0O0 0000 — Ox7FFF FFOO OFFF
0x7FFF FFO0 1000 — Ox7FFF FFOO 1FFF

read?

write?

real address

no

no

no

no

yes

no

Ox...

yes

no

Ox...

yes

no

Ox...

yes

yes

Ox...

yes

yes

Ox...

yes

yes

Ox...

yes

yes

Ox...

34

Virtual Memory

modern hardware-supported memory protection mechanism

via table: OS decides what memory program sees
whether it's read-only or not

granularity of pages — typically 4KB

not in table — segfault (OS gets control)

35

malloc/new guard pages

increasing addresses

»

the heap

. guard pageii

malloc(6000)
(or new char[6000])

unused space

© guard page

36

guard pages
deliberate holes
accessing — segfualt

call to OS to allocate (not very fast)

likely to ‘waste’ memory
guard around object? minimum 4KB object

37

guard pages for malloc/new

can implement malloc/new by placing guard pages around
allocations

commonly done by real malloc/new’s for large allocations
problem: minimum actual allocation 4KB

problem: substantially slower

example: “Electric Fence” allocator for Linux (early 1990s)

38

stack canary alternative
highest address (stack started here)

return address for vulnerable:
Ox40fd37

»
>

guard page”
minimum 4KB

increasing addresses

lowest address (stack grows here)

stack canary alternative
highest address (stack started here)

return address for vulnerable: address read |write
0 Ox40fd37
Q= —|+— OX7FFFF 2000 OXTFFFF2000-ves |yes
o OX7FFFF2FFF
S “guard page” OX7FFFF1000
.- . N X -
3 minimum 4KB 3 ox7FFFF1FFF MO NO
a0 —{<— OXTFFFF 1000 |o _
= x7FFFFO000
0 ox7FFFFOFFF V&> V€S
(g0
(O]
p -
(@]
£

lowest address (stack grows here)

39

stack canary alternative 2

highest address (stack started here)

return address for vulnerable:
Ox40fd37

»
>

unused space

buffer

increasing addresses

lowest address (stack grows here)

40

stack canary alternative 2

highest address (stack started here)

0x40fd37

»
>

return address for vulnerable:

unused space

buffer

increasing addresses

<— OX7FFFF 2000

~<+— OX7FFFF 1000

lowest address (stack grows here)

address read write
oxrrrrraree VS |YES
ourrrrrirer VES N0
oxrrrrroree [VES Ve

40

exercise: guard page overhead

suppose heap allocations are:
100 000 objects of 100 bytes
1000 objects of 1000 bytes
100 objects of approx. 10000 bytes

total allocation of approx 12 000 KB

assuming 4KB pages, estimate space overhead of using guard
pages:

for objects larger than 4096 bytes (1 page)

for objects larger than 200 bytes

for all objects

41

	arbitrary writes
	write targets, continued
	C++ inheritence
	options for attacking function pointer tables
	vtable overwrite exercise

	one write into another
	pointer subterfuge
	example: return address overwrite
	example: GOT overwrite
	careful stack layout?
	structs containing pointers

	arc injection
	case study: NTP exploit
	subterfuge exercise

	overflows on the heap, first look
	simple case
	adjacent on the heap
	preview: heap structure

	memory protection
	generally
	page-level permissions
	guard pages / replacing stack canaries?
	exercise: guard page overhead

