bounds checking (2) / testing (1)

last time

use-after-free vulnerabilities
after free: old pointer still “works” if new thing allocated there
attacker can get control of memory of object they didn't use
info leak (read from object you shouldn't)
code execution (replace VTable/function pointer/etc.)

FORTIFY_SOURCE: gcc/clang/etc.'s sometimes bounds checking

special chk version of library functions
works when compilers can find bounds easily
compiler can't find bounds: no fallback

unfortunate design of strncpy, strncat

non-checking library functions

some C library functions make bounds checking hard:

strcpy(dest, source);
strcat(dest, source);
sprintf(dest, format, ...);

bounds-checking versions (added to library later):

/* might not add \0 (!) */
strncpy(dest, source, size);
strncat(dest, source, size);
snprintf(dest, size, format, ...);

poor bounds-checking APIs

char dest[100];

/* THIS CODE IS BROKEN */
strncpy(dest, sourcel, sizeof dest);
strncat(dest, source2, sizeof dest);
printf("result was %s\n", dest)

the above can access memory of out of bounds

..in a bunch of ways

Linux’s strncpy manual

strncpy(dest, sourcel, sizeof dest);

“Warning: If there is no null byte among the first n bytes of src, the
string placed in dest will not be null-terminated.”

exercise: what should the call have been?

Linux’s strncat manual

strncat(dest, source2, sizeof dest);

“If src contains n or more bytes, strncat() writes n+1 bytes to dest
(n from src plus the terminating null byte). Therefore, the size of
dest must be at least strlen(dest)+n+1."

exercise: what should the call have been?

better versions?
FreeBSD (and Linux via libbsd): strlcpy, strlcat

“Unlike [strncat and strncpy], stricpy() and stricat() take the full
size of the buffer and gaurenteeto NUL-terminate the result...”

strlcpy(dest, sourcel, sizeof dest);
strlcat(dest, source2, sizeof dest);

Windows: strcpy_s, strcat_s (same idea, differentname)

C++ bounds checking

#include <vector>

std::vector<int> data;
data.resize(50);

// undefined behavior:

datal[60] = 0;

// throws std::out_of_range exception
data.at(60) = 0;

language-level solutions
languages like Python don’t have this problem

couldn’'t we do the same thing in C?

bounds-checking C

there have been many proposals to add bounds-checking to C

including implementations

brainstorm: why hasn't this happened?

10

easy bounds-checking

void vulnerable() {
char buffer[100];

int c;
int i = 0
while ((c = getchar()) != EOF & c != "\n'") {

buffer[i] = c;
+
}
void vulnerable_checked() {
char buffer[100];

int c;
int i = 03
while ((c = getchar()) != EOF && c != '"\n') {

FAIL_LIF(i >= 100 || i < 0);
buffer[i] = c;

11

harder bounds-checking

void vulnerable(char *buffer) {
char buffer[100];

int c;
int i = 03
while ((c = getchar()) != EOF & c != "\n'") {
buffer[i] = c;
+
}
void vulnerable_checked(char *buffer) {
int c;
int i = 0
while ((c = getchar()) != EOF && c != "\n') {
FAIL_IF(i >= UNKNOWN || i < UNKNOWN);
buffer[i] = c;
+
}

12

adding bounds-checking — fat pointers

struct MyPtr {
char *pointer; /* "raw'" pointer value */
char *minimum; /* first byte of buffer pointed to */
char *maximum; /* last byte of buffer pointed to */

I

13

adding bounds-checking — fat pointers

struct MyPtr {
char *pointer; /* "raw" pointer value */
char *minimum; /* first byte of buffer pointed to */
char *maximum; /* last byte of buffer pointed to */

I

char buffer[100];
char *p = &buffer[10];

becomes

char buffer[100];

MyPtr p = {
.pointer = &buffer[10],
.minimum = &buffer[0],
.maximum = &buffer[99]

}s3

13

adding bounds checking — strcpy

MyPtr strcpy(MyPtr dest, const MyPtr src) {

int 1i;

do {
CHECK(src.pointer + i <= src.maximum);
CHECK(src.pointer + i >= src.minimum);
CHECK(dest.pointer + i <= dest.maximum);
CHECK(dest.pointer + i >= dest.minimum);
dest.pointer[i] = src.pointer[i];
i += 13
CHECK(src.pointer + i <= src.maximum);
CHECK(src.pointer + i >= src.minimum);

} while (src.pointer[i] != "\0');

return dest;

14

speed of bounds checking
two comparisons for every pointer access?

three times as much space for every pointer?

15

unfortunate things C programmers do (1)

from FreeBSD's bootpd (server for machines that boot from the
network):
struct shared_string {

unsigned int linkcount;

char string[1]; /* Dynamically extended */
}s5

s = (struct shared_string *) smalloc(
sizeof(struct shared_string) + length
)

16

unfortunate things C programmers do (2)

from perl’s source code:
sv_setuv(my_pool_sv, PTR2UV(my_poolp));

/* later, in another function: */
my_pool_t *my_poolp = INT2PTR(my_pool_t*, SvUV(my_pool_sv));

PTR2UV: pointer to Unsigned int Value
INT2PTR: integer to pointer value

17

unfortunate things C programmers do (3)

struct SuperClass;
struct SubClass {
struct SuperClass super;

}

struct SubClass sub;
struct SuperClass *super = &sub.super;
some_function(super);

some_function(struct SuperClass *super) {

struct SubClass *sub = (struct SubClass *)super;

18

example: CCured

Necula et al, “CCured: Type-Safe Retrofitting of Legacy Code"
(2002)

extension to C to add fat pointers

actually three different types of pointers:

SAFE: point to single object (not array) or NULL

SEQUENCE: pointer to array with known bounds (like “fat” pointers)
DYNAMIC: extra to handles type-casting

needs source changes to annotate some pointer usage
especially to allow library function calls

1-2.5x time overhead

19

research example (2009)

Baggy Bounds Checking: An Efficient and Backwards-Compatible Defense
against Out-of-Bounds Errors

20

baggy bounds checking idea
giant lookup table — one entry for every 16 bytes of memory
table indicates start of object allocated here

check pointer arithmetic:

char p = str[i];

/* becomes: */

CHECK(START_OF[str / 16] == START_OF[&str[i] / 16]):
char p = str[i];

21

baggy bounds trick

table of pointers to starting locations would be huge

add some restrictions:

all object sizes are powers of two
all object starting addresses are a multiple of their size

then, table contains size info only:
table contains 7, size is 2' bytes:

char *GetStartOfObject(char *pointer) {
return pointer & ~(1 << TABLE[pointer / 16] — 1);
/* pointer bitwise-and 2"(table entry) - 1 */
/* clear lower (table entry) bits of pointer */

22

allocations and lookup table

object allocated in
power-of-two ‘slots’

23

allocations and lookup table

object allocated in
power-of-two ‘slots’

23

allocations and lookup table

table

object allocated in
power-of-two ‘slots’

table stores sizes
for each 16 bytes

23

allocations and lookup table

object allocated in
power-of-two ‘slots’

table stores sizes
for each 16 bytes

addresses multiples of size
(may require padding)

23

allocations and lookup table

object allocated in
power-of-two ‘slots’

table stores sizes
for each 16 bytes

addresses multiples of size
(may require padding)

sizes are powers of two
(may require padding)

23

allocations and lookup table

object allocated in
power-of-two ‘slots’

table stores sizes
for each 16 bytes

addresses multiples of size
(may require padding)

sizes are powers of two
(may require padding)

23

managing the table
) vulnerable:
not just done malloc()/new // pake %rsp a multiple
_ /) of 128 (2°7)
also for stack allocations: andq $OxFFFFFFFFFFFFFF80, %rsp
// allocate 128 bytes

char buffer[100]; subq 30x80, %rsp

gets(vulnerable); // rax < rip /16
) movq $rsp, %rax

shrq $4, %rax
movb $7, TABLE (%rax)
movb $7, TABLE+1(%rax)

void vulnerable() {

movq %rsp, %rdi
call gets
ret

24

sparse lookup table
lookup table

25

baggy bounds check: added code

bounds mov eax, buf
looku shr eax, 4
P mov al, byte ptr [TABLE+eax]
pointer b %o = bufli
arithmetic char *p = bufli];
mov ebx, buf
xor ebx, p
bounds shr ebx, al
check jz ok
p = slowPath(buf, p)
ok:

Figure 5: Code sequence inserted to check unsafe pointer
arithmetic.

26

baggy bounds check: added code

/* bounds lookup */
mov buf, %rax
shr %rax, 4
mov LOOKUP_TABLE (%rax), %al
/* array element address computation */
.. // char * p = buf[i];
/% bound check */
mov buf, %rbx
xor p, %rbx
shr %a'l, %rbx
jz ok
// handle possible violation
ok:

adapted from paper figure

27

avoiding checks
code not added if not array/pointer accesses to object

code not added when pointer accesses “obviously” safe
author's implementation: only checked within function

28

exercise: overhead of baggy bounds (1)

suppose program allocates:

1000 100 byte objects
1 10000 byte object

using baggy bounds, estimate:
space required for padding

space required for table

29

exercise: overhead of baggy bounds (1)

suppose program allocates:

1000 100 byte objects
1 10000 byte object

using baggy bounds, estimate:
space required for padding
(128 — 100) - 1000 + (16384 — 10000)) = 34384
space required for table
(128 - 1000 + 16384) < 16 = 9024

30

exercise: overhead of baggy bounds (2)

char *strcat(char *d, char *s) {
int i;
for (i = 0; s[i] != "\0o'; i += 1) {
) dli] = s[i];

d[i] = "\0';
return d;

}

estimate:

number of bounds checks needed
very rough number of instructions run w/o bounds check

thought question:
with bounds checking, what's fastest possible code?

31

alternate approach: pointer tagging

some bits of address are size
replaces table entry/lookup

change code to allocate objects this way

works well on 64-bit — plenty of addresses to use
(c) Tagged pointer

| zero | size | supported address space

21 t= 5 = 38

32

baggy bounds performance
table: 4-72% time overhead (depends on benchmark suite)
table: 11-21% space overhead (depends on benchmark suite)

tagged pointers: slightly better on average

33

baggy bounds performance

® Buddy = Baggy WTag ®Buddy = Baggy WTag
@
E § 25
= E
=}) 2
S =
3 x 15 4
[}
frd g 1
o
K E 05 -
5 F RSP R R] N I R N R
z o A S I S 4 o N S &
o & & <& & 'S'é W & Qé\é\ & & g\’}
Figure 19: Normalized execution time on AMD64 with Figure 21: Normalized peak memory use on AMDG64
Olden benchmarks. with Olden benchmarks.
° W Buddy ©Baggy MTag mBuddy mBaggy mTag
E 35 E 2
5 3 o]
s 25 = 15
=

g 27 3 1.
@ 15 - 3
3 0s] 8 o054
Z o =
£ 0+ E 0+
5 S
F3 o -Q & 'y R S e z Qv & Q & Y 5 & @

& & @S & &S 6\0@% A
Figure 20: Normalized execution time on AMD64 with Figure 22: Normalized peak memory use on AMD64
SPECINT 2000 benchmarks. with SPECINT 2000 benchmarks.

34

problem: within object

struct foo {
char buffer[1024];
int *pointer;
3
struct foo array_of_foos[1024];

char *p = &array_of_foos[4].buffer[4]

exercise: what are the bounds for p?

35

unfortunate things C programmers do (4)
in code generated by f2c (Fortran to C translator)

(cleaned up slightly)

float sum(int size, float *arr) {

arr = arr — 1; /* <-- deliberately out-of-bounds pointer *
float result = 0.f;

for (i = 1; i <= size; ++i) {
result += arr[i]
}

return result;

36

AddressSanitizer

like baggy bounds:
big lookup table
lookup table set by memory allocations
compiler modification: change stack allocations

unlike baggy bounds:
check reads/writes (instead of pointer computations)
only detect errors that read/write between objects
object sizes not padded to power of two
table has info for every single byte (more precise)

37

adding bounds-checking example

void vulnerable(long value, int offset) {
long array[1l0] = {1,2,3,4,5,6,7,8,9,10};
// generated code: (added by AddressSanitizer)
if (!lookup_table[&array[offset]] == VALID) FAIL();
array[offset] = value;
do_something_with(array);

}

AddressSanitizer: crashes only if array[offset] isn't part of any
object

but no extra space — single-byte precision

38

adding bounds-checking example

void vulnerable(long value, int offset) {
long array[1l0] = {1,2,3,4,5,6,7,8,9,10};
// generated code: (added by AddressSanitizer)
if (!lookup_table[&array[offset]] == VALID) FAIL();
array[offset] = value;
do_something_with(array);

}

AddressSanitizer: crashes only if array[offset] isn't part of any
object

but no extra space — single-byte precision

38

AddressSanitizer stack layout

return address (for vulernable())
saved %rbp
saved %rl13
saved %rl12
saved %rbx

39

AddressSanitizer stack layout

return address (for vulernable())

saved %rbp

saved %rl13

saved %rl12

saved %rbx

~ array[0x13]

~ array[0xa]

39

AddressSanitizer stack layout

return address (for vulernable())

saved %rbp

saved %rl13

saved %rl12

saved %rbx

lookup table

valid

“red zone

valid

valid

valid

valid

invalid

invalid

invalid

invalid

valid

valid

39

	bounds checking...
	and library functions
	language support?
	simple case for bounds checking in C
	the problematic case
	fat pointer idea
	strcpy example
	overhead?

	unfortunate things C programmers do
	fat pointers in reality?

	baggy bounds checking
	trick for good performance
	the lookup table
	checks using table
	exercise: overhead estimating?
	alternative: pointer tagging
	performance?
	problem: pointers within objects
	corner cases

	AddressSanitizer
	ASan's added check
	stack layout

