
greybox fuzzing / static analysis / taint tracking
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Changelog
12 April 2021: change direction of assertion on symbolic execution
equation exercise

12 April 2021: completeness/soundness: correct description

12 April 2021: points-to diagram: correct arrows to C (not via B)
and fixup its ID= values
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last time (1)
AddressSanitizer, Valgrind Memcheck

red zones between objects
lookup table “is location valid”
instrument memory reads/writes (not pointer arith)

random testing
way to find memory errors, etc.
mutating good inputs
custom generators for formatted input? (e.g. HTML, C code)
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last time (2)
symbolic execution

make program values into algebriac variables
solve equations to find if paths are possible
systematic way to generate thorough test cases
performance problems: slow equation solving, too many paths
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exercise
void example(unsigned x, unsigned y) {

if (x > y) return;
x = x + y;
assert(x + y + 1 > y);

}

1: to see if the assertion is meant, the equation we should solve (if
initial values of x, y, are X, Y)?

2: what is an input that fails the assertion? (hint: integer overflow)
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equation solving
can generate formula with bounded inputs

can always be solved by trying all possibilities

but actually solving is NP-hard (i.e. not generally possible)

luck: there exists solvers that are often good enough

…for small programs

…with lots of additional heuristics to make it work
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tricky parts in symbolic execution
dealing with pointers?

one method: one path for each valid value of pointer

solving equations?
NP-hard (boolean satisfiablity) — not practical in general
“good enough” for small enough programs/inputs
…after lots of tricks

how many paths?
< 100% coverage in practice
small input sizes (limited number of variables)
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real symbolic execution
not yet used much outside of research

old technique (1970s), but recent resurgence
equation solving (‘SAT solvers’/‘SMT solvers’) is now much better

example usable tools: KLEE, symcc (test case generating)
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KLEE optimizations
lots of optimizations to make search time pratical

prioritize paths that produce good tests
try to execute new code
try to find new paths new root of tree

reuse equation solving results:
remove irrelevant variables from equation solving queries

e.g. if (x == 10) doesn’t need variables unrelated to x’s value
cache of prior queries with “no solution”

results from 1 hour of compute time (from 2008 paper):
avg. 91% coverage on Linux coreutils (basic command line tools)
versus developer tests: 68% covergae
(where coverage = % lines of code run 6= % possible paths run)
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a compromise: coverage-guided fuzzing
symbolic execution: try to maximize paths run…

by finding potential paths, solving to run them

observation: easy to measure which paths a test case uses
way, way, way easier than solving eqn to find a case for that path

can make random tests biased towards finding new paths

9



coverage-guided example
void foo(int a, int b) {

if (a != 0) {
// W
b −= 2;
a += b;

} else {
// X

}
if (b < 5) {

// Y
b += 4;
if (a + b > 50) {

// Q
...

}
} else {

// Z
}

}

initial test case A:
a = 0x17, b = 0x08; covers: WZ

generate random tests based on A
a = 0x37, b = 0x08; covers: WZ
a = 0x15, b = 0x08; covers: WZ
a = 0x17, b = 0x0c; covers: WZ
a = 0x13, b = 0x08; covers: WZ
a = 0x17, b = 0x08; covers: WZ
…
a = 0x17, b = 0x00; covers: WY

found test case B:
a = 0x17, b = 0x00; covers: WY

generate random tests based on A, B

a = 0x37, b = 0x08; covers: WZ
a = 0x04, b = 0x00; covers: WY
a = 0x17, b = 0x01; covers: WZ
a = 0x16, b = 0x00; covers: WY
…
a = 0x97, b = 0x00; covers: WYQ
…
a = 0x00, b = 0x08; covers: XY
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coverage-guided example
void foo(unsigned a,

unsigned b,
unsigned c) {

if (a != 0) {
b −= c; // W

}
if (b < 5) {

if (a > c) {
a += b; // X

}
b += 4; // Y

} else {
a += 1; // Z

}
assert(a + b != 7);

}

initial test case A:
a = 0x17, b = 0x08, c = 0x00; covers: WZ

generate random tests based on A
a = 0x37, b = 0x08, c = 0x00; covers: WZ
a = 0x15, b = 0x08, c = 0x02; covers: WZ
a = 0x17, b = 0x0c, c = 0x00; covers: WZ
a = 0x13, b = 0x08, c = 0x40; covers: WZ
a = 0x17, b = 0x08, c = 0x10; covers: WZ
…
a = 0x17, b = 0x00, c = 0x01; covers: WXY

found test case B:
a = 0x17, b = 0x00, c = 0x01; covers: WXY

generate random tests based on A, B

a = 0x37, b = 0x08, c = 0x00; covers: WZ
a = 0x17, b = 0x00, c = 0x03; covers: WXY
a = 0x17, b = 0x0c, c = 0x00; covers: WZ
a = 0x37, b = 0x00, c = 0x03; covers: WXY
a = 0x17, b = 0x08, c = 0x10; covers: WZ
…
a = 0x17, b = 0x00, c = 0x81; covers: WY
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exercise: coverage guidance good for?
void example1(int a, int b) {

if (a < 4 && b < 4 && a == b) {
assert(a + b != 6);

}
}
void example2(int a, int b) {

assert(a != 10325);
}
void example3(int a, int b) {

assert(a != 10325 && b != 10543);
}

exercise: for which of these functions would coverage guided fuzzing
be most/least better than random testing for making the assertion
fail?
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american fuzzy lop
one example of a fuzzer that uses this strategy

“whitebox fuzzing”

assembler wrapper to record computed/conditional jumps:
CoverageArray[Hash(JumpSource, JumpDest)]++;

use values from coverage array to distinguish cases

outputs only unique test cases

goal: test case for every possible jump source/dest
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american fuzzy lop heuristics
american fuzzy lop does some deterministic testing

try flipping every bit, every 2 bits, etc. of base input
overwrite bytes with 0xFF, 0x00, etc.
etc.

has many strategies for producing new inputs
bit-flipping
duplicating important-looking keywords
combining existing inputs
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automatically simplifying test cases
same idea as fuzzing

but look for same result/coverage

systematic simplifications:
try removing every character (one-by-one)
try decrementing every byte
…

keep simplifications that don’t change result

AFL uses some of this strategy to help get better ‘base’ tests
also has tool to do this on a found test
prefers simpler ‘base’ tests
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AFL: manual keywords
AFL supports a dictionary

list of things to add to create test cases
example: all possible HTML tags

other strategy: test-case template

other strategy: test postprocessing (fix checksums, etc.)
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fuzzing/symbolic exec imprecision
symbolic execution had some nice properties:

could reliably enumerate possible paths
could figure out inputs
could prove paths are impossible

but had huge practical problems:
not enough time/space to explore all those paths
too complicated to actually solve equations to find inputs

greybox fuzzing: one practical compromise
replaced equation solving with (educated) guessing
tried to explore enough paths
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complete versus sound
complete:

if way to reach assertion failure, analysis finds it

sound:
if analysis finds way to reach assertion failure, it’s fails the assertion

symbolic execution, greybox fuzzing: always sound
because they actually run the program

symbolic execution: complete if all paths are solved
but that isn’t practical for a large program
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other program analysis designs
other design points than symbolic execution:

tracking all the varaible values

alternative: just track properties of interest

compute precisely what paths through code are possible

alternative: use some approximation
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model for use-after-free
model for use-after-free, pointer is:

allocated
freed
(other states?)

just track this logical state for each pointer

ignore everything else

assume all if statements/loop conditions can be true or false
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checking use-after-free (1)
void someFunction(int foo, int bar) {

int *quux = malloc(sizeof(int));
// A
... /* omitted code that doesn't use quux */
free(quux);
// B
... /* omitted code that doesn't use quux */
// C
*quux = bar;
...

}

A: quux: allocated

B: quux: freed

C (from freed): USE-AFTER-FREE

analysis can give warning — almost certainly bad

exercise: how could this be a false positive?
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result from clang’s scan-build
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checking use-after-free (2)
int *someFunction(int foo, int bar) {

int *quux = malloc(sizeof(int));
// A
if (Complex(foo)) {

free(quux);
// B

}
... /* omitted code that doesn't use quux */
if (Complex(bar)) {

// C
*quux = bar;

}
... /* omitted code that doesn't use quux */
// D

}

A: quux: allocated

B: quux: freed

C (from quux freed): USE-AFTER-FREE

D (from quux freed)

C (from quux allocated): ok

D (from allocated)

one idea: guess that Complex(foo) can be probably be true

option 1: say “something wrong maybe”?
option 2: try to figure out if Complex(foo) is true?)
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result from clang’s scan-build
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exercise: holes in the model?
void example(int a) {

int *p;
int *q;
q = malloc(...);
p = malloc(...);
// (A)
if (a > 0) {

// (A1)
p = q;

}
// (B)
free(p);
// (C)
...

}

exercise: what should state of pointer q be at C?
A. allocated B. freed
C. allocated if+only if reached via path with A1
D. freed if+only if reached via path with A1
E. something else?
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clang-analyzer output
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analysis building blocks
needed to track that p and q could point to same thing

common prerequisite for all sorts of program analysis
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overly simple algorithm for points-to analysis
for each pointer/reference track which objects it can refer to

if multiple paths: take union of all possible
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simple points-to analysis
void example(int a) {

int *p;
int *q;
q = malloc(...); // ID=1
p = malloc(...); // ID=2
// (A)
if (a > 0) {

p = q;
// (B)

}
// (C)
...

}

A: p (v1): {ID=1}; q (v1): {ID=2}

B: p (v2): {ID=2}; q (v1): {ID=2}

C: p (v3): {ID=1,ID=2}: q (v1): {ID=2}

C via B: p (v2): {ID=2}: q (v1): {ID=2}

C not via B: p (v2): {ID=1}: q (v1): {ID=2}

likely first step: mark different versions of p, q
and track them as separate variables
this way: can avoid storing set of values for q for every block of code
(instead just point to q (v1) set)

alternate idea: avoid path explosion by merging possible setsone idea: keep track of each path separately
(but limit to how much one can do this)
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complicating points-to analysis
would like to analyze program function-at-a-time, but…

functions can change values shared by other functions

what about computed array indices?

what about pointers to pointers?

…

high false-positive solution:
when incomplete info: assume value points to anything of right type

high false-negative solution:
when incomplete info: assume value points to nothing
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checking use-after-free (3)

void someFunction() {
int *quux = malloc(sizeof(int));
...
// A
do {

// B
...
if (anotherFunction()) {

free(quux);
// C

}
...
// D

} while (complexFunction());
...
// E
*quux++;
...

}

A: allocated

B (from allocated): allocated

C (from allocated): quux: freed

D (from freed): freed

E (from freed): USE-AFTER-FREE

D (from allocated): allocated

E (from allocated): ok

B (from freed): freed

C (from freed): DOUBLE-FREE
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result from clang’s scan-build
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checking for array bounds
can try to apply same technique to array bounds

but much more complicated/more likely to have false
positives/negatives

for each array or pointer track:
minimum number of elements before/after what it points to

for each integer track:
minimum bound
maximum bound

similar analysis looking at paths?
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checking array bounds (1)
int array[100];
void someFunction(int foo) {

// A
if (foo <= 100) {

return;
}
// B
array[foo] += 1;

}

A: foo: [− inf, + inf]; array: indices [0, 99]

B: foo: [− inf, +100]; array: indices [0, 99]

give warning about foo == 100? probably bug!
give warning about foo < 0? maybe??
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checking array bounds (2)
int array[100];
void someFunction(int foo, bool bar) {

int *p = array;
// A
p += 50;
// B
if (foo >= 50 || foo < 0) abort();
// C
if (bar) {

foo = −foo;
}
// D
p[foo] = 1;

}

A: p: indices [0, 99]; foo: [− inf, + inf]

B: p: indices [-50, 49]; foo: [− inf, + inf]

C: p: indices [-50, 49]; foo: [0, 50]

D (bar true): p: indices: [-50, 49]; foo: [0, -50]

D (bar false): p: indices: [-50, 49]; foo: [0, 50]

warn about possible out-of-bounds?
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suspect patterns
some other clang-analyzer checks

observation: mostly simple patterns
long *p = malloc(16 * sizeof(short));

// short != long

int *foo() {
int x;
int *p = &x;
...
return p; // return pointer to stack

}
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static analysis
need to avoid exploring way too many paths

clang-analyzer: only a procedure at a time
other analyzers: some way of pruning paths

need to avoid false positives
probably can’t always assume every if can be true/false
one idea: apply symbolic-execution like techniques to prune
clang-analyzer: limited by being procedure-at-a-time
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static analysis practicality
good at finding some kinds of bugs

array out-of-bounds probably not one — complicated tracking needed

excellent for “bug patterns” like:
struct Foo* foo;
...
foo = malloc(sizeof(struct Bar));

false positive rates are often 20+% or more

some tools assume lots of annotations

not limited to C-like languages
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static analysis tools
Coverity, Fortify — commerical static analysis tools

Splint — unmaintained?
written by David Evans and his research group in the late 90s/early 00s

FindBugs (Java)

clang-analyzer — part of Clang compiler

Microsoft’s Static Driver Verifier — required for Windows drivers:
mostly checks correct usage of Windows APIs
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information flow
so far: static analysis concerned with control flow

often, we’re really worried about how data moves

many applications:
does an array index depend on user input?
does an SQL query depend on user input?
does data sent over network depend on phone number?

…

can do this statically (potential dependencies)
or dynamically (actual dependencies as program runs)
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data flow graph (1a)
def f(a, b, c):

desc = 'a={},b={}'.format(a, b)
if b > 10:

y = a
else:

y = c
w = y + a
pair = (w, c)
desc = desc + \

',pair={}'.format(pair)
print(desc)
return y

a

'a={},b={}'.format(a,b) y

y+a

desc (v1)

b

desc + ...

returned

c

pair

w

',pair={}'.format(pair)

desc (v2)

printed
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data flow graph (1b)

ex: does returned value depend on a, b, c?

ex: does value of pair depend on a, b, c?

ex: does printed value depend on a, b, c?

a

'a={},b={}'.format(a,b) y

y+a

desc (v1)

b

desc + ...

returned

c

pair

w

',pair={}'.format(pair)

desc (v2)

printed
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information flow and control flow
def f(a, b, c):

if b > 10:
y = a

else:
y = c

return y

Q: which is better …
if we’re trying to see if user input makes it to SQL query?
if we’re trying to determine if private info goes out over network?

a

y

return

c ba

y

return

b c
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data flow challenges (1)
# Python example
def stash(a):

global y
y = a

x = [0,1,2,3]
stash(x)
x[2] = input()
print(y[2])

// C example
int *y;
void stash(int *a) {

y = a;
}
int main() {

int x[3];
stash(x);
y[2] = GetInput();
printf("%d\n",x[2]);

}

need to realize that x[2] and y[2] are the same!
even if assignment to/usage of y is more cleverly hidden

…or make analysis a lot less prceise

often: make some compromise about how often this case is handled
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data flow challenges (2)
def retrieve(flag):

global the_default
if flag:

value = input()
else:

value = the_default
value = process(value)
if not flag:

print("base on default: ",value)
return value

retrieve(True)
retrieve(False)

input can’t make it to print here

…but need path-sensitive analysis to tell

often: make some compromise about how often this case is handled
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data flow challenges (3)
x = int(input())
if x == 0:

print(0)
elif x == 1:

print(1)
elif ...

does input make it to output?

should we try to detect this?
probably depends on intended use of analysis
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sources and sinks
needed choose sources (so far: function arguments)
and sinks (so far: print, return)

choice depends on application

SQL injection:
sources: input from network
sinks: SQL query functions

private info leak:
sources: private data: phone number, message history, email, …
sinks: network output
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taint tracking idea
so far: looking at how information makes it from source to sink
statically

not actually running the program

can do this as programs are running, trigger error

dynamic taint tracking
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taint tracking implementations
for the programmer:

supported as optional langauge feature — Perl, Ruby
doesn’t seem to have gotten wide adoption?

for the malware analyst/user
as part of a custom x86 VM (whole system, on machine code)
as part of a custom Android system
…

49



taint tracking in Perl (1)
#! perl -T
# -T: enable taint tracking
use warnings; use strict;
$ENV{PATH} = '/usr/bin:/bin';

print "Enter name: ";
my $name = readline(STDIN);
my $dir = $name . "-dir";

system("mkdir $dir");

“Insecure dependency in system while running with -T switch at
perltaint.pl line 10, <STDIN> line 1.”
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taint tracking in Perl (2)
#! perl -T
# -T: enable taint tracking
use warnings; use strict;
$ENV{PATH} = '/usr/bin:/bin';

print "Enter name: ";
my $name = readline(STDIN);
# keep $name only if its all alphanumeric
# this marks $name as untainted
($name) = $name =~ /^([a-zA-Z0-9]+)$/;
my $dir = $name . "-dir";

system("mkdir $name");
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taint tracking assembly?
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high-level overview
lookup table for each register and byte of memory:

where did this value come from?

add %r9, (%r8):
memory-taint-table[register-values[R8]] =

register-taint-table[R9]

custom VM: all applications and the OS run with taint tracking
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Panaroma special cases
xor %eax, %eax: special case: remove taint from %eax

Windows keyboard input did something like:
switch (keycode) {
case KEYCODE_A: return 'a';
case KEYCODE_B: return 'b';
...
}
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taint tracking for malware analysis
uses proposed by Panaroma authors:

keypresses → network packets

network packets → malware outputs

browser history → network packets
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defeating ASM-based checking
if a malware author wanted to defeat this taint checking, what ideas
seem promising for confusing the analysis?

A. timing arithmetic operations to see if the machine is unusually slow
B. computing the hash of the malware’s machine code and comparing it
to a known value
C. changing x = y to
switch (x) { case 1: y = 1; break; case 2: ...}
D. changing x = y to x = z + y; x = x − z;
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Tigress’s transformation
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example: TaintDroid
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TaintDroid instrumentation
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TaintDroid resutls
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Rust philosophy
default rules that only allow ‘safe’ things

no dangling pointers
no out-of-bounds accesses

escape hatch to use “raw” pointers or unchecked libraries

escape hatch can be used to write useful libraries
e.g. Vector/ArrayList equivalent
expose interface that is safe
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simple Rust syntax (1)
fn main() {

println!("Hello, World!\n");
}
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simple Rust syntax (2)
fn timesTwo(number: i32) -> i32 {

return number * 2;
}
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simple Rust syntax (3)
struct Student {

name: String,
id: i32,

}

fn get_example_student() -> Student {
return Student {

name: String::from("Example Fakelastname"),
id: 42,

};
}
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simple Rust syntax (4)
fn factorial(number: i32) -> i32 {

let mut result = 1;
let mut index = 1;
while index <= number {

result *= index;
index = index + 1;

}
return result;

}

“input” is a mutable variable
type automatically inferred as i32 (32-bit int)
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Rust references
fn main() {

let mut x: u32 = 42;

{
let y: &mut u32 = &mut x;
*y = 100;

}

let z: &u32 = &x;

println!("x = {}; z = {}", x, x);
}
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Rust example
use std::io;

fn main() {
println!("Enter a number: ");

let mut input = String::new();
// could have also written:
// let mut input: String = String::new();

io::stdin().read_line(&mut input);

// parse number or fail with an error message
let number: u32 = input.trim().parse()

.expect("That was not a number!");
println!("Twice that number is: {}", number * 2);

}

“input” is a mutable variable
type is automatically inferred as String

pass mutable reference to input

number is an immutable unsigned 32-bit integer
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rules to stop dangling pointers (1)
objects have an single owner

owner is the only one allowed to modify an object

owner can give away ownership

simplest version: only owner can access object

never have multiple references to object — always move/copy
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Rust objects and ownership (1)
fn mysum(vector: Vec<u32>) -> u32 {

let mut total: u32 = 0
for value in &vector {

total += value
}
return total

}

fn foo() {
let vector: Vec<u32> = vec![1, 2, 3];
let sum = mysum(vector);
// **moves** vector into mysum()

// philosophy: no implicit expensive copies

println!("Sum is {}", sum);
// ERROR
println!("vector[0] is {}" , vector[0]);

}

Compiling lecture−demo v0.1.0 (file:///home/cr4bd/spring2017/cs4630/...
error[E0382]: use of moved value: vector

−−> src/main.rs:16:34
|

13 | let sum = mysum(vector);
| −−−−−− value moved here

...
16 | println!("vector[0] is {}" , vector[0]);

| ^^^^^^ value used here after move
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Rust objects and ownership (2)
fn mysum(vector: Vec<u32>) -> u32 {

let mut total: u32 = 0
for value in &vector {

total += value
}
return total

}

fn foo() {
let vector: Vec<u32> = vec![1, 2, 3];
let sum = mysum(vector.clone());
// give away a copy of vector instead

// mysum will dispose, since it owns it

println!("Sum is {}", sum);
println!("vector[0] is {}" , newVector[0]);

}

mysum borrows a copy
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moving?
moving a Vec — really copying a pointer to an array and its size

cloning a Vec — making a copy of the array itself, too

Rust defaults to moving non-trivial types

some trivial types (u32, etc.) are copied by default
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Rust objects and ownership (3)
fn mysum(vector: Vec<u32>) -> (u32, Vec<u32>) {

let mut total: u32 = 0
for value in &vector {

total += value
}
return (total, vector)

}

fn foo() {
let vector: Vec<u32> = vec![1, 2, 3];
let (sum, newVector) = mysum(vector);
// give away vector, get it back

println!("Sum is {}", sum);
println!("vector[0] is {}" , newVector[0]);

}

mysum “borrows” vector, then gives it back
uses pointers
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Rust objects and ownership (3)
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ownership rules
exactly one owner at a time

giving away ownership means you can’t use object

common idiom — temporarily give away object

either give object new owner or deallocate
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rules to stop dangling pointers (2)
objects have an single owner

owner can give away ownership permanently
object is “moved”

owner can let someone borrow object temporarily
must know when object is given back

only modify object when exactly one user
owner or exclusive borrower
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borrowing
fn mysum(vector: &Vec<u32>) -> u32 {

let mut total: u32 = 0
for value in vector {

total += value
}
return total

}

fn foo() {
let vector: Vec<u32> = vec![1, 2, 3];
let sum = mysum(&vector);
// automates (vector, sum) = mysum(vector) idea

println!("Sum is {}", sum);
println!("vector[0] is {}" , vector[0]);

}
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dangling pointers?
int *dangling_pointer() {

int array[3] = {1,2,3};
return &array[0]; // not an error

}

fn dangling_pointer() -> &mut i32 {
let array = vec![1,2,3];
return &mut array[0]; // ERROR

}

error[E0106]: missing lifetime specifier
−−> src/main.rs:19:25
|

19 | fn dangling_pointer() −> &mut i32 {
| ^ expected lifetime parameter
|
= help: this function's return type contains a borrowed value,

but there is no value for it to be borrowed from
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rules to stop dangling pointers (2)
objects have an single owner

owner can give away ownership permanently
object is “moved”

owner can let someone borrow object temporarily
must know when object is given back

only modify object when exactly one user
owner or exclusive borrower
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lifetimes
every reference in Rust has a lifetime

intuitively: how long reference is usable

Rust compiler infers and checks lifetimes
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lifetime rules
object is borrowed for duration of reference lifetime

can’t modify object during lifetime
can’t let object go out of scope during lifetime

lifetime of function args must include whole function call

references returned from function must have lifetimes
based on arguments or static (valid for entire program)

references stored in structs must have lifetime longer than struct
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lifetime inference
fn get_first(values: &Vec<String>) -> &String {

return &values[0];
}

compiler infers lifetime of return value is same as input

80



lifetime hard cases
// ERROR:
fn get_first_matching(prefix: &str, values: &Vec<String>)

-> &String {
for item in values {

if item.starts_with(prefix) {
return item

}
}
panic!()

}

this is a compile-error, because of the return value

compiler need to be told lifetime of return value
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lifetime annotations
fn get_first_matching<'a, 'b>(prefix: &'a str, values: &'b Vec<String>)

-> &'b String {
for item in values {

if item.starts_with(prefix) {
return item

}
}
panic!()

}

prefix has lifetime a

values and returned string have lifetime b
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lifetime annotations
fn get_first_matching<'a, 'b>(prefix: &'a str, values: &'b Vec<String>)

-> &'b String {
for item in values {

if item.starts_with(prefix) {
return item

}
}
panic!()

}

fn get_first(values: &Vec<String>) -> &String {
let prefix: String = compute_prefix();
return get_first_matching(&prefix, values)
// prefix deallocated here

}
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rules to stop dangling pointers (2)
objects have an single owner

owner can give away ownership permanently
object is “moved”

owner can let someone borrow object temporarily
must know when object is given back

only modify object when exactly one user
owner or exclusive borrower
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restricting modification
fn modifyVector(vector: &mut Vec<u32>) { ... }
fn foo() {

let vector: Vec<u32> = vec![1, 2, 3];
for value in &vector {

if value == 2 {
modifyVector(&mut vector) // ERROR

}
}

}

trying to give away mutable reference

…while the for loop has a reference
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data races
Rusts rules around modification built assuming concurrency

idea: multiple processes/threads running at same time might use
value

safe policy: all reading or only one at a time

if multiple at a time: problems are called “data races”
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data races for use-after-free
Expand Vec | Read Vec
-------------------------------------------

| mov pointer, %rax
| ...

mov $100, %rdi |
call malloc |
mov pointer, %rdi |
mov %rax, pointer |
call free |

| ...
| mov (%rax), %rax
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what about dynamic allocation?
saw Rust’s Vec class — equivalent to C++ vector/Java ArrayList

idea: Vec wraps a heap allocation of an array

owner of Vec “owns” heap allocation
delete when no owner

also Box class — wraps heap allocation of a single value
basically same as Vec except one element
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escape hatch
Rust lets you avoid compiler’s mechanisms

implement your own

unsafe keyword

how Vec is implemented
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deep inside Vec
pub struct Vec<T> {

buf: RawVec<T>, // interface to malloc
len: usize,

}

impl<T> Vec<T> {
...
pub fn truncate(&mut self, len: usize) {

unsafe {
// drop any extra elements
while len < self.len {

// decrement len before the drop_in_place(), so a panic on Drop
// doesn't re-drop the just-failed value.
self.len -= 1;
let len = self.len;
ptr::drop_in_place(self.get_unchecked_mut(len));

}
}

}
...

}
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Rust escape hatch support
escape hatch: make new reference-like types

Rc: Rc<T> acts like &T

callbacks on ownership ending (normally deallocation)

Rc: deallocating Rc<T> decrements shared count

choice of what happens on move/copy

Rc: transferring Rc makes new copy, increments shared count
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alternative rule: reference counting
keep track of number of references

delete when count goes to zero
Rust automatically calls destructor — no programmer effort

Rust implement with Rc type (“counted reference”)
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Ref Counting Example
struct Grade {

score: i32, studentName: String, assignmentName: String,
}
struct Student {

name: String,
grades: Vec<Rc<Grade>>,

}
struct Assignment {

name: String
grades: Vec<Rc<Grade>>

}

fn add_grade(student: &mut Student, assignment: &mut Assignment, score: i32) {
let grade = Rc::new(Grade {

score: i32,
studentName: student.name,
assignmentName: assignment.name,

})
student.grades.push(grade.clone())
assignment.grades.push(grade.clone())

}
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Rust escape hatch support
escape hatch: make new reference-like types
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Rc implementationed (annotated) (1)
impl<T: ?Sized> Clone for Rc<T> {

...
fn clone(&self) -> Rc<T> {

self.inc_strong(); // <-- incremenet reference count
Rc { ptr: self.ptr }

}
}
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Rc implementation (annotated) (2)
unsafe impl<#[may_dangle] T: ?Sized> Drop for Rc<T> {

...
fn drop(&mut self) { // <-- compilers calls on deallocation

unsafe {
let ptr = *self.ptr;

self.dec_strong(); // <-- decrement reference cont
if self.strong() == 0 { // if ref count is 0

// destroy the contained object
ptr::drop_in_place(&mut (*ptr).value);
...

}
}

}
...

}
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other policies Rust supports
RefCell — borrowing, but check at runtime, not compile-time

detect at runtime if used while already used
internally: destructo call when returned object goes out of scope

Weak — reference-counting, but don’t contribute to count
detect at runtime if used with count = 0

…
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zero-overhead
normal case — lifetimes — have no overhead

compiler proves safety, generates code with no bookkeeping

other policies (e.g. reference counting) do

…but can implement new ones if not good enough
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backup slides
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Rust linked list
not actually a good idea

use Box<...> to represent object on the heap

no null, use Option<Box<...>> to represent pointer.
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Rust linked list (not recommended)
struct LinkedListNode {

value: u32,
next: Option<Box<LinkedListNode>>,

}

fn allocate_list() -> LinkedListNode {
return LinkedListNode {

value: 1,
next: Some(Box::new(LinkedListNode {

value: 2,
next: Some(Box::new(LinkedListNode {

value: 3,
next: None

}))
}))

}
}
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why the box? (1)
struct LinkedListNode { // ERROR

value: u32,
next: Option<LinkedListNode>,

}

// error[E0072]: recursive type `LinkedListNode` has infinite size
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why the box? (2)
struct LinkedListNode { // ERROR

value: u32,
next: Option<&LinkedListNode>,

}
// error[E0106]: missing lifetime specifier
// --> src/main.rs:48:18
// |
// 48 | next: Option<&LinkedListNode>,
// | ^ expected lifetime parameter
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taint tracking generally
taint tracking for other security issues is a big research area

often by implementing taint tracking for assembly
much, much higher overhead than implementing for Perl or Ruby

example: detect private information leaks
taint personal information
error if tainted info goes to network

example: check if return addresses are tainted before using
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